Field of the Disclosure
This disclosure relates to a dry cell system for separating water into hydrogen and oxygen in combination with catalytic-type chemicals and materials. The separated hydrogen/oxygen are provided into the air intake system of an internal combustion engine and used therein to greatly improve the operation of said internal combustion engine, both in regards to fuel consumption as well as detrimental exhaust products.
In one example of the disclosed apparatus, as a dry cell system, the reservoir, including the electrolyte and the water reservoir, is kept separate from the hydrogen generator. As the gas is created in the hydrogen generator, it is expelled therefrom and utilized in the engine almost immediately. This increases safety, among other benefits, as there is not an accumulated quantity of hydrogen gas or oxygen gas, which is potentially explosive in this environment.
In most wet cell HHO generators, the distance between the anode and cathode is approximately 0.125″, and in dry cell generators the distance between plates is approximately 0.025″. Thus, it follows that a dry cell generator will also take up less space, although the gas created must either be used or be removed for storage, as there is no region within the generator for storage. Furthermore, the system disclosed herein operates without any substantial pressure differential between the produced gas and the surrounding atmosphere. A Venturi effect is utilized to draw off the HHO gas, and thus the HHO gas need not pass through any potentially dangerous pump.
The disclosed generator has also proven to operate at a relatively low temperature, less than 212° F.
In one form, electrolyte chemicals, including boron in the form of boric acid, which may be combined with potassium hydroxide as a catalyst, have been found to greatly increase the HHO production in the HHO generator. An unexpected result has been found in that the boron decreases the foaming effect of the dry cell, which increases the efficiency of the stabilization tank. In addition, the boric acid decreases the freezing temperature of the water electrolyte, acts as a refrigerant, and functions as an electric conductivity stabilizer. The use of potassium hydroxide (KOH) has been found to be exemplary in several embodiments as a catalyst in the disclosed system.
Tests have shown that the disclosed examples increase the gas efficiency and lower carbon emissions in both gas and diesel engines.
In order to provide a sufficient amount of hydrogen and oxygen gas in a dry cell environment, the combustion engine air supply system 20, as shown in
The HHO circulation pump 44 not only comprises the water supply inlet 42, but also comprises a water supply outlet 54, which couples by way of a section of tubing 55 to a water supply inlet 56 of the hydrogen generator 36. The hydrogen generator 36 also comprises a hydrogen product supply outlet 58, which is coupled by way of a section of tubing 35 to the HHO inlet 34 on the electrolyte stabilization tank 24. These inlets 56 and outlets 58 may be formed on both the first side 60 and second side 62 of the hydrogen generator 36.
The HHO scrubber unit 30 comprises the HHO inlet 32 as well as an HHO outlet 64, which couples by way of a length of tubing 68 to an HHO inlet 66 of a feed injector 78, which in one form is in line between an automotive air cleaner and a throttle body 70, so as to provide the HHO gas from the scrubber unit 30 to the combustion chambers of the internal combustion engine. In one form, the throttle body 70 comprises a throttle plate 72, which controls the throttle position sensor (TPS), which regulates the pulse width of a wave signal powering the hydrogen generator 36. In this form, a pulse wave modulator (PWM) may be utilized to provide a correct waveform to the hydrogen generator 36. In this embodiment, as the throttle is opened wider, a signal is sent to the hydrogen generator 36 to produce more HHO gas which is delivered to the feed injector 78.
In another form, a Hall effect sensor is coupled to the fuel injector input. The output from the Hall effect sensor is then used to regulate the pulse width of the wave signal controlling the hydrogen generator 36. At idle, the positive portion of the wave sent to the injector will be quite short in duration, and when power is applied the engine, the positive portion of the wave will be considerably longer. The fuel injector signal therefore defines the power/control signal sent to the hydrogen generator either directly to the anode/cathode or to the control box 52, which in turn powers the hydrogen generator 36. While many common Hall effect sensors will not be capable of surviving the heat generated by an internal combustion engine, Hall effect sensors built for industrial or military use are normally capable of handling such environments.
In one form, the electrolyte stabilization tank 24 contains a chemical solution, which is pumped from the water supply outlet 40 through the hydrogen generator 36 to release HHO gas. The HHO gas released by the hydrogen generator 36 and any remaining liquid therein is then returned to the stabilization tank 24 through the supply outlet 58 to the inlet 34.
For optimum performance, the position of the HHO inlet 34 is above the normal operating fluid level in the stabilization tank 24. As the HHO gas outlet 28 is vertically above the HHO inlet 34, the electrolyte fluid is thus returned to the stabilization tank 24 and the HHO gas can be withdrawn therefrom. As previously mentioned, in one example the liquid level is maintained by the electrolyte fill switch 48, which in turn operates the electrolyte stabilization pump, which maintains the proper electrolyte level in the stabilization tank 24 by pumping in water/electrolyte as needed. As with most electrolysis systems, distilled water may be preferred.
The automatic fill system comprises the fill switch 48, control box 52, and electrolyte stabilization pump, and the automatic fill system maintains the chemical electrolyte at the desired concentration. As the system is in operation, the water is consumed in the gas (HHO) making process; however, the electrolyte chemicals are not consumed in the gas making process and generally cycle between the stabilization tank 24 and the hydrogen generator 36. This system provides a stabilized reservoir for the chemical solution. The hydrogen and oxygen (HHO) produced in the hydrogen generator 36 and reentering the stabilization tank 24 are heated through the electrolysis process. In order to maintain temperature stability, the oxygen gas coming in contact with the stainless steel headspace in the stabilization tank 24 chills the stainless steel body of the stabilization tank 24, thus maintaining a low temperature for both the electrolyte fluid and the gas itself. This refrigeration effect helps to maintain the lower temperature at which the air supply system 20 is designed to function. The lowered temperature is conducive to combustion, thus resulting in increased power supply to the internal combustion engine.
The HHO circulation pump 44, in one form, is a diaphragm-style pump that maintains pressure when the air supply system 20 is engaged. In one form, the constant positive pressure of up to 24 PSI is maintained between the circulation pump 44 and the feed injector 78. In one form, if and when the maximum output pressure of the circulation pump 44 is reached, such as by an occlusion of the line, the circulation pump 44 will turn off. During use, a very low pressure differential will be maintained to enable flow of the fluid between the circulation pump 44 and the feed injector 78. The circulation pump 44 pumps the electrolyte from the electrolyte stabilization tank 24, forcing it through the hydrogen generator 36, which causes the electrolyte and gas to flow back into the stabilization tank 24, where the gas and liquid are then separated. This constant flow prevents the accumulation of contaminants and chemicals on the generator plates shown in
Operation of the air supply system 20 is facilitated by the above-described fluid flow, which removes the gas bubbles off of the generator plates 74, shown in
The common term fluid is used herein to define gasses, liquids, and combinations thereof.
This described constant flow through the system ensures a constant stirring action of the fluid flow, such that the chemicals are well mixed with the water being added by the chemical stabilization pump. The scrubber 30 is designed to protect the appliance/internal combustion engine from damage caused from actual droplets of liquid, should the gas-creating equipment for some reason become overfilled in the stabilization tank 24, or some other malfunction occur.
Another sight glass 82 provides visual observation should liquid accumulate in the scrubber. A petcock 76 may be provided near the lower end of the sight glass, through which the sight glass is easily emptied.
The input 66 comprises a delivery siphon or feed injector 78, which in one form comprises a 90° hose barb fitting with one portion tapered 80, as shown in
As shown in
As with other electrolysis systems, electric voltage is applied between the anode(s) and the associated cathode(s). In one form, the voltage is applied as a monopole square wave into a resonant circuit which is tuned to the specific Q value of the solution used as an electrolyte.
In one embodiment, a water reservoir 104 is fluidly coupled to the electrolyte stabilization tank through conduit 39 so as to maintain the fluid level within the electrolyte stabilization tank. The fill switch 48 may be coupled to a pump or valve between the water reservoir 104 and the electrolyte stabilization tank so as to allow water to flow into the electrolyte stabilization tank when the volume drops below a preset limit.
Testing has shown that marine grade, 316L stainless steel exhibits substantially better production and corrosion resistance than other tested materials.
While the present invention is illustrated by description of several embodiments and while the illustrative embodiments are described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily appear to those sufficed in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general concept.
This application claims priority benefit of and is a continuation of U.S. Ser. No. 13/019,387, filed Feb. 2, 2011 incorporated herein by reference. This application also claims priority benefit of U.S. Ser. No. 61/300,561, filed Feb. 2, 2010 incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61300561 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13019387 | Feb 2011 | US |
Child | 15405259 | US |