Combustion Efficiency Control System with a Stoichiometric Controller for a Laminar Burner System

Abstract
A combustion efficiency control system includes an air flow sensor arrangement, a fuel controller unit, a burner output sensor module, and an operating unit. The air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system and is communicatively coupled to a damper, a blower, and a flow conditioner. The air flow sensor arrangement measures laminar air flow and emits an efficiency signal that includes laminar air flow input values. An operating unit compares laminar air flow input values with combustion output values and a stoichiometric controller receives the comparison to generate an efficiency signal having a combination of air and fuel control data for the damper, the blower, the flow conditioner and the fuel controller unit, respectively. The stoichiometric controller maintains a selected combustion efficiency setting until cancelled.
Description
BACKGROUND

1. Field of the Invention


The present invention generally relates to combustion systems for enhancing efficiency as streams of laminar air and fuel mix. More particularly, but not by way of limitation, the present invention relates to a combustion system having a combustion efficiency control system for generating an optimized combustion stream, the combustion efficiency control system includes an operating unit having a stoichiometric controller for maintaining a selected combustion efficiency setting by, in part, establishing a defined and reproducible laminar flow profile.


2. Description of Related Art


Presently, many high efficiency burners require various swirling techniques to maximize the efficiency of a high efficiency burner. Swirling is a widely used mixing process for homogenizing an air fuel mixture in the combustion process by which atomized fuel is introduced into a turbulent stream of air. However, various engineered swirling techniques are often non-uniformly applied across the entire combustion chamber. Moreover, in other instances, turbulent air is often an unintended byproduct of drag exerted near the boundary layer within a fluid line that often imparts an unpredictable factor for reducing combustion efficiency by degrading the desired flow profile for the fluid line. Detrimentally, fuel and air can become drawn apart from the air fuel mixture to thereby compromise combustion efficiency as well as to spread waste fuel throughout the combustion chamber which requires routinely taking the high efficiency burner out of commercial operation to perform preventative maintenance for structural damage. Moreover, turbulent or swirled air provides an aerodynamic drag-effect that generally interrupts the rate at which air is initially supplied to a combustion chamber, and therefore consequently decreasing the operational efficiency of the burner. Furthermore, costly and often bulky low-waste emissions monitoring equipment are integrated with effluent towers of current high efficiency burner systems to ensure operational efficiency. Additional costs incur as emissions monitoring equipment shorten the operational time of such burners to ensure overall operation within low-waste emission requirements.


Unfortunately, there is no known high efficiency burner system and method for generating an optimized combustion stream by establishing and maintaining a defined and reproducible laminar air flow profile as the air is applied to the combustion process so as to mitigate or eliminate the waste emissions that is often characteristic of turbulent and swirled air combustion techniques. There is no known device or method for successfully providing a “high efficiency” combustion system for leaving negligible waste products for sustained use with industrial applications without use of swirling techniques or derivations of swirling techniques.


Therefore, a need exists for a system and method for high combustion efficiency by introducing a defined and reproducible laminar air flow profile that is maintained by feedback systems to optimize combustion efficiency. There is also a need for a system and method to establish controlled stoichiometric combustion based on sensory feedback systems for controlling laminar flow.


SUMMARY

Aspects of the present invention are found in a combustion efficiency control system for a laminar burner system that delivers thermal energy to an energy consumption system coupled thereto. The combustion efficiency control system includes an air flow sensor arrangement, a fuel controller unit, a burner output sensor module, and an operating unit. The air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system and is communicatively coupled to a damper, a blower, and a flow conditioner.


In operation, the air flow sensor arrangement measures laminar air flow and emits an efficiency signal that includes laminar air flow input values. The fuel controller unit is communicatively coupled to the fuel passageway, measures fuel flow and emits an efficiency signal that includes fuel flow input values. The burner output sensor module is positioned adjacent to a burner system outlet, measures combustion energy output produced by laminar burner system and emits an efficiency signal that includes combustion energy output values. The operating unit includes a stoichiometric controller and compares laminar air flow and fuel flow input values with combustion output values. As such, the stoichiometric controller receives the comparison of laminar air flow and fuel flow input values with combustion output values to generate an efficiency signal having a combination of air and fuel control data for the damper, the blower, the flow conditioner and the fuel controller unit, respectively. In one aspect, the stoichiometric controller maintains a selected combustion efficiency setting until such setting is cancelled.


In a further aspect of the present invention, a combustion efficiency control system includes a laminar air delivery system, an air flow sensor arrangement, and a combustion manifold. The laminar air delivery system includes a blower and is in fluid communication with the combustion manifold. The air flow sensor arrangement includes an upstream laminar flow control system and a downstream laminar flow control system. The upstream laminar flow control system includes an air delivery controller and an air delivery sensor communicatively coupled to the air delivery controller. The air delivery controller is electrically coupled to the blower. The downstream flow control system includes a flow conditioner and a laminar flow input/output sensor module communicatively coupled to the flow conditioner.


The air flow sensor arrangement measures laminar air flow and emits an efficiency signal such that the air delivery controller receives the efficiency signal to control the flow of an air delivery stream along an air delivery line by adjusting the blower. Similarly, the flow conditioner receives the efficiency signal to control the flow of the laminar air flow stream along a combustion manifold. The combustion manifold includes an air-fuel mixing chamber system in fluid communication with the laminar air delivery system, a mixing chamber, an injector device extending within the mixing chamber, and a stoichiometric combustion unit in fluid communication with the supply input module and with the air-fuel mixing chamber system. Fuel exits the injector device to mix with the laminar air intake stream with a controlled flow traveling along the air-fuel mixing chamber to define a first combustion stream. The includes a staging passageway and a stoichiometric unit body, whereby the laminar air intake stream traveling along the staging passageway passes through the first combustion stream within the stoichiometric unit body to define a second combustion stream.


Other aspects, advantages, and novel features of the present invention will become apparent from the detailed description of the present invention when considered in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not by limitation in the accompanying figures, in which like references indicate similar elements, and in which:



FIG. 1 is an schematic view from the side illustrating a burner system for generating heat energy by directing a stream of laminar air with a fuel from a supply input module through a combustion manifold having at least an air-fuel mixing chamber, a stoichiometric combustion unit, and a refractory unit;



FIG. 2 is a partially exploded, schematic view from the side illustrating a laminar burner system;



FIG. 3 is an isometric view from the side of one embodiment of a laminar air delivery system for a burner system featuring an interchangeable supply input module; FIG. 3a is an isometric from the side illustrating an interior viewer for observing operations within the supply input module;



FIG. 4 is a flow diagram of a method for combustion with a laminar burner system using a laminar air intake stream;



FIG. 5 is a schematic view from the side illustrating one embodiment of a combustion efficiency control system for a laminar burner system, the combustion efficiency control system controlling laminar air and fuel flows for enhancing combustion efficiency of the laminar burner system;



FIG. 6 is a flow diagram of method for controlling combustion efficiency for a laminar burner system;



FIG. 7 is a schematic view from the side illustrating one embodiment of a burner system for quickly and accurately modifying combustion efficiency for a various applications through linking a series of interchangeable reaction efficiency modules to the system and FIG. 7a is isometric view illustrating a plurality of laminar staging supply lines extending outwardly from an air receiving port;



FIG. 8 is a schematic view from the side illustrating one embodiment of a combustion efficiency control system for a laminar burner system, the combustion efficiency control system controlling laminar air supply by producing a defined, reproducible laminar air profile, the combustion efficiency control system includes a includes an operating unit having a stoichiometric controller for maintaining a selected combustion efficiency setting;



FIG. 9 is a schematic view from the side illustrating one embodiment of a combustion efficiency control system for a laminar burner system, the combustion efficiency control system includes a downstream laminar flow control system including a flow conditioner, a laminar flow input/output sensor module, and a flow tracer system collectively for maintaining a desired laminar air flow profile;



FIG. 10 is generally a schematic view illustrating one embodiment of a flow conditioner for a efficiency control system of a laminar burner system, FIG. 10a specifically illustrates, from the front, the flow conditioner comprising an adjustable plate array, and FIG. 10b specifically illustrates the flow conditioner of FIG. 10a from the side;



FIG. 11 a schematic view, from the front, illustrating one embodiment of a flow conditioner for a efficiency control system of a laminar burner system, the laminar flow conditioner comprising an adjustable airfoil array;



FIG. 12 is a schematic view from the side illustrating one embodiment of a combustion efficiency control system for a laminar burner system, the combustion efficiency control system including at least one flow conditioner comprising a laminar flow control valve;



FIG. 13 is a schematic view from the side illustrating one embodiment of a combustion efficiency control system for a laminar burner system, the combustion efficiency control system including at least one flow conditioner comprising a laminar flow acoustic controller;



FIG. 14 is generally an isometric view illustrating a plurality of laminar staging supply lines extending outwardly from an air receiving port with each laminar staging supply line coupled with a flow conditioner comprising a laminar flow acoustic controller; FIG. 14a shows one embodiment of a laminar flow acoustic controller coupled to a laminar staging supply line;



FIG. 14
b shows one embodiment of the laminar flow acoustic controller of FIG. 14a provided on the inner surface of a laminar staging supply line; and



FIG. 15 is a schematic diagram illustrating one exemplary embodiment of an input port laminar controller system for conditioning a laminar air flow profile received from an air receiving port, and FIG. 15a shows a laminar flow controller, such as a laminar flow passageway matrix, applied to inlet ports at an alignment plate to promote laminar air flow therethrough.





Skilled artisans appreciate that elements in the Figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the Figures may be exaggerated relative to the other elements to help improve understanding of the embodiments of the present invention.


DETAILED DESCRIPTION

For a more complete understanding of the present invention, preferred embodiments of the present invention are illustrated in the Figures. Like numerals being used to refer to like and corresponding parts of the various accompanying drawings. It is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms.



FIGS. 1-3, 5, and 7 generally illustrate a laminar flow burner system 5 having a combustion manifold 70 for applying a combustion process that generates a high efficiency stream of heat energy. The laminar flow burner system 5 includes a supply input module 20 coupled to and providing fuel and laminar streams of air to the combustion manifold 70. The resulting high efficiency combustion stream is optimized for a variety of industrial applications such as for boilers in energy generation including heat, mechanical, and electric energy; propulsion systems; for furnaces employed in applications requiring high heat such as smelting metals and alloys, distilling chemicals, petrochemicals and gas; paper manufacturing; and for flaring oil and gas wells.


Accordingly, in at least one embodiment, the combustion process established by the combustion manifold 70 can be adjusted to accurately modify combustion efficiency for various industrial applications through linking a series of interchangeable reaction efficiency modules 800 within the combustion manifold 70 in addition to adjusting combustion efficiency through controlling the input supply of laminar air and fuel. Moreover, one supply input module 20 may be interchanged for another of differing configuration to accommodate varying quantities of reaction efficiency modules 800.


In this application, the terms “air” or “atmospheric air” refer to gasses surrounding the earth that provide oxygen as a fuel for combustion. In this application, the term “false start” refers to the termination of a combustion process as a pilot's ignition flame is blown out as a result of high fluid flow rates that arise from any combination of air flow or fuel flow into a combustion chamber of a burner. In this application, the term “stoichiometric” refers to a qualitative relationship of air and fuel to that of remaining combustion waste products, (examples referenced above such as, among others carbon dioxide), after undergoing chemical transformation from a gas state through an oxidation process during combustion where there is negligible or no amounts of organic carbon and other waste products left, for example with measured carbon dioxide emissions less than one part per million. In other words, a mixture of chemical components having exact proportions required for complete chemical reaction (including combustion) or combination. Illustratively, the amount of oxygen from the air required to oxidize the fuel in the combustion process without waste byproducts or negligible amounts of less than one part per million.


In this application, the term “refractory” refers to a material for high-temperature operational use while exposed to temperatures at least above 1,000° C. In this application, the terms Nth and Nth−1 respectively refer to: for any desired number of reaction efficiency optimization modules, sequentially the last reaction efficiency optimization module in a series of reaction efficiency optimization modules that define a combustion manifold and a reaction efficiency optimization module sequentially before the last reaction efficiency optimization module.


Specifically as viewed in FIGS. 1-3, 5, and 7, the laminar burner system 5 includes a damper 21 in fluid communication with a blower 25 such that the damper 21 controls the flow of atmospheric air to the blower 25. In that turbulent or “swirled” air techniques commonly employed by high efficiency burners provide a drag-effect that interrupts the rate at which air is initially supplied to a combustion chamber, the damper 21 in the present invention variably controls the flow rate of atmospheric air or, optionally, oxygen responsive to the combustion process executed by the combustion manifold 70 downstream. Accordingly, in general, a laminar air delivery system 22 that includes the damper 21 and the blower 25 that cooperatively operate to generate a laminar air intake stream for the laminar burner system 5.


Referring to FIG. 1, the laminar burner system 5 includes the laminar air delivery system 22, the supply input module 20, and the combustion manifold 70. In operation, atmospheric air or, optionally, oxygen is drawn through the laminar air delivery system 22, across the supply input module 20, and then introduced to the combustion manifold 70 as a laminar air intake stream. Similarly, fuel is directed across the fuel delivery system 30, through the supply input module 20, and discharged within the combustion manifold 70 to mix with the laminar air intake stream. Illustratively, in one embodiment, ten parts of laminar air to one part of fuel is mixed within the combustion manifold 70.


As shown in FIGS. 1, 3, 5, and 7, the laminar air delivery system 22 includes a damper 21 for variably collecting atmospheric air. The damper 21 is of a type well known in the industry. As discussed further below, to achieve optimal levels of combustion efficiency, the damper 21 in at least one embodiment is operatively integrated with a combustion efficiency control system 888. Through efficiency signals 88 as illustrated in FIG. 5, the combustion efficiency control system 888 regulates the rate of atmospheric air collection by the damper 21.


Atmospheric air collected by the damper 21 then travels across a delivery line 23 to a blower 25. Although shown positioned in FIG. 3 at a 90° angle relative to the blower 25, those of ordinary skill in the art will readily recognize that the delivery line 23 can be positioned at any angle with respect to the blower 25.


The blower 25 operatively accelerates the air toward the combustion manifold 70. The blower is of a type widely used in the industry, such as a centrifugal blower or fan. Air is pushed by the blower 25 through an air feed line 27 toward the supply input module 20. In at least one embodiment, the air feed line 27 is a conduit. In another embodiment, the air feed line 27 is a tube. With the air exiting the blower 25, the air feed line 27, in part, operatively establishes a laminar air intake stream for use with the combustion process applied within the combustion manifold 70. Furthermore, the air exiting the damper 21, in part, operatively establishes the laminar air intake stream for use with the combustion process applied within the combustion manifold 70.


The air feed line 27 couples to a supply inlet chamber 20a defined by the supply input module 20 via the air receiving port 28. The air receiving port 28 provides a sealed interface for fluid communication between the air feed line 27 and the supply inlet chamber 20a.


Referring to FIGS. 1, 3, and 5, the fuel is directed across the fuel delivery system 30. In at least one embodiment, the fuel includes one or more fuels selected from the group consisting of: natural gas, processed methane, and natural gas liquids such as propane, butane, pentane, heavy fuel oil, light distillate oil and biogas. Those of ordinary skill in the art will readily recognize any fuel suitable for combusting with air or oxygen as the laminar burner system 5 operates in either low or high oxygen environments.


As illustrated in FIGS. 3 and 5, the fuel delivery system 30 includes a fuel passageway 34. The fuel passageway 34 is a hollow body for channeling fuel to the combustion manifold 70. In one embodiment, the fuel passageway 34 comprises a tube. In one embodiment, the fuel passageway 34 comprises a conduit. In operation, fuel within the fuel passageway 34 travels from a fuel source (not shown) toward the supply input module 20. Optionally, as discussed further below in reference to FIG. 5, a fuel controller unit 74 features a fuel passageway valve 74a coupled to the fuel passageway 34 to variably supply fuel to the combustion manifold 70.


The supply input module 20 features an alignment plate 72 by which the fuel passageway 34 is aligned and secured thereto. Specifically, in FIG. 1, the center of the alignment plate 72 defines an alignment axis 777 by which the fuel passageway 34 is positioned and mounted to the alignment plate 72 with respect to the alignment axis 777.


Accordingly, fuel travels from the supply input module 20 toward the combustion manifold 70 within a hollow bodied, injector device 31 as the injector device 31 provided by the fuel delivery system 30 extends outwardly from the alignment plate 72. In particular, shown in FIG. 1, the injector device 31 extends from alignment plate 72 along an air-fuel mixing chamber system 40 provided by the combustion manifold 70. Those of ordinary skill in the art will readily recognize that the injector device 31 can either be an integral portion of the fuel passageway 34 or separate unit in fluid communication with the fuel passageway 34.


The injector device 31 defines a plurality of injectors 32. In one embodiment, the injector device 31 defines a multiplicity of injectors 32, such as greater than five hundred injectors. Optionally, to facilitate a desired overall aerodynamic configuration for the injector device 31, at least one mixing outlet combustion enhancer 33 couples to and is rendered in fluid communication with the injector device 31 thereby enhancing combustion for the laminar flow burner system 5. For example, as shown for the embodiment of FIG. 1, the mixing outlet combustion enhancer 33 comprises a conic configuration that couples to the flat end of a tube defining the injector device 31 to prevent accumulation of low pressure at the flat end thereby further promoting the mixture of fuel with the laminar stream of air within the air-fuel mixing chamber.


In operation, fuel traveling within the injector device 31 exits through the injectors 32 to mix with a laminar air intake stream near the injector device 31 as the laminar air intake stream travels the along the air-fuel mixing chamber system 40. In at least one embodiment, as it defines the centerline for both the injector device 31 and the alignment plate 72, the alignment axis 777 is a spatial reference for orientating the ejected fuel as it combines with the laminar air-intake stream. Accordingly, as discussed in further detail below, fuel exits the injector device 31 to mix with the laminar air intake stream to form a first combustion stream. The fuel exits the injector device 31 perpendicular to the laminar air-intake stream traveling along the air-fuel mixing chamber system 40 to define a first combustion stream. Specifically, the positive pressure of air within the air-fuel mixing chamber system 40 is low and slow moving such that fuel exits the injector device 31 perpendicular to the laminar air-intake stream. In one alternative embodiment, the fuel exits the injector device 31 substantially perpendicular to the laminar air-intake stream traveling along the air-fuel mixing chamber system 40 to define a first combustion stream.


Shown in FIG. 3, the alignment plate further defines a plurality of inlet ports 29 that are variably exposed via inlet actuators 89 to selectively supply the laminar air-intake stream to the combustion manifold 70 at a desired quantity and flow rate. As shown, each inlet port 29 is characteristically small and narrow relative to the alignment plate 72 and configured to establish laminar fluid flow therethrough. To thereby increase energy output of the laminar burner system 5, those of ordinary skill in the art will readily recognize any suitable, well known size and configuration of each inlet port 29 to increase either the amount or flow rate of the laminar air intake stream flowing therethrough.


Illustratively, in FIGS. 1, 3, 3a, and 5, a plurality of first inlet ports 29a and a plurality of second inlet ports 29b correspondingly supply laminar streams of air from the supply input module 20 to the air-fuel mixing chamber system 40 and a stoichiometric combustion unit 50, respectively. In the illustration, each first and second inlet port 29a, 29b is operatively engaged with a corresponding sealing door 89′ from a respective inlet actuator 89. The sealing door 89′ is rendered from a closed position to an open position to expose the corresponding first and second inlet ports 29a, 29b for flow of the laminar air-intake stream therethrough. As the sealing door 89′ moves from a closed position toward an open position, air flow through the corresponding inlet port 29 proportionately increases to operatively increase the energy output of the laminar burner system 5.


In one embodiment, the inlet actuator 89 comprises a linear actuator of a type well known in the industry for variably rendering the sealing door 89′ to expose the first inlet port 29a for selectively permitting fluid flow of the laminar air-intake stream therethrough and toward the air-fuel mixing chamber system 40. Similarly, in the continuing illustration, the inlet actuator 89 renders the sealing door to variably open the second inlet port 29b for permitting fluid flow of laminar air intake stream therethrough and toward the stoichiometric combustion unit 50. As discussed further below in reference to FIG. 5, the inlet actuator 89 is responsive to efficiency signals 88 for variably controlling the flow rate of the laminar air-intake stream to optimize combustion efficiency.


The supply input module 20 further includes an air receiving port 28. Operatively, the supply input module 20 receives air from the air feed line 27 of the laminar air delivery system 22 at the air receiving port 28. In one embodiment, the air receiving port 28 diffuses the air received from the laminar air delivery system 22 across the supply input module 20.


Illustratively, the air receiving port 28 for the embodiment of FIG. 7 diffuses air received from the laminar air delivery system 22 across a plurality of laminar staging supply lines 199 to direct a plurality of laminar air intake streams to the combustion manifold 70 that features a plurality of interchangeable reaction efficiency modules 800.



FIG. 3
a shows an interior viewer 26b for observing operations within the air-fuel mixing chamber 40 and the supply input module 20 of FIG. 3. As shown, the interior viewer 26b is composed of either transparent or semi-transparent material, such as, among others, semi-transparent tinting and partial mirroring. The interior viewer 26b is held in place and positioned within the supply input module 20 by a viewer support 26a. In operation, an observer can identify many critical aspects relating to combustion, such as, among others, the flame color through the inlet ports 29a, 29b past the alignment plate 72 to visually gauge combustion efficiency; the general operability of each inlet actuator 89; and positioning with respect to the alignment axis 777 as well as the structural integrity of the air receiving port 28 and the fuel passageway 34 while secured to the supply input module 20. Illustratively, in one embodiment, an observer can identify through the interior viewer 26b the combustion flame color adjacent to a pilot unit. In one embodiment, a boiler prism sensor of a type well known in the industry is disposed within the mixing chamber 44 to gauge combustion efficiency.


In one embodiment, based on the flame color viewed, an observer can manually adjust the laminar air intake stream to correspondingly change combustion efficiency of the laminar burner system 5. For example among others, by manually interfacing with the combustion efficiency control system 888, the observer adjusts the corresponding inlet actuators 89 to change the opening of the desired inlet port 29. Illustratively, in one embodiment, ten parts of laminar air to one part of fuel is mixed within the combustion manifold 70 so that the color of the resulting combustion streams reach a very bright blue color indicative of an oxidation process where there is no more organic carbon left so that the emission output reaches a carbon dioxide level of one part per million or below.


With reference to FIGS. 1-3, 5, and 7, the combustion manifold 70 of the laminar burner system 5 is in fluid communication with the supply input module 20 to receive the laminar air intake stream and the fuel from the supply input module 20 for establishing a high efficiency combustion process. The combustion manifold 70 secures to and extends outwardly from the alignment plate 72. Moreover, the combustion manifold 70 is positioned with respect to the alignment axis 777.


Operatively, for purposes of illustration, the combustion manifold 70 can be divided in to a stoichiometric staging arrangement 45 and a refractory unit 60. Moreover, in FIG. 1, the stoichiometric staging arrangement 45 includes at least one air-fuel mixing chamber system 40 and at least one stoichiometric combustion unit 50.


In particular, the air-fuel mixing chamber system 40 includes a mixing chamber body 42. The mixing chamber body 42 is the innermost arrangement within the combustion manifold 70. The mixing chamber body 42 is fixed to the alignment plate 72 and is in fluid communication with first inlet ports 29a for receiving a laminar air intake stream from the supply input module 20. The mixing chamber body 42 is positioned with respect to the alignment axis 777 and the injector device 31.


As shown in FIG. 1, the mixing chamber body 42 defines a mixing chamber 44. In operation, fuel traveling within the injector device 31 exits through the plurality of injectors 32 to mix with a laminar air intake stream near the injector device 31 as the laminar air intake stream travels the away from the first inlet port 29 and along the mixing chamber 44.


Referring to FIGS. 1, 3, 3a, and 5, the air-fuel mixing chamber system 40 further includes a pilot unit 35 and a combustion sensor/controller unit 37 each positioned adjacent to the injector device 31 with respect to the alignment axis 777 and fixed to the alignment plate 72. The sensor/controller unit 37 is electrically coupled to the pilot unit 35 and the inlet actuators 89 for variably closing the respective inlet ports 29 and the damper 21. Moreover, the pilot unit 35 is selectively engaged by the sensor/controller unit 37 to ignite the nearby fuel based on predetermined wavelengths of light detected by the sensor/controller unit 37. The predetermined wavelengths of light correspond to the flame intensity of a first combustion stream formed within the mixing chamber 44.


To avoid the abrupt, unwanted termination of combustion associated with a false start within the laminar burner system 5, the pilot unit 35 remains engaged continuously or, alternatively, for periods greater than two minutes. Specifically, the pilot unit 35 includes an electrical resistor for igniting the fuel as the fuel contacts the hot resistor. In one embodiment, the pilot unit 35 includes outwardly extending projections 35′ to facilitate rapid transfer of heat energy to the fuel. The pilot unit 35 operatively receives a voltage to generate heat energy for any desired period. The voltage is continuously applied to engage the pilot unit 35 thereby ensuring uninterrupted fuel ignition to operate the laminar burner system 5 as desired.


Illustratively, in one embodiment, about one minute elapses for the resistor to warm and thus engage the pilot unit 35. The pilot unit 35 receives fuel from adjacent injectors 32 to ignite and establish a flame. Accordingly, the sensor/controller unit 37 detects various predetermined wavelengths of light indicative of the flame color of a first combustion stream formed within the mixing chamber 44 as the fuel and the laminar air intake stream are combined. The pilot unit 35 is disengaged by the sensor/controller 37 as the sensor/controller 37 detects a predetermined wavelength of light to furthermore increase the air and fuel supply by controlling any combination of the damper 21′, the fuel passageway valve 74a, and array of inlet ports 29. On average, in one embodiment, a period of seventy-five seconds elapses for the pilot unit 35 to fully engage and disengage in the manner described above.


Furthermore, in one embodiment, the electrical resistor comprises a variable resistor. In operation, the electrically engaged variable resistor ignites the fuel on contact. As such, in at least one embodiment, the variable resistor accommodates controlling fuel ignition based on a timer to selectively blow out or ignite the pilot unit 35. Moreover, in one embodiment, the resistor is composed of a metal or metal alloy, such as Ni—Cr or Al alloys, Pt, Cu, Cr metals and alloys. In another embodiment, the resistor is composed of a high temperature ceramic, such as among others nitrides, borides, carbides and oxides of Al, Ti, Mo and Zr.


As discussed below, the sensor/controller unit 37 emits and receives efficiency signals 88 associated with the combustion efficiency control system 888. The sensor/controller unit 37 detects various predetermined wavelengths of light indicative of the flame intensity of a first combustion stream formed within the mixing chamber 44 as the fuel and the laminar air intake stream are combined. Variations in flame color correspond to different levels of combustion efficiency achieved by the laminar burner system 5. Based on measured light wavelengths, the sensor/controller unit 37 emits an efficiency signal 88 to the combustion efficiency control system 888 to thereby adjust combustion efficiency. Accordingly, by way of illustration, the combustion efficiency control system 888 can emit an efficiency signal 88 for receipt by the sensor/controller unit 37 or, alternatively, directly by the inlet actuators 89 to automatically adjust the laminar air intake stream to correspondingly change combustion efficiency by changing the pilot unit's 35 period of operative engagement as a result of the sensor/controller unit 37 reading wavelengths indicative of successful combustion as the pilot unit 35 is engaged.


Operatively, as discussed above, a laminar air intake stream is preconditioned prior to entering the combustion manifold 70 of the laminar burner system 5, such as, among others, preconditioned for a specific quantity, flow rate or temperature. In one embodiment, the laminar air intake stream is preconditioned as ambient air, or alternatively oxygen, is forced through laminar air delivery system 22 to the supply input module 20. At the air receiving port 28 of the supply input module 20, the laminar air intake stream is separated to be provided to the combustion manifold 70 at different stages of the combustion process.


For example, the laminar air intake stream is divided to be provided to the air-fuel mixing chamber system 40 and to the stoichiometric combustion unit 50 via the first inlet ports 29a and the second inlet ports 29b, respectively. The air-fuel mixing chamber system 40 is in fluid communication with the supply input module 20 and includes the mixing chamber 44 and the injector device 31 extending within the mixing chamber 44. At the air-fuel mixing chamber system 40, a first combustion stream is established as fuel is discharged from the injectors 32 to mix with the laminar air intake stream traveling along the mixing chamber 44. In one embodiment, the fuel exits the injector device 31 perpendicular to the laminar air intake stream.


Referring to FIG. 1, the stoichiometric combustion unit 50 is in fluid communication with the supply input module 20 and with the air-fuel mixing chamber system 40. For the embodiment of FIG. 1, the stoichiometric combustion unit 50 includes a combustion unit body 46. The combustion unit body 46 is secured to the alignment plate 72 and positioned with respect to the alignment axis 777 so that the air-fuel mixing chamber 40 and the injector device 35 are positioned within the combustion unit body 46.


As shown in FIG. 1, the spatial gap between the combustion unit body 46 and the mixing chamber body 42 defines a staging passageway 49 for directing the laminar air intake stream therethrough. Accordingly, the second inlet ports 29b at the alignment plate 72 are positioned to supply the laminar air intake stream to the staging passageway 49.


Alternatively, as shown in FIG. 5, a manifold binder body 24 can be substituted for the above referenced combustion unit body 46 so that the spatial gap between the manifold binder body 24 and the mixing chamber body 42 defines a staging passageway 49 for directing the laminar air intake stream therethrough. Those of ordinary skill in the art will readily recognize various embodiments where the manifold binder body 24 can either replace or complement other container bodies while structurally supporting the combustion manifold. For example, the embodiments of FIGS. 1 and 7 show the manifold binder body 24 structurally cooperating with other container bodies to support the combustion manifold 70 as reaction efficiency modules 800 are either added or removed from the laminar burner system 5. The embodiment of FIG. 2 shows a combination the manifold binder body 24 and the mixing chamber body 42 cooperatively providing structural support to the combustion manifold 70. The embodiment of FIG. 5 shows the manifold binder body 24 as replacing other container bodies to structurally support the combustion manifold 70.


The stoichiometric combustion unit 50 further includes a stoichiometric unit body 51. The stoichiometric body 51a hollow body that is in fluid communication with the staging passageway 49 and with the mixing chamber 44. The stoichiometric unit body 51 defines a plurality of air intakes 52. The laminar air intake stream travels from the staging passageway 49 and enters in the stoichiometric unit body 51 through the plurality of air intakes 52. Within a stoichiometric channelway 51a defined by the hollow of the stoichiometric unit body 51, as shown in FIG. 2, the laminar air intake stream from the stating passageway 49 combines with the first combustion stream that is exiting the mixing chamber 44 and traveling within a stoichiometric channelway 51a to form a second combustion stream. In effect, the air intake stream introduced through the air intakes 52 acts as an oxidizer fuel for further igniting the first combustion stream to thus form the second combustion stream having a higher temperature and less combustion waste products than the first combustion stream.


In at least one embodiment, a mixing plate 57 and a stoichiometric plate 58 are disposed on opposing sides of the stoichiometric unit body 51. The mixing plate 57 and the stoichiometric plate 58 each align the stoichiometric unit body 51 with respect to the alignment axis 777 as well as facilitate requisite fluid flow for the combustion process of the laminar burner system 5. In particular, the mixing plate 57 defines a mixing chamber outlet 55 in fluid communication with the mixing chamber 44 of the air-fuel mixing chamber system 40. The first combustion stream from the mixing chamber 44 is received at the mixing chamber outlet 55 and directed through the stoichiometric unit body 51 to the refractory unit 60. Similarly, the stoichiometric plate 58 defines a stoichiometric outlet 59 in fluid communication with the stoichiometric unit body 51. A second combustion stream exiting the stoichiometric unit body 51 is received at the stoichiometric outlet 55 and directed through the refractory unit 60.


In summary, establishing a second combustion stream with the stoichiometric combustion unit 50 is as follows. The stoichiometric combustion unit 50 is in fluid communication with the supply input module 20 and with the air-fuel mixing chamber system 40. The stoichiometric combustion unit 50 includes the staging passageway 49 and the stoichiometric unit body 51. A laminar air intake stream traveling along the staging passageway 49 passes through the stoichiometric unit body 51 at the air intakes 52 to meet with the first combustion stream within to define a second combustion stream for introduction to the refractory unit 60.


Referring to FIG. 1, the refractory unit 60 is in fluid communication with the stoichiometric combustion unit 50. In particular, the refractory unit 60 communicates with the stoichiometric combustion unit 50 at the stoichiometric outlet 59.


The refractory unit 60 features a refractory unit body 47. The refractory unit body 47 is positioned between the stoichiometric plate 58 and an outlet plate 61 at the opposing end and terminus of the laminar burner system 5 for the embodiment of FIG. 1. In at least one embodiment, the refractory unit body 47 is composed of refractory material to prevent absorption of heat energy to the refractory unit 60 as the third combustion stream travels across the refractory passageway 66. In one embodiment, the refractory unit body 47 is composed of refractory material of a type well known in the industry, such as one or more selected from the group consisting of: tungsten, molybdenum, aluminum oxide, aluminosilicates, silicon carbide, graphite, silica, magnesia, calcium oxides, and zirconia.


Shown in FIG. 1, the refractory unit body 47 defines a refractory passageway 66. The refractory passageway 66 extends through the refractory unit 60 to communicate with the stoichiometric outlet 59 and a burner system outlet 63 defined by the outlet plate 61 at the terminus of the combustion manifold 70 of FIG. 1.


Operationally, the second combustion stream travels from within the stoichiometric unit body 51 across the refractory passageway 66 to define a third combustion stream. In particular, in one embodiment, the refractory passageway 66 is conically shaped with the vertex emerging from the stoichiometric outlet 59 and the curved conic surface expanding outwardly through the refractory unit body 51.


Similar to a jet or rocket nozzle, the volumetrically expanding conic surface relieves high pressure build-up characteristic of the second combustion stream while accelerating the combustion gasses to thus form a third combustion stream. In effect, the third combustion stream promotes increased acceleration of combustion gases exiting the laminar burner system 5. Accordingly, increased exhaust acceleration provides for the continuous drawing of the fuel, the laminar air intake stream, as well as the first, the second and the third combustion streams quickly through the laminar burner system without requiring additional external work during the combustion process. In at least one embodiment, the outward expansion of the conic surface defining the refractory passageway 66 is predetermined and promotes increased exhaust acceleration with negligible loss of heat energy.


Operatively, as illustrated in FIGS. 5 and 7, a refractory unit 60 is coupled to and in fluid communication with an energy consumption system 75. In one embodiment, the refractory unit 60 is releasably coupled to the energy consumption system 75. The energy consumption system 75 uses the heat energy output generated by the laminar burner system 5 for a variety of applications. Examples of the energy consumption system 75 that use the laminar burner system 5 include, among others, boilers in energy generation including heat, mechanical, and electric energy; propulsion systems including jet, rocket, and steam propulsion systems; furnaces employed in applications requiring high heat such as smelting metals and alloys, distilling chemicals, petrochemicals and gases; paper manufacturing devices; and flaring devices for oil and gas wells.


Referring to FIG. 4, a method for combusting air and fuel with a burner system using a laminar air intake stream 100 may be appreciated as follows. In step 100, a laminar air intake stream is preconditioned prior to entering a combustion manifold 70 of the laminar burner system 5. The laminar air intake stream in step 103 is directed from the supply input module 20 to an air-fuel mixing chamber system 40. The air-fuel mixing chamber system 40 features the injector device 31 having the plurality of injectors 31 and the pilot unit 35 positioned adjacent to the injector device 31.


In step 105, a first combustion stream is established within the mixing chamber 44. In particular, the fuel is ejected from the plurality of injectors 31 to mix with the laminar air intake stream and ignited by the pilot unit 35 as the pilot unit 35 receives a voltage. The laminar air intake stream is directed from the supply input module 20 through a staging passageway 49 to a stoichiometric unit body 51.


In step 107, a second combustion stream is established within the stoichiometric combustion unit 50. Specifically, the laminar air intake stream from the staging passageway 49 is injected through the plurality of air intakes 52 of the stoichiometric unit body 51 as the first combustion stream is directed through the stoichiometric channelway 51a. In step 109, the second combustion stream is directed from the stoichiometric unit body 51 through a refractory unit 60 to establish a third combustion stream. In at least one exemplary method, the third combustion stream exits the laminar burner system 5 to define an energy output for use with an energy consumption system 75.


With reference to FIG. 7, a series of interchangeable reaction efficiency modules 800 are releasably coupled with a combustion manifold 70 for adjustably increasing combustion efficiency to accommodate a variety of industrial applications. In FIG. 7, a laminar burner system 5 includes a supply input module 20 and a combustion manifold 70 that is in fluid communication with the supply input module 20. The supply input module 20 provides fuel and a laminar air intake stream to the combustion manifold 70.


As shown, the combustion manifold 70 includes an air-fuel mixing chamber 40 in fluid communication with the supply input module 20. As described above, the air-fuel mixing chamber 40 includes a mixing chamber and an injector device extending within the mixing chamber. In operation, fuel exits the injector device to mix with the laminar air intake stream to form a first combustion stream.


The combustion manifold 70 further includes a first reaction efficiency optimization module 800. The first reaction efficiency optimization module 800 includes a first stoichiometric combustion unit in fluid communication with the supply input module 20 via a laminar staging supply line 199 provided by the air-fuel mixing chamber system 40. The first stoichiometric combustion unit includes a stoichiometric unit body, whereby a laminar air intake stream traveling along the laminar staging supply line 199 passes through the stoichiometric unit body to meet the first combustion stream within the stoichiometric unit body to define a second combustion stream.


In one embodiment, the first reaction efficiency optimization module 800 further includes a refractory unit. The refractory unit is in fluid communication with the stoichiometric combustion unit and includes a refractory passageway. In operation, the second combustion stream travels from within the stoichiometric unit body across the refractory passageway to define a third combustion stream.


For the embodiment of FIG. 7, the combustion manifold 70 includes a second reaction efficiency optimization module 800′ that is releasably coupled to the first reaction efficiency optimization module 800′ and in fluid communication with the supply input module 20 via staging supply lines 199. As shown, the second reaction efficiency optimization module 800′ includes a stoichiometric unit body and the staging supply lines 199.


Operatively, a laminar air intake stream traveling along the staging supply lines 199 passes through the stoichiometric unit body to meet the third combustion stream within the stoichiometric unit body to define a fourth combustion stream. Optionally, although not provided for the embodiment of FIG. 7, the second reaction efficiency optimization module 800′ in other embodiments further includes a refractory unit in fluid communication with the stoichiometric unit body, whereby the fourth combustion stream travels from within the stoichiometric unit body through the refractory unit to define a fifth combustion stream.


As shown, for the embodiment of FIG. 7, the combustion manifold 70 includes an Nth reaction efficiency optimization module 800″ that is releasably coupled to the second reaction efficiency optimization module 800′ and in fluid communication with the supply input module 20 via staging supply lines 199. Recall that “Nth” refers to sequentially the last reaction efficiency optimization module in a series of reaction efficiency optimization modules that define a combustion manifold. Therefore, in the illustration, the Nth reaction efficiency optimization module 800″ represents the last of any desired number of reaction efficiency optimization modules after the first reaction efficiency optimization module 800 but not necessarily immediately after the first reaction efficiency optimization module 800, for example, among others, the Nth reaction efficiency optimization module 800″ can represent the second or thirty-seventh reaction efficiency optimization module.


As shown, the Nth reaction efficiency optimization module 800″ includes a stoichiometric unit body and staging supply lines 199. Operatively, a laminar air intake stream traveling within the staging supply lines 199 passes through the stoichiometric unit body to meet with the previously generated combustion stream within the stoichiometric unit body to define an Nth−1 combustion stream.


The Nth reaction efficiency optimization 800″ module further includes a refractory unit. The refractory unit is in fluid communication with the stoichiometric combustion unit and includes a refractory passageway. In operation, the Nth−1 combustion stream travels from within the stoichiometric unit body across the refractory passageway to define an Nth combustion stream. Accordingly, a desired combustion stream or, as referenced in the continuing illustration, Nth combustion stream produced by the laminar burner system 5 defines an energy output. The energy output is delivered to an energy consumption system 75 for use with a wide variety of industrial applications.


Furthermore, in one embodiment, a supply input module 20 of one configuration can be exchanged for another of differing configuration to accommodate demand for laminar air intake streams as varying quantities of reaction efficiency modules are either added or removed from the combustion manifold to achieve a desired combustion output. The supply input module 20 includes an air receiving port 28, an alignment plate 72, and a plurality of laminar staging supply lines 199 positioned therebetween.



FIG. 7
a shows a plurality of laminar staging supply lines 199 extending outwardly from the air receiving port 28. In effect the laminar staging supply lines 199 and the above referenced staging passageway 49 are identical in that they each operate to provide laminar air intake streams from the supply input module 20 to the combustion manifold 70. In one embodiment, the staging passageway 49 is integral with the combustion manifold 70 whereas the laminar staging supply lines 199 are configured to be removable from the combustion manifold 70.


The air receiving port 28 includes a plurality of sealed openings 28′. In operation, each seal from the sealed openings 28′ can be either removed or added to accommodate insertion of a corresponding laminar staging supply line 199 at the exposed opening to thus receive a laminar air intake stream from the air receiving port 28. Seals can be removed or added depending on the desired quantity of laminar staging supply lines 199 for delivering laminar air intake streams to the combustion manifold 70.


One supply input module with one predetermined quantity of sealed openings 28′ can be interchanged with another supply input module with a different predetermined quantity of sealed openings 28′. Thus, one supply input module for supplying a predefined number of laminar staging supply lines to the combustion manifold is interchangeable with another supply input module for supplying a different number of laminar staging supply lines.


A method for combusting air and fuel with a laminar burner system is appreciated as follows. An Nth reaction efficiency optimization module 800″ is coupled to a first reaction efficiency optimization module 800. The first and Nth reaction efficiency optimization modules 800, 800″ each couple to the laminar burner system 5. In one exemplary method, the first reaction efficiency optimization module 800 couples to the laminar burner system 5 as the Nth reaction efficiency optimization module 800″ couples to the first reaction efficiency optimization module 800. In many embodiments of the method, a plurality of efficiency optimization modules are coupled in series between the Nth reaction efficiency optimization module 800″ and the first reaction efficiency optimization module 800.


The laminar air intake stream from the supply input module 20 is directed to an air-fuel mixing chamber system 40 that includes a pilot unit and an injector device positioned adjacent to the pilot unit and having a plurality of injectors. The laminar air intake stream is preconditioned prior to entering a combustion manifold 70 of the laminar burner system 5. A first combustion stream is established within the mixing chamber in the same manner described above.


Another laminar air intake stream is directed from the supply input module 20 through a laminar staging supply line 199 to a stoichiometric combustion unit of the first reaction efficiency optimization module 800. A second combustion stream is established within the stoichiometric combustion unit in the same manner as described above. The second combustion stream is directed from the stoichiometric unit body through a refractory unit provided by the first reaction efficiency optimization module 800 to establish a third combustion stream.


In at least one embodiment, another laminar air intake stream is directed from the supply input module 20 to a stoichiometric unit body of the Nth reaction efficiency optimization module 800″ to meet the third combustion stream within to define a Nth combustion stream whereby the Nth combustion stream defines an energy output for the laminar burner system 5. In other embodiments including the embodiment of FIG. 7, the combustion process executed by the combustion manifold 70 includes at least a second reaction efficiency optimization module 800′ and resulting fourth combustion stream as well as, optionally, a fifth stream if a refractory unit is included with the second reaction efficiency optimization module 800′.


In effect, combustion streams will be sequentially generated depending on the number of reaction efficiency optimization modules desired to arrive at a combustion stream for receipt by the Nth reaction efficiency optimization module. Those of ordinary skill in the art will readily recognize that the laminar air intake stream can meet with any desired number of combustion streams before lastly defining an Nth combustion stream. In at least one embodiment, the Nth combustion stream 800″ exits the laminar burner system 5 to define an energy output for use with an energy consumption system.


Optionally, the Nth reaction efficiency optimization module 800″ or any other reaction efficiency optimization module between the Nth reaction efficiency optimization module 800″ and the first reaction efficiency optimization module 800 is releasable from the first reaction efficiency optimization module 800. As such, interchangeability facilitates a desired combustion efficiency output as well as ease of maintenance, repair, and transportation of the laminar burner system 5.


With reference to FIG. 5, a combustion efficiency control system 888 is integrated with a laminar burner system 5. The combustion efficiency control system 888 facilitates operation of a laminar burner system 5. In at least one embodiment, the combustion efficiency control system provides operational instructions for optimizing a high efficiency combustion process in the delivery of thermal energy to an energy consumption system 75 coupled to the laminar burner system 5.


For measuring and controlling a laminar air-intake stream, the combustion efficiency control system 888 includes an air flow sensor arrangement 877. The air flow sensor arrangement 877 generally includes an upstream laminar flow control system 899 and a downstream laminar flow control system 900. In one aspect, among others, the upstream laminar flow control system 899 and the downstream laminar flow control system 900 collectively produce a defined and reproducible laminar flow profile for the laminar burner system 5 to ensure controlled combustion efficiency. Illustratively, in one exemplary embodiment, the upstream laminar flow control system 899 of the air flow sensor arrangement 877 includes a supply inlet sensor 73 for applying efficiency signals including control data to the damper 21 and, optionally, the blower 25. In one exemplary embodiment, the downstream flow control system 900 includes an air delivery controller 126 electrically coupled to the supply inlet sensor 73 for applying efficiency signals including control data to at least one flow conditioner 920, the supply input module 20, and, optionally, the blower 25. Although those of ordinary skill in the art will readily recognize other positions, the supply inlet sensor 73, in one embodiment, is electrically coupled and positioned adjacent to an air receiving port 28 and the air delivery controller 126. The air delivery controller 126 is positioned adjacent to a damper 21 and a blower 25 of the laminar air delivery system 22. In one exemplary embodiment, the downstream flow control system 900 includes at least one laminar flow input/output sensor module 940.


In operation, the air flow sensor arrangement 877 measures laminar air flow and emits an efficiency signal 88 including laminar air flow input values. The air flow sensor arrangement 877 receives efficiency signals 88 from the combustion efficiency control system 888 including laminar air flow control signals. On receiving laminar air flow control signals, the supply inlet sensor 73 and the air delivery controller 126, each of the air flow sensor arrangement 877, cooperate to control flow of the laminar air intake stream by adjusting the damper 21 and the blower 25, respectively. In one exemplary embodiment, the air delivery controller 126 controls flow of the laminar air intake stream by adjusting the damper 21 and the blower 25.


For measuring and controlling a laminar air-intake stream, the combustion efficiency control system 888 further includes a combustion sensor/controller unit 37. The combustion sensor/controller unit 37 is positioned adjacent to the injector device 31 and fixed to the alignment plate 72 with respect to the alignment axis 777. The sensor/controller unit 37 is electrically coupled to the pilot unit 35 and the inlet actuators 89 for variably closing the respective inlet ports 29.


The sensor/controller unit 37 emits and receives efficiency signals 88 associated with the combustion efficiency control system 888. In one embodiment, the sensor/controller unit 37 and/or the fuel controller unit 74 measure the burn efficiency of the laminar air intake stream and the fuel within the mixing chamber during formation of a first combustion stream by measuring the injection of the volume by square inch, Oz/int, which should be lower when compared with other high efficiency burners. In one embodiment, the sensor/controller unit 37 and/or the fuel controller unit 74 detect various predetermined wavelengths of light indicative of the flame color of a first combustion stream formed within the mixing chamber 44 as the laminar air intake stream and the fuel are combined and emits an efficiency signal 88 including light wavelength data. Additionally, the combustion efficiency control system 888 emits an efficiency signal 88 for receipt by the sensor/controller unit 37 or, alternatively, directly by the inlet actuators 89 to automatically adjust the laminar air intake stream to correspondingly change combustion efficiency within the mixing chamber 44.


Similarly, for measuring and controlling a fuel flow, the combustion efficiency control system 888 further includes a fuel controller unit 74. The fuel controller unit 74 includes fuel passageway valve 74a and a fuel flow sensor module 74b. The fuel passageway valve 74a is coupled to the fuel passageway 34 to variably supply fuel to the combustion manifold 70. The fuel flow sensor module 74b is coupled to the fuel passageway 34 and the fuel passageway valve 74a. The fuel flow sensor module 74b measures fuel flow and emits an efficiency signal 88 including fuel flow input values. The combustion efficiency control system 888 sends efficiency signals to the fuel controller unit 74 that includes control values to control fluid flow through the fuel passageway 34 by variably operating the fuel passageway valve 74a.


For measuring and controlling the combustion energy output of the laminar burner system 5, the combustion efficiency control system 888 further includes a burner output sensor module 76. As shown, the burner output sensor module 76 is positioned outside, adjacent to the burner system outlet 63. In operation, the burner output sensor module 76 measures combustion energy output produced by the laminar burner system 5. The measured combustion energy output includes measuring the combustion efficiency of a series of combustion streams that pass through a combustion manifold 70. In one embodiment, as shown in FIG. 7, the burner output sensor module 76 measures burn efficiency of the laminar air intake stream and the fuel traveling from the air receiving port 28 and supply input module 20 through a combustion manifold 70 that includes an air-fuel mixing chamber system 40 and a plurality reaction efficiency optimization modules having a combination of stoichiometric combustion and refractory units.


Operatively, the burner output sensor module 76 measures the combustion energy output of the laminar burner system 5 and, as a result, emits an efficiency signal 88 to the combustion efficiency control system 888. In at least one embodiment, the resulting efficiency signal 88 includes combustion output values.


The combustion efficiency control system 888 compares combustion output values and generates an efficiency signal 88 having a combination of air and fuel control data. A combination of the fuel controller unit 74, the sensor/controller unit 37, the inlet actuators 89, and the air flow sensor arrangement 877 receive efficiency signals 88 from the combustion efficiency control system 888 that include control values for variably operating the fuel passageway valve 74a to control fuel flow therethrough and/or the air delivery controller 126, the blower 25, and at the inlet ports 29 to control air intake streams therethrough. In one embodiment, the combustion efficiency control system 888 emits an efficiency signal 88, for automatically adjusting the laminar air intake stream to correspondingly change combustion efficiency. On receiving laminar air flow control signals, the flow sensor arrangement engages the supply inlet sensor 73 and the air delivery controller 126 to cooperatively control flow of the laminar air intake stream by adjusting the damper 21 and the blower 25, respectively.


As shown in FIG. 5, the combustion energy output is received by the energy consumption system 75 and applied to a variety of industrial applications. The energy consumption system 75 includes an inlet for receiving the combustion energy output from the laminar burner system 5. As shown in FIG. 5, the energy consumption system 75 further includes an outlet. A system output sensor module 77 is coupled to the energy consumption system outlet 75a. The system output sensor module 77 measures energy used by the energy consumption system 75. As such, the measured used energy values are incorporated with an efficiency signal 88 for emission by the system output sensor module 77 to the combustion efficiency control system 888.


The combustion efficiency control system 888 compares used energy values from the system output sensor module 77 with combustion output values from the laminar burner system 5. Accordingly, the combustion efficiency control system 888 generates an efficiency signal 88 having a combination of air and fuel control data for variably adjusting the combustion energy output efficiency of the laminar burner system 5 as applied to the energy consumption system 75.


Further referring to FIG. 5, the combustion efficiency system 888 includes an operating unit 80 for operative engagement with the laminar burner system 5. In one embodiment, the operating unit 80 is a portable device, for example, among others, a hand-held electronic device. In another embodiment, the operating unit 80 is a stationary device.


The combustion efficiency system 888 further includes an emitter/receiver 83 coupled to the operating unit 80. In one embodiment, the emitter/receiver 83 receives fuel and air flow input values included with the corresponding efficiency signal 88 for use by the operating unit 80. Similarly, in one embodiment, the emitter/receiver 83 receives an efficiency signal 88 including the burn efficiency values of fuel and laminar air within the mixing chamber 44 to form a first combustion stream. In one embodiment, the emitter/receiver 83 receives an efficiency signal 88 including combustion energy output produced by the laminar burner system 5. In one embodiment, the emitter/receiver 83 receives an efficiency signal 88 including values associated with energy used by the energy consumption system 75.


With specific reference to FIG. 5, the operating unit 80 includes at least one processor 80a and at least one corresponding memory 80b. In one exemplary embodiment, the at least one corresponding memory 80b is provided by at least one computer-based system for operation with the processor 80a. The operating unit 80 includes an input/output interface 84 coupled to the processor 80a, the memory 80b, and the emitter/receiver 83. As shown in FIG. 5, the operating unit 80 further includes a display 82 coupled to the input/output interface 84, the processor 80a, the memory 80b, and the emitter/receiver 83. In one exemplary embodiment the operating unit 80 includes a stoichiometric controller 80c coupled to the processor 80a, the memory 80b, the input/output interface 84, and the emitter/receiver 83. In one exemplary embodiment, the stoichiometric controller 80c is provided by at least one computer-based system for operation with the processor 80a and the at least one memory 80b.


In operation, in one embodiment, the input/output interface 84 receives a manual input thereon. In one embodiment, the input/output interface 84 and the display 82 cooperate to receive and display an output generated by the operating unit 80, such as, among others, providing the combustion efficiency of the laminar burner system 5 in real time on the display 82.


In one embodiment, the processor 80a and the corresponding memory 80b from the operating unit 80 operatively cooperate to compare laminar air flow and fuel flow input values with combustion output values. In one embodiment, the laminar air flow and fuel flow input values are compared with predetermined combustion output values stored in the memory 80b to generate the efficiency signal 88 having a combination of air and fuel control data. Alternatively, the operating unit 80 compares the fuel and air flow input values with stored combustion values collected from efficiency signals 88 received from sensors positioned about the laminar burner system 5. Illustratively, in one exemplary embodiment, the operating unit 80 compares the air flow input values with stored combustion values collected from efficiency signals 88a received from a combination of the upstream laminar flow control system 899 and the downstream laminar flow control system 900. In one exemplary embodiment, the operating unit 80 compares the air flow input values with stored air input values collected from efficiency signals 88a received from a combination of the upstream laminar flow control system 899 and the downstream laminar flow control system 900.


In one embodiment, the laminar air flow and fuel flow input values are compared with combustion output values collected in real time from the burner output sensor module 76, the system output sensor module 77, the sensor/controller unit 37 or any other well known sensor in the industry recognized by those of ordinary skill in the art for measuring combustion. For example, among others, the operating unit 80 compares the fuel and air flow input values with combustion output values provided by the efficiency signal 88 received from the burner output sensor module 76 to generate the efficiency signal 88 having a combination of air and fuel control data.


The combustion efficiency control system 888 generates an efficiency signal 88 having a combination of air and fuel control data. Accordingly, the efficiency signal 88 provides control information for recalibrating air and fuel flows with respect to a desired combustion efficiency. In one embodiment, the operating unit 80 generates and emits an efficiency signal 88 having a combination of air and fuel control data for receipt by a fuel controller unit 74, an air delivery controller 126, and a combustion sensor/controller unit 37 for selective activation thereof to control the supply of fuel and laminar air intake streams to the combustion manifold 70.


A method for controlling combustion efficiency for a laminar burner system 150 is appreciated as follows. As shown in FIG. 5, the laminar burner system 5 delivers thermal energy to an energy consumption system 75 coupled thereto. Referring to FIG. 6, the method 150 begins as air and fuel flow sensor measurements are obtained from the laminar burner system 5. In step 154, the laminar burner system 5 emits efficiency signals including flow input values to the combustion efficiency control system 888.


Referring to step 156, sensors positioned about the laminar burner system 5 and, optionally, the energy consumption system 75 measure combustion efficiency of the laminar burner system 5. Accordingly, the sensors emit efficiency signals 88 including combustion output values to the combustion efficiency control system 888.


In one exemplary method, steps 160-166 provide various means for collecting combustion output values with the laminar burner system of FIG. 5 although those of ordinary skill in the art will readily recognize other means for collecting combustion output values. Specifically, in step 160, the sensor/controller unit 37 obtains combustion measurements for incorporation with an efficiency signal 88. In step 162, the burner system output module 76 obtains burner system combustion output measurements for incorporation with an efficiency signal 88. Similarly, in step 166, system output sensor module 77 obtains system energy output measurements for incorporation with an efficiency signal 88.


In step 170, the respective sensors emit efficiency signals 88 including output values. The combustion efficiency control system 888 receives evaluates the efficiency signals 88. In one exemplary method, the processor 80a in step 172 compares efficiency signal values with stored values in memory 80b, for example, among others, predetermined values stored in memory or values previously collected from the sensor output values that are stored in memory. Alternatively, the processor 80a in step 174 compares efficiency signal values for air and fuel flow input with combustion output and energy consumption values each collected by the respective sensors to thus compare real time values.


As a result, in step 176, the combustion efficiency control system 888 emits efficiency signals 88 including a combination of air and fuel flow control data to the laminar burner system 5. In step 178, the laminar burner system 5a adjusts for any combination of subsequent air and fuel flows based on the received efficiency signals 88.


Referring now to FIGS. 8-15, high combustion efficiency is achieved by introducing a defined and reproducible laminar air flow profile to each laminar air intake stream that mixes with fuel and combustion streams within the burner system's 5 combustion manifold 70. Accordingly, as discussed below, a defined and reproducible laminar air flow profile, in part, yields an air delivery stream 223 and a laminar air flow stream 227. Generally, FIGS. 8-15 provide various embodiments of a laminar flow burner system 5 each having a combustion efficiency control system 888 that creates, among others, a defined and reproducible laminar air flow profile that is maintained by the efficiency control system's 888 feedback systems to establish and maintain a desired combustion efficiency setting. The combustion efficiency control system 888 generally includes a stoichiometric controller 80c for maintaining a selected combustion efficiency setting until such setting is cancelled. The stoichiometric controller 80c includes a setting for establishing continuous stoichiometric combustion by the laminar burner system 5 based on sensory feedback systems for controlling laminar flow by maintain a defined and reproducible laminar air flow profile.


In particular, with reference to FIG. 8, a laminar burner system 5 includes a combustion efficiency control system 888. The combustion efficiency control system 888 includes an air flow sensor arrangement 877 having an upstream laminar flow control system 889 and a downstream laminar flow control system 900. For purposes of illustration, as shown in FIG. 8, the laminar air flow for the laminar burner system 5 is characterized being “upstream” for air flow activity before the blower 25 giving rise to an air delivery stream 223 whereas “downstream” for air flow activity after the blower 25 giving rise to at least one laminar air flow stream 227 provided to the combustion manifold 5 through the staging passageway 49 and plurality of staging passageways 199.


In general, the air flow sensor arrangement 877 is communicatively coupled to a damper 21, a blower 25, and a flow conditioner 920 among other systems to establish a defined and reproducible laminar air flow profile. The air flow sensor arrangement 877 includes a supply inlet sensor 73, at least one laminar flow input/output sensor module 940, an air delivery controller 126, an air delivery sensor 126a, an output sensor module 77, and a tracer sensor 960 among other systems each communicatively coupled with one another. The air flow sensor arrangement 877 measures laminar air flow based on efficiency signals 88, 88a from the upstream laminar flow control system 889 and, optionally, from the downstream laminar flow control system 900. The efficiency signals 88, 88a include laminar air flow input and output values from the upstream laminar flow control system 889 including among others the supply inlet sensor 73, the air delivery sensor 126a, the tracer sensor 960, at least one laminar flow input/output sensor module 940, the air delivery controller 126, and from the downstream laminar flow control system 990 including sensor controller unit 37, at least one laminar flow input/output sensor module 940 and the system output sensor module 77.


The combustion efficiency control system 888 includes a fuel controller unit 74 communicatively coupled to the fuel passageway 34. A fuel flow sensor module 74b of the fuel controller unit 74 measures fuel flow and emits an efficiency signal 88, 88a including fuel flow input values.


The combustion efficiency control system 888 includes a burner output sensor module 76. The burner output sensor module 76 is positioned adjacent to a burner system outlet 63. The burner output sensor module 76 measures combustion energy output produced by the laminar burner system. Moreover, the burner output sensor module 76 emits an efficiency signal including combustion energy output values.


The combustion efficiency control system 888 further includes an operating unit 80 having a stoichiometric controller 80c. In particular, the operating unit 80 includes at least one processor 80a, at least one corresponding memory 80b, and the stoichiometric controller 80c, each coupled to one another. The operating unit 80 includes an input/output interface 84 coupled to the processor 80a, the memory 80b, the stoichiometric controller 80c, and an emitter/receiver 83. The input/output interface 84 is communicatively coupled to the stoichiometric controller 80c such that the stoichiometric controller 80c automatically maintains a selected combustion efficiency setting received from the input/output interface 84 until such setting is cancelled. As shown in FIG. 5, the operating unit 80 further includes a display 82 coupled to the input/output interface 84, the processor 80a, the memory 80b, the stoichiometric controller 80c, and the emitter/receiver 83.


In operation, in one embodiment, the input/output interface 84 receives a manual input thereon. In one embodiment, the input/output interface 84 and the display 82 cooperate to receive and display a input received for maintaining a selected combustion efficiency setting until the setting is cancelled, such as among others by another manual input or a trigger. In one embodiment, the input/output interface 84 and the display 82 cooperate to receive and display an output generated by the operating unit 80, such as, among others, providing the combustion efficiency of the laminar burner system 5 in real time on the display 82.


The processor 80a, the corresponding memory 80b, and the stoichiometric controller 80c from the operating unit 80 operatively cooperate to compare laminar air flow and fuel flow input values with combustion output values. The operating unit 80 compares laminar air flow and fuel flow input values with combustion output values. The stoichiometric controller 80c receives the comparison of laminar air flow and fuel flow input values with combustion output values to generate an efficiency signal 88, 88a having a combination of air an fuel control data for, respectively, the damper 21, the blower 25, and the flow conditioner 920, and a fuel passageway valve 74a coupled to the fuel passageway 34 to variably supply fuel to the combustion manifold 70.


In one exemplary embodiment, the stoichiometric controller 80c automatically maintains a selected combustion efficiency setting until such setting is cancelled. The combustion efficiency setting refers to a setting that is relative to a stoichiometric combustion for the laminar burner system 5 and includes a setting for a stoichiometric combustion that emits no waste from the combustion process.


The combustion efficiency setting includes a continuous stoichiometric combustion setting. In one exemplary embodiment, the continuous combustion setting produces no amount of organic carbon and other waste products emitted from the laminar burner system 5. In another exemplary embodiment, the continuous combustion setting produces negligible amounts of organic carbon and other waste products emitted from the laminar burner system 5. Moreover, the combustion efficiency setting includes a continuous adiabatic combustion setting.


In operation, the stoichiometric controller 80c generates an efficiency signal 88, 88a to control the damper 21 in real time. The damper 21 receives the efficiency signal 88, 88a to produce a defined and reproducible laminar flow profile to maintain the selected combustion efficiency setting.


In operation, the stoichiometric controller 80c generates an efficiency signal 88, 88a to control the flow conditioner 920 in real time. The flow conditioner 920 receives the efficiency signal 88, 88a to produce a defined and reproducible laminar flow profile to maintain the selected combustion efficiency setting.


The stoichiometric controller 80c emits an efficiency signal 88, 88a having air control data for the damper 21 and the flow conditioner 920. Based on control instructions to the damper and the flow conditioner in the efficiency signal 88, 88a, the stoichiometric controller 80c maintains a combustion efficiency setting for generating an adiabatic flame temperature during a continuous combustion process within the laminar burner system 5.


In one exemplary embodiment, the operating unit 80 generates and the emitter/receiver 83 emits an efficiency signal 88, 88a including laminar air flow control data. The efficiency signal 88, 88a is received by the damper 21, via the damper controller 126. On receipt of the efficiency signal 88, 88a, the damper 21 produces a defined, reproducible laminar air flow profile to the combustion manifold 70 to control the supply of laminar air to the combustion manifold 70.


In one exemplary embodiment, the operating unit 80 generates and the emitter/receiver 83 emits an efficiency signal 88, 88a including laminar air flow control data. The efficiency signal 88, 88a is received by at least one flow conditioner 920. On receipt of the efficiency signal 88, 88a, the at least one flow conditioner 920 produces a defined, reproducible laminar air flow profile to the combustion manifold 70 to control the supply of laminar air to the combustion manifold 70.


In one exemplary embodiment, the operating unit 80 generates and the emitter/receiver 83 emits an efficiency signal 88, 88a including fuel control data. The efficiency signal 88, 88a is received by the fuel controller unit 74. On receipt of the efficiency signal 88, 88a, the fuel controller unit 74 controls the supply of fuel to combustion manifold 70.


The combustion efficiency control system 888 further includes at least one laminar flow input/output sensor module 940. The at least one laminar flow input/output sensor module 940 is positioned about the downstream laminar flow control system 900. The at least one laminar flow input/output sensor module 940 measures the laminar air profile about the downstream laminar flow control system 900.


The combustion efficiency control system 888 further includes a system output sensor module 77. The system output sensor module 77 is coupled to the energy consumption system outlet 75a. The system output sensor module 77 measures energy used by the energy consumption system 75. The measurement data is provided in an efficiency signal 88, 88a.


Referring now to FIGS. 9-14, high combustion efficiency is achieved by introducing a defined and reproducible laminar air flow profile to each laminar air intake stream, to yield controlled flow that yields an air delivery stream 223 and a laminar air flow stream 227, that mixes with fuel within the burner system's 5 combustion manifold 70. Generally, FIGS. 9-14 provide various embodiments of a laminar flow burner system 5 each having a combustion efficiency control system 888 that generates a defined and reproducible laminar air flow profile that is maintained by the efficiency control system's 888 feedback systems to establish and maintain a combustion efficiency setting.


Specifically, as shown in FIGS. 9, and 12-13, a combustion efficiency control system 888 includes a laminar air delivery system 22, an air flow sensor arrangement 877, and a combustion manifold 70, each provided by the a laminar burner system 5 as described above. The laminar air delivery system 22 includes a blower 21, a damper 21 in fluid communication with the blower 21, an air delivery controller 126, an air delivery sensor 126a, and, as optionally shown in FIG. 12, a flow conditioner 920, and a laminar flow input/output sensor module 40.


The combustion efficiency control system 888 includes an air flow sensor arrangement 877 having an upstream laminar flow control system 889 and a downstream laminar flow control system 900. The upstream laminar control system 889 includes an air delivery controller 126 and an air delivery sensor 126a communicatively coupled to the air delivery controller 126. The air delivery controller 126 is electrically coupled to the blower 25 and, optionally, the damper 21. In operation, the air delivery controller 126 is communicatively coupled to the damper 21 and receives at least one efficiency signal 88, 88a to control the laminar air flow profile by adjusting the damper 21. The damper 21 is electrically coupled to the blower 25 and communicatively coupled to the air delivery controller 126. The air delivery controller 126 receives at least one efficiency signal 88, 88a to control the flow of the laminar air intake stream by adjusting the damper 21. In one exemplary embodiment, the air delivery controller 126 controls blower 25 and, optionally, the damper 21 to control the flow of the laminar air intake stream to establish an air delivery stream 223 having controlled flow that includes a defined and reproducible laminar air profile based on the laminar air intake stream.


The downstream laminar flow control system 900 includes a flow conditioner 920 and a laminar flow input/output sensor module 940 communicatively coupled to the flow conditioner 920. In this application and appended claims a “flow conditioner” is any device that modifies fluid flow to create a defined and reproducible laminar flow profile to maintain a selected combustion efficiency setting for a laminar burner system 5. Examples of flow conditioners 920 include, among others, an adjustable filter array 920a, an adjustable airfoil array 920b, a laminar flow control valve 920c, and a laminar flow acoustic controller system 920d.



FIG. 9 shows an air flow conditioner 920 in fluid communication with an air feed line 27. Illustratively, as generally shown in FIG. 10, an adjustable filter array 920a defining a flow conditioner 920. Specifically, FIG. 10a illustrates, from the front, the adjustable plate array 920a defines the flow conditioner 920 and includes a housing 921, a laminar flow arrangement 922 disposed within the housing 921 and featuring a plurality of flow plates 923 with each flow plate 923 defining at least one laminar flow aperture 924. FIG. 10b specifically illustrates the flow conditioner 920a of FIG. 10a from the side such that at least one flow aperture 924 aligns with flow apertures 924 defined by adjacent flow plates 923, as shown, with a laminar flow input/output sensor module 940 that includes at least one optical laser sensor 944 for aligning flow plates 923 via actuators 925 coupled thereto.



FIG. 11 illustrates an adjustable airfoil array 920b defining a flow conditioner 920. Specifically, FIG. 11 illustrates, from the front, the adjustable airfoil array 920b defines the flow conditioner 920 and includes a housing 921, at least one boundary layer airfoil 926 with variable positioning at the boundary layer on the inner surface of the housing 921, and at least one airfoil blade 926 with variable positioning with respect to the centerline of the housing 921. As shown, in one exemplary embodiment, the boundary layer airfoil 926 and the rotor 925a are variably positioned via a corresponding rotor 925a.



FIG. 14 generally illustrates a laminar flow acoustic controller system 920d defining a flow conditioner 920. Specifically, FIG. 14a illustrates, from the side, the laminar flow acoustic controller system 920d defining the flow conditioner 920 and including an acoustic controller module 927, acoustic control module 928 for providing acoustic energy to the acoustic controller unit 927, and an acoustic sensor 929 for providing input data to the air flow sensor arrangement 877 and at least one laminar flow input/output sensor module 940 to provide a defined and reproducible laminar air flow profile. FIG. 14b specifically illustrates the flow conditioner 920d of FIG. 14a from the front as applied to a corresponding laminar staging supply line 199 having a laminar staging supply line inner surface 199a and a laminar staging supply line outer surface 199b. According, the acoustic controller unit 927 includes an acoustic controller interface 927a applied to the laminar staging supply line inner surface 199a. As shown in FIG. 14b, the acoustic sensor 929 receives feedback from the acoustic controller unit 927 and the acoustic control module 928 to provide input data to the air flow sensor arrangement 877 for facilitating a defined and reproducible laminar air flow profile.



FIG. 14
b illustrates one exemplary embodiment of an acoustic control module 928 for generating acoustic energy for application by the acoustic controller interface 127a to the laminar staging supply line inner surface 927a, as discussed in detail below. Those of ordinary skill in the art will readily recognize other configurations for generating acoustic energy for application by the acoustic controller interface 127a to the laminar staging supply line inner surface 927a. As shown, the acoustic control module 928 of FIG. 14b includes an energy generator 928a, a sound controller 928b for filtering the acoustic energy from the energy generator 928a, and a generator feedback sensor 928c for metering the acoustic energy for possible filtering by the sound controller 928b. As further shown, the acoustic control module 928 receives power from a power source and is grounded.


Furthermore, in at least one embodiment, the air flow sensor arrangement 877 includes a plurality of laminar flow input/output sensor modules 940 are disposed along the downstream laminar flow control system 900 and, optionally, the upstream laminar flow control system 899. Examples of input/output sensor modules 940 include, among others, lasers, piston meters, gear meters, dye tests, velocimetry meters, disk meters, plate meters, pressure probes, tubes such as pitot tubes, current meters, magnetic meters, ultrasonic meters, and flow meters including optical flow meters.


Operatively, for the exemplary embodiment of FIG. 9, the downstream laminar flow control system 900 generally provides a laminar flow input/output sensor module 940 and a flow tracer system 960 for collectively provide feedback to operate at least one flow conditioner 920, such as an adjustable filter array 920a and an adjustable airfoil array 920b, for maintaining a defined and reproducible laminar air flow profile for establishing a desired combustion efficiency setting. For the exemplary embodiment of FIG. 12, the upstream laminar flow control system 899 and the downstream laminar flow control system 900 generally provide at least one laminar flow input/output sensor module 940 and a flow tracer system 960 for collectively providing feedback to operate a plurality of flow conditioners 920, such as a laminar flow control valve 920c, for maintaining a defined and reproducible laminar air flow profile for establishing a desired combustion efficiency setting. For the exemplary embodiment of FIG. 13, the downstream laminar flow control system 900 generally provides at least one laminar flow input/output sensor module 940 for providing feedback to operate a plurality of flow conditioners 920, a laminar flow acoustic controller system 920d, for maintaining a defined and reproducible laminar air flow profile for establishing a desired combustion efficiency setting. Accordingly, a plurality of laminar flow acoustic controller systems 920d are positioned about the downstream laminar flow control system 900, as shown, to maintain a defined and reproducible laminar air flow profile throughout the combustion process.


As an option, as shown in FIG. 9, the air flow sensor arrangement 877 includes a flow tracer system 960. In operation, the air flow tracer system 960 dispenses a plurality of flow tracer units 962 into the laminar air flow stream 227 to assist the laminar flow input/output sensor module 940 in measuring the flow profile to ensure a defined and reproducible laminar air profile. Illustratively, in one exemplary embodiment, each flow tracer unit 962 is defined by particulate matter that is readily responsive to irradiation such that a laser or optical sensor defining the laminar flow input/output sensor module 940 receives input radiation to define a measured laminar air profile at locations along the downstream laminar air flow system 900 and, optionally, the upstream laminar air flow system 899.


The flow tracer system 960 optionally includes a tracer dispenser unit 961 for dispensing a plurality of flow tracer units 962 into the laminar air flow stream 227. Moreover, the flow tracer system 960 optionally includes a tracer sensor 930 for measuring, among others, the laminar air profile, the rate of flow tracer unit 962 dispersion, and spatial distance of flow tracer unit 962 of dispersion.


For purposes of illustration, as shown in FIG. 8, the laminar air flow for the laminar burner system 5 is characterized being “upstream” for air flow activity before the blower 25 giving rise to an air delivery stream 223 having a controlled flow that includes a defined and reproducible laminar air profile based on the laminar air intake stream whereas “downstream” for air flow activity after the blower 25 giving rise to at least one laminar air flow stream 227, having a controlled flow that includes a defined and reproducible laminar air profile based on the laminar air intake stream, provided to the combustion manifold 5 through the staging passageway 49 and plurality of staging passageways 199.


In general, the air flow sensor arrangement 877 is communicatively coupled to a damper 21, a blower 25, and a flow conditioner 920 among other systems to establish a defined and reproducible laminar air flow profile. The air flow sensor arrangement 877 includes a supply inlet sensor 73, at least one laminar flow input/output sensor module 940, an air delivery controller 126, an air delivery sensor 126a, an output sensor module 77, and a tracer sensor 960 among other systems each communicatively coupled with one another. The air flow sensor arrangement 877 measures laminar air flow based on efficiency signals 88, 88a from the upstream laminar flow control system 889 and, optionally, from the downstream laminar flow control system 900. The efficiency signals 88, 88a include laminar air flow input and output values from the upstream laminar flow control system 889 including among others the supply inlet sensor 73, the air delivery sensor 126a, the tracer sensor 960, at least one laminar flow input/output sensor module 940, the air delivery controller 126, and from the downstream laminar flow control system 990 including sensor controller unit 37, at least one laminar flow input/output sensor module 940 and the system output sensor module 77.


In one exemplary embodiment, the damper 21 is communicatively coupled to the laminar flow input/output sensor module 940. In operation, the laminar flow input/output sensor module 940 receives the efficiency signal to control the laminar air flow stream by adjusting the damper 21. Moreover, in operation, the laminar flow input/output sensor module 940 receives the efficiency signal to control the laminar air flow profile by adjusting the damper 21.


In one exemplary embodiment, the flow conditioner 920 is communicatively coupled to the laminar flow input/output sensor module 940. In operation, the laminar flow input/output sensor module 940 receives the efficiency signal to control the laminar air flow stream by adjusting the flow conditioner 920. Moreover, in operation, the laminar flow input/output sensor module 940 receives the efficiency signal to control the laminar air flow profile by adjusting the flow conditioner 920.


The combustion efficiency control system 888 includes a fuel controller unit 74 communicatively coupled to the fuel passageway 34. A fuel flow sensor module 74b of the fuel controller unit 74 measures fuel flow and emits an efficiency signal 88, 88a including fuel flow input values.


The combustion efficiency control system 888 includes a burner output sensor module 76. The burner output sensor module 76 is positioned adjacent to a burner system outlet 63. The burner output sensor module 76 measures combustion energy output produced by the laminar burner system. Moreover, the burner output sensor module 76 emits an efficiency signal including combustion energy output values.


Generally, in operation, the air flow sensor arrangement 877 measures laminar air flow including among others the rate of laminar air flow as well as the laminar flow profile in real time at all stages of the combustion process for the laminar burner system 5 to enable the combustion efficiency control system 888 to establish a defined and reproducible laminar air flow profile. Based on the measured laminar air flow, the air flow sensor arrangement 877 emits an efficiency signal 88, 88a to an operating unit 80 for processing. The operating unit 80 sends, at least in part, the received efficiency signal 88, 88a to the air delivery controller 126. The air delivery controller 126 receives the efficiency signal to control the flow of the air delivery stream 223 along the air delivery line 23 by adjusting the damper 21 and the blower 25.


In one exemplary embodiment, the flow conditioner 920 further receives an efficiency signal 88, 88a based on the measured laminar air flow to control the flow of the laminar air delivery stream along the combustion manifold 70, and optionally, along a supply input module's 20 portion of the laminar air delivery stream by adjusting the flow conditioner 920.


The combustion efficiency control system further includes a combustion manifold 70. The combustion manifold 70 is the same as that described above. Specifically, in one exemplary embodiment, the combustion manifold 70 is in fluid communication with the laminar air delivery system 22. The laminar air delivery system 22, via the airflow sensor arrangement 877, provides an air delivery stream 223 and a laminar air flow stream 227, each having a controlled flow that includes, among others, a defined and reproducible laminar air profile based on a laminar air intake stream. In one exemplary embodiment, the laminar air delivery system 22 provides a laminar air intake stream with a controlled flow to the combustion manifold 70, via a combination of the air delivery stream 223 and the laminar air flow stream 227.


As described in greater detail above, the combustion manifold 70 includes an air-fuel mixing chamber system 40 in fluid communication with the laminar air delivery system 22. The combustion manifold 70 includes a mixing chamber 44 and an injector device 31 extending within the mixing chamber 44. In operation, fuel exits the injector device 31 to mix with the laminar air intake stream with a controlled flow traveling along the air-fuel mixing chamber to define a first combustion stream.


The combustion manifold 70 further includes a stoichiometric combustion unit 50 in fluid communication with the supply input module 20 and with the air-fuel mixing chamber system 40. The stoichiometric combustion unit 50 includes a staging passageway 49 and a stoichiometric unit body 51. In operation, the laminar air intake stream with a controlled flow, including the air delivery stream 223 and the laminar air flow stream 227 via the airflow sensor arrangement 877, travels along the staging passageway 49 passes through the first combustion stream within the stoichiometric unit body 50 to define a second combustion stream. In one exemplary embodiment, the air delivery stream 223 and the laminar air flow stream 227 each having a controlled flow that includes, among others, a defined and reproducible laminar air profile based on the laminar air intake stream.


With reference to FIG. 15, one exemplary embodiment of a supply input module 20 includes one exemplary embodiment of an input port laminar controller system 970 for conditioning a laminar air flow profile received from an air receiving port 28. The input port laminar controller system 970 includes at least one laminar flow enhancement unit 971, such as a blower, and a plurality of flow guides 973, each positioned at angles that optimizes the laminar air flow profile of the laminar air flow stream 227 while traveling from the air receiving port 28 to the alignment plate 72 while actively reducing or eliminating turbulent or swirled disturbances within the supply input module 20. FIG. 15a shows a laminar flow controller 972, such as a laminar flow passageway matrix 972a, applied to inlet ports 29 to promote laminar air flow therethrough.


Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A combustion efficiency control system for a laminar burner system, the laminar burner system delivering thermal energy to an energy consumption system coupled thereto, the combustion efficiency control system comprising: an air flow sensor arrangement, the air flow sensor arrangement including an upstream laminar flow control system, the air flow sensor arrangement communicatively coupled to a damper, the air flow sensor arrangement measuring laminar air flow and emitting an efficiency signal including laminar air flow input values;a burner output sensor module, the burner output sensor module positioned adjacent to a burner system outlet, wherein the burner sensor module measures combustion energy output produced by laminar burner system; the burner output sensor module measuring combustion and emitting an efficiency signal including combustion energy output values; andan operating unit, the operating unit includes a stoichiometric controller, the operating unit compares laminar air flow input values with combustion output values, the stoichiometric controller receives the comparison of laminar air flow with combustion output values to generate an efficiency signal having air control data for the damper, the stoichiometric controller maintains a selected combustion efficiency setting until such setting is cancelled.
  • 2. The combustion efficiency control system according to claim 1 wherein the combustion efficiency setting is defined as a setting relative to and including stoichiometric combustion.
  • 3. The combustion efficiency control system according to claim 1 wherein the combustion efficiency setting includes a continuous stoichiometric combustion setting.
  • 4. The combustion efficiency control system according to claim 3 wherein the continuous stoichiometric combustion setting produces no amount of carbon emitted from the laminar burner system.
  • 5. The combustion efficiency control system according to claim 1 wherein the combustion efficiency setting includes a continuous adiabatic combustion setting.
  • 6. The combustion efficiency control system according to claim 1 wherein the stoichiometric controller generates an efficiency signal to control the damper, the damper receives the efficiency signal to produce a defined and reproducible laminar flow profile.
  • 7. The combustion efficiency control system according to claim 1 wherein the operating unit further includes an input/output interface communicatively coupled to the stoichiometric controller, the stoichiometric controller maintains a selected combustion efficiency setting received from the input/output interface until such setting is cancelled.
  • 8. The combustion efficiency control system according to claim 1 wherein the stoichiometric controller emits an efficiency signal having air control data for the damper, the stoichiometric controller, based on control instructions to the damper provided in the efficiency signal, maintains a combustion efficiency setting for generating an adiabatic flame temperature during a continuous combustion processes within the laminar burner system.
  • 9. The combustion efficiency control system according to claim 1 wherein the operating unit generates and the emitter/receiver emits an efficiency signal including laminar air flow control data, the efficiency signal received by a damper controller, and wherein the damper, via the damper controller, on receipt of the efficiency signal produces a defined, reproducible laminar air flow profile to the combustion manifold to control the supply of laminar air to the combustion manifold.
  • 10. The combustion efficiency control system according to claim 1 wherein the operating unit generates and the emitter/receiver emits an efficiency signal having fuel control data, and wherein the efficiency signal received by a fuel controller unit, to control the supply of fuel to the combustion manifold.
  • 11. The combustion efficiency control system according to claim 1 further including a laminar flow input/output sensor module, the laminar flow input/output sensor module positioned about the downstream laminar flow control system, and wherein the laminar flow input/output sensor module measures the laminar air flow profile about the downstream laminar flow control system.
  • 12. The combustion efficiency control system according to claim 1 further including a system output sensor module, the system output sensor module is coupled to the energy consumption system outlet, and wherein the system output sensor module measures energy used by the energy consumption system to provide measurement data in an efficiency signal.
  • 13. A combustion efficiency control system for a laminar burner system, the laminar burner system delivering thermal energy to an energy consumption system coupled thereto, the combustion efficiency control system comprising: an air flow sensor arrangement, the air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system, the air flow sensor arrangement communicatively coupled to a flow conditioner, the air flow sensor arrangement measuring laminar air flow and emitting an efficiency signal including laminar air flow input;a burner output sensor module, the burner output sensor module positioned adjacent to a burner system outlet, wherein the burner sensor module measures combustion energy output produced by laminar burner system; the burner output sensor module measuring combustion and emitting an efficiency signal including combustion energy output values; andan operating unit, the operating unit includes a stoichiometric controller, the operating unit compares laminar air flow input values with combustion output values,the stoichiometric controller receives the comparison of laminar air flow input values with combustion output values to generate an efficiency signal having a combination of air control data for the flow conditioner and the fuel passageway, the stoichiometric controller maintains a selected combustion efficiency setting until such setting is cancelled.
  • 14. The combustion efficiency control system according to claim 13 wherein the combustion efficiency setting is defined as a setting relative to and including stoichiometric combustion.
  • 15. The combustion efficiency control system according to claim 13 wherein the combustion efficiency setting includes a continuous stoichiometric combustion setting.
  • 16. The combustion efficiency control system according to claim 15 wherein the continuous stoichiometric combustion setting produces no amount of carbon emitted from the laminar burner system.
  • 17. The combustion efficiency control system according to claim 13 wherein the combustion efficiency setting includes a continuous adiabatic combustion setting.
  • 18. The combustion efficiency control system according to claim 13 wherein the stoichiometric controller generates an efficiency signal to control the flow conditioner, the flow conditioner receives the efficiency signal to produce a defined and reproducible laminar flow profile to maintain the selected combustion efficiency setting.
  • 19. The combustion efficiency control system according to claim 13 wherein the operating unit further includes an input/output interface communicatively coupled to the stoichiometric controller, and wherein the stoichiometric controller maintains a selected combustion efficiency setting received from the input/output interface until such setting is cancelled.
  • 20. The combustion efficiency control system according to claim 14 wherein the operating unit generates and the emitter/receiver emits an efficiency signal having fuel control data, and wherein the efficiency signal received by a fuel controller unit, to control the supply of fuel to the combustion manifold.
  • 21. The combustion efficiency control system according to claim 13 further including a laminar flow input/output sensor module, the laminar flow input/output sensor module positioned about the downstream laminar flow control system, and wherein the laminar flow input/output sensor module measures the laminar air flow profile about the downstream laminar flow control system.
  • 22. The combustion efficiency control system according to claim 13 further including a system output sensor module, the system output sensor module is coupled to the energy consumption system outlet, and wherein the system output sensor module measures energy used by the energy consumption system to provide measurement data in an efficiency signal.
  • 23. A combustion efficiency control system for a laminar burner system, the laminar burner system delivering thermal energy to an energy consumption system coupled thereto, the combustion efficiency control system comprising: an air flow sensor arrangement, the air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system, the air flow sensor arrangement communicatively coupled to a damper, a blower, and a flow conditioner, the air flow sensor arrangement measuring laminar air flow and emitting an efficiency signal including laminar air flow input values;a fuel controller unit, the fuel controller unit communicatively coupled to the fuel passageway, the fuel controller unit measuring fuel flow and emitting an efficiency signal including fuel flow input values;a burner output sensor module, the burner output sensor module positioned adjacent to a burner system outlet, wherein the burner sensor module measures combustion energy output produced by laminar burner system; the burner output sensor module emitting an efficiency signal including combustion energy output values; andan operating unit, the operating unit includes a stoichiometric controller, the operating unit compares laminar air flow and fuel flow input values with combustion output values, the stoichiometric controller receives the comparison of laminar air flow and fuel flow input values with combustion output values to generate an efficiency signal having a combination of air and fuel control data for the damper, the blower, the flow conditioner and the fuel controller unit, respectively, the stoichiometric controller maintains a selected combustion efficiency setting until such setting is cancelled.
  • 24. The combustion efficiency control system according to claim 23 wherein the combustion efficiency setting is defined as a setting relative to stoichiometric combustion.
  • 25. The combustion efficiency control system according to claim 23 wherein the combustion efficiency setting includes a continuous stoichiometric combustion setting.
  • 26. The combustion efficiency control system according to claim 25 wherein the continuous stoichiometric combustion setting produces no amount of carbon emitted from the laminar burner system.
  • 27. The combustion efficiency control system according to claim 23 wherein the combustion efficiency setting includes a continuous adiabatic combustion setting.
  • 28. The combustion efficiency control system according to claim 23 wherein the stoichiometric controller generates an efficiency signal to control the flow conditioner, the flow conditioner receives the efficiency signal to produce a defined and reproducible laminar flow profile.
  • 29. The combustion efficiency control system according to claim 23 wherein the operating unit further includes an input/output interface communicatively coupled to the stoichiometric controller, and wherein the stoichiometric controller maintains a selected combustion efficiency setting received from the input/output interface until such setting is cancelled.
  • 30. The combustion efficiency control system according to claim 23 wherein the stoichiometric controller emits an efficiency signal having air control data for the a flow conditioner, and wherein the stoichiometric controller, based on control instructions to the damper provided in the efficiency signal, maintains a combustion efficiency setting for generating an adiabatic flame temperature during a continuous combustion processes within the laminar burner system.
  • 31. The combustion efficiency control system according to claim 23 wherein the operating unit generates and the emitter/receiver emits an efficiency signal including laminar air flow control data, the efficiency signal received by a flow conditioner, and wherein the flow conditioner on receipt of the efficiency signal produces a defined, reproducible laminar air flow profile to the combustion manifold to control the supply of laminar air to the combustion manifold.
  • 32. The combustion efficiency control system according to claim 23 wherein the operating unit generates and the emitter/receiver emits an efficiency signal having fuel control data, and wherein the efficiency signal is received by a fuel controller unit, to control the supply of fuel to the combustion manifold.
  • 33. The combustion efficiency control system according to claim 23 further including a laminar flow input/output sensor module including a laminar flow input/output sensor module positioned about the downstream laminar flow control system, and wherein the laminar flow input/output sensor module measures the laminar air flow profile about the downstream laminar flow control system.
  • 34. The combustion efficiency control system according to claim 23 further including a system output sensor module, the system output sensor module is coupled to the energy consumption system outlet, and wherein the system output sensor module measures energy used by the energy consumption system to provide measurement data in an efficiency signal.
  • 35. A combustion efficiency control system comprising: a laminar air delivery system, the laminar air delivery system including a blower;an air flow sensor arrangement, the air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system, the upstream laminar flow control system includes an air delivery controller and an air delivery sensor communicatively coupled to the air delivery controller, the air delivery controller is electrically coupled to a blower, the downstream flow control system includes a flow conditioner and a laminar flow input/output sensor module communicatively coupled to the flow conditioner,the air flow sensor arrangement measures laminar air flow and emits an efficiency signal, the air delivery controller receives the efficiency signal to control the flow of an air delivery stream along an air delivery line by adjusting the blower, the flow conditioner receives the efficiency signal to control the flow of the laminar air flow stream along a combustion manifold and, optionally, along a supply input module of the laminar air delivery stream by adjusting the flow conditioner; anda combustion manifold, the combustion manifold in fluid communication with the laminar air delivery system; the laminar air delivery system, via the airflow sensor arrangement, provides a laminar air intake stream with a controlled flow to the combustion manifold, the combustion manifold includesan air-fuel mixing chamber system, the air-fuel mixing chamber system in fluid communication with the laminar air delivery system, and includes a mixing chamber and an injector device extending within the mixing chamber,whereby fuel exits the injector device to mix with the laminar air intake stream with a controlled flow traveling along the air-fuel mixing chamber to define a first combustion stream, anda stoichiometric combustion unit, the stoichiometric combustion unit in fluid communication with the supply input module and with the air-fuel mixing chamber system, and includes a staging passageway and a stoichiometric unit body, whereby the laminar air intake stream traveling along the staging passageway passes through the first combustion stream within the stoichiometric unit body to define a second combustion stream.
  • 36. The combustion efficiency control system according to claim 35 wherein the laminar air delivery system includes a damper, the damper in fluid communication with the blower.
  • 37. The combustion efficiency control system according to claim 36 wherein the damper is communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the laminar air flow profile by adjusting the damper.
  • 38. The combustion efficiency control system according to claim 37 wherein the damper is electrically coupled to the blower and communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the flow of the laminar air intake stream by adjusting the damper.
  • 39. The combustion efficiency control system according to claim 37 wherein the damper is electrically coupled to the blower and communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the flow of the laminar air intake stream by adjusting the blower.
  • 40. The combustion efficiency control system according to claim 35 wherein the damper is communicatively coupled to the laminar flow input/output sensor, and wherein the laminar flow input/output sensor module receives the efficiency signal to control the laminar air flow stream by adjusting the damper.
  • 41. The combustion efficiency control system according to claim 35 wherein the flow conditioner is communicatively coupled to the laminar flow input/output sensor, and wherein the laminar flow input/output sensor module receives the efficiency signal to control the laminar air flow stream by adjusting the flow conditioner.
  • 42. A combustion efficiency control system comprising: a laminar air delivery system, the laminar air delivery system including a blower;an air flow sensor arrangement, the air flow sensor arrangement including an upstream laminar flow control system and a downstream laminar flow control system, the upstream laminar flow control system includes an air delivery controller and an air delivery sensor communicatively coupled to the air delivery controller, the air delivery controller is electrically coupled to the blower, the downstream flow control system includes a flow conditioner and a laminar flow input/output sensor module communicatively coupled to the flow conditioner,the air flow sensor arrangement measures laminar air flow and emits an efficiency signal, the air delivery controller receives the efficiency signal to control the flow of an air delivery stream along an air delivery line by adjusting the blower, the flow conditioner receives the efficiency signal to control the flow of the laminar air flow stream along a combustion manifold; anda combustion manifold, the combustion manifold in fluid communication with the laminar air delivery system; the laminar air delivery system, via the airflow sensor arrangement, provides a laminar air intake stream with a controlled flow to the combustion manifold, the combustion manifold includesan air-fuel mixing chamber system, the air-fuel mixing chamber system in fluid communication with the laminar air delivery system, and includes a mixing chamber and an injector device extending within the mixing chamber,whereby fuel exits the injector device to mix with the laminar air intake stream with a controlled flow traveling along the air-fuel mixing chamber to define a first combustion stream, anda stoichiometric combustion unit, the stoichiometric combustion unit in fluid communication with the supply input module and with the air-fuel mixing chamber system, and includes a staging passageway and a stoichiometric unit body, whereby the laminar air intake stream traveling along the staging passageway passes through the first combustion stream within the stoichiometric unit body to define a second combustion stream.
  • 43. The combustion efficiency control system according to claim 42 wherein the laminar air delivery system includes a damper, the damper in fluid communication with the blower.
  • 44. The combustion efficiency control system according to claim 43 wherein the damper communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the laminar air flow profile by adjusting the damper.
  • 45. The combustion efficiency control system according to claim 44 wherein the damper is electrically coupled to the blower and communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the flow of the laminar air intake stream by adjusting the damper.
  • 46. The combustion efficiency control system according to claim 44 wherein the damper is electrically coupled to the blower and communicatively coupled to the air delivery controller, and wherein the air delivery controller receives the efficiency signal to control the flow of the laminar air intake stream by adjusting the blower.
  • 47. The combustion efficiency control system according to claim 42 wherein the damper is communicatively coupled to the laminar flow input/output sensor, and wherein the laminar flow input/output sensor module receives the efficiency signal to control the laminar air flow stream by adjusting the damper.
  • 48. The combustion efficiency control system according to claim 42 wherein the flow conditioner is communicatively coupled to the laminar flow input/output sensor, and wherein the laminar flow input/output sensor module receives the efficiency signal to control the laminar air flow profile by adjusting the flow conditioner.
RELATED APPLICATIONS

This application is Continuation-in-Part of a Continuation application Ser. No. 14/140,507, filed Dec. 25, 2013 and claims benefit under 35 U.S.C. §§119, 120, 121, and/or 365 of at least Provisional Application Ser. No. 61/781,100, filed Mar. 14, 2013, entitled “A Combustion Efficiency Control System with Stoichiometric Controller for a Laminar Burner System”, by inventors Teodoro A Cantú et al., the entirety of the above referenced Applications are hereby incorporated by reference as if fully set forth herein.

Provisional Applications (1)
Number Date Country
61781100 Mar 2013 US
Continuation in Parts (1)
Number Date Country
Parent 14140507 Dec 2013 US
Child 14210335 US