The present invention relates to a combustion staging system for fuel injectors of a multi-stage combustor of a gas turbine engine.
Multi-stage combustors are used particularly in lean burn fuel systems of gas turbine engines to reduce unwanted emissions while maintaining thermal efficiency and flame stability. For example, duplex fuel injectors have pilot and mains fuel manifolds feeding pilot and mains discharge orifices of the injectors. At low power conditions only the pilot stage is activated, while at higher power conditions both pilot and mains stages are activated. The fuel for the manifolds typically derives from a pumped and metered supply. A splitter valve can then be provided to selectively split the metered supply between the manifolds as required for a given staging.
A typical annular combustor has a circumferential arrangement of fuel injectors, each associated with respective pilot and mains feeds extending from the circumferentially extending pilot and mains manifolds. Each injector has a nozzle housing the discharge orifices which discharge fuel into the combustion chamber of the combustor, a feed arm for the transport of fuel to the nozzle, and a head at the outside of the combustor at which the pilot and mains feeds enter the feed arm. Within the injectors, a check/distribution valve, known as a fuel flow scheduling valve (FSV), is typically associated with each feed so that when a pilot or mains stage is de-selected, the valve (i) provides a drip tight seal preventing fuel from leaking into the injector causing coking and (ii) prevents combustion chamber gases entering the fuel system.
Multi-stage combustors may have further stages and/or manifolds. For example, the pilot manifold may be split into two manifolds for lean blow-out prevention.
During pilot-only operation, the splitter valve generally directs fuel for burning flows only through the pilot fuel circuit (i.e. pilot manifold and feeds). It is therefore conventional to control temperatures in the stagnant (i.e. mains) fuel circuit to prevent coking due to heat pick up from the hot engine casing. One known approach, for example described in EP A 2469057 (hereby incorporated by reference), is to provide a separate recirculation manifold which is used to keep the fuel in the mains manifold cool when it is deselected. It does this by keeping the fuel in the mains manifold moving, allowing flow from a high pressure source (typically a gear pump delivery pressure, HP) to pass through a cooling flow solenoid valve, through the recirculation and mains manifolds before returning to a low pressure sink (typically a gear pump inlet pressure LP) via a valve and restrictor network. The recirculation and mains manifolds experience a low intermediate pressure, above LP but insufficient to crack open the mains FSVs. When mains is selected, a cooling flow also has to be maintained in the recirculation manifold to avoid coking.
A problem associated with this approach is that blockage may occur in the recirculation path. The consequence of such a failure is dependent on the location of the blockage.
For example, if the blockage occurs in the recirculation path on the return-to-LP side of the manifolds, the result can be an increased pressure in the recirculation path which opens one or more of the mains FSVs, potentially causing hot streaks due to the resultant mal-distribution of fuel flow and, as a consequence, turbine damage.
If the blockage occurs on the recirculation path on the HP feed side of the manifolds, the result can be a loss of cooling flow and/or pressure in the recirculation path at the injectors, potentially resulting in combustion gases leaking back from combustion chamber pressure, past the mains FSVs and thence to the low pressure side fuel system of the system via the exit from the recirculation path. This can lead to damage and/or failure within the fuel system. Air flow past the fuel drip tight seal of an FSV may be possible due to the low viscosity of air relative to that of fuel.
A further possible failure mode with this system is associated with the relatively high cracking pressure of the FSVs, set to avoid incorrect opening of the mains FSVs in pilot-only operation at conditions where the recirculation path sink pressure, LP, can be high relative to the combustion chamber. If one of the mains FSVs fails open, significant mal-distribution of fuel injection around the combustor can persist since flow through the failed open mains FSV has to increase to a significant level before other mains FSVs fully open. This can result in turbine torching and consequent damage.
It would be desirable to provide a combustion staging system which is less likely to suffer from such problems.
Accordingly, in a first aspect, the present invention provides a combustion staging system for fuel injectors of a multi-stage combustor of a gas turbine engine, the system having:
Advantageously the staging system can avoid a need for complex recirculation architectures as the pilot fuel flow can pass through the main flow scheduling valves under both pilot-only and pilot-and-mains operation, thereby cooling the valves. The pilot flow in each valve can be along a relatively unrestricted path to avoid or reduce additional pressure losses in the pilot flow.
Advantageously, the system can be operated without pilot flow scheduling valves. These were incorporated into the system of EP A 2469057 primarily to prevent pilot fuel leaking into the injectors at shut down with the attendant risk of injector coking and leakage into the combustion chamber. The system of the present invention, however, is compatible with a conventional reverse-purge manifold drain capability, whereby at shut down a manifold drain valve is opened to allow combustion chamber pressure to drive the fuel out of the pilot manifold through the drain valve to a drains tank. By avoiding a need for pilot flow scheduling valves operating in parallel to the mains flow scheduling valves, the risk of pilot flow mal-distribution associated with a failed open pilot flow scheduling valve can be reduced.
The system can also greatly reduce the risk of mains flow ma-distribution in the event of a mains flow scheduling valve failing open. By referencing the pilot side of the chamber to pilot manifold pressure, the cracking pressure of the mains flow scheduling valves can be reduced. Thus when mains is de-selected via the splitter unit, the pressures acting on either side of each piston are substantially equal so that only a low load spring is required to maintain each valve in the closed pilot-only position. Accordingly, the mains flow scheduling valves can be low cracking pressure devices. Then, if one of the valves fails open, the flow through the corresponding injector does not have to reach a very high level before the mains manifold pressure increases sufficiently to cause the other mains flow scheduling valves to open, thereby reducing the risk of significant mains flow mal-distribution and subsequent turbine torching/damage which could occur if the flow through the single failed open injector were to reach a high level.
In a second aspect, the present invention provides a gas turbine engine having the combustion staging system according to the first aspect.
Optional features of the invention will now be set out. Unless otherwise specified, these are applicable singly or in any combination with any aspect of the invention.
The splitting unit can be a flow splitting valve, e.g. having a spool whose position is controllable to control the split of the metered fuel flow between the pilot and mains fuel flows.
The piston of each mains flow scheduling valve may be spring-biased towards the pilot-only position.
According to a first cooling flow option, each mains flow scheduling valve may further have a cooling flow bypass line providing fluid communication between the mains and pilot sides of its chamber. The splitting unit may then be configured to allow a cooling flow through the mains fuel manifold when the mains flow scheduling valves are in their pilot-only positions, wherein the cooling flow passes through the bypass lines to cool the mains fuel manifold during pilot-only operation. The cooling flow can then pass to the pilot discharge orifices for burning in the combustor. With such an arrangement, the piston may shut off the bypass line when the piston is in its pilot-and-mains position.
According to a second cooling flow option, the splitting unit may send a cooling flow to the mains fuel manifold during pilot-only operation; and the system may further have a mains cooling valve which, during pilot-only operation, opens a bypass connection between the mains and pilot fuel manifolds such that the cooling flow passes from the mains fuel manifold to the pilot fuel manifold. The cooling flow through the mains fuel manifold in the pilot-only mode then helps to avoid coking in the mains manifold when the mains flow scheduling valves are in their pilot-only positions. Advantageously, the cooling flow can pass to the pilot discharge orifices for burning in the combustor, such that the correct staging split is maintained.
In the second cooling flow option, the mains cooling valve may be located at the base of the engine. This can help to reduce engine heat soak-back into the valve.
In the second cooling flow option, each mains flow scheduling valve may provide a leak-tight seal between the pilot and mains sides of the chamber when its piston is in its pilot-only position, and a reduced seal between the pilot and mains sides of the chamber when the piston is in its pilot-and-mains position. For example, the piston may be dual face-sealed in the chamber. Some fuel may thus leak from pilot pressure to mains via clearance between the piston and its sleeve during pilot-and-mains operation. However, improved reliability of piston movement within the chamber may compensate for this disadvantage.
In the second cooling flow option, the mains manifold may be configured such that flow through the mains manifold passes in series across respective entrances to the mains flow scheduling valves, the bypass connection between the mains and pilot fuel manifolds comprising parallel first and second fuel lines, the first fuel line extending from the mains to the pilot fuel manifold from an upstream side of the last entrance, the second fuel line extending from the mains to the pilot fuel manifold from a downstream side of the last entrance, and the first and second lines being in fluid communication in the mains cooling valve such that during pilot-and-mains operation fuel circulates around the first and second fuel lines. In this way, fuel cooling of the first and second fuel lines can be maintained during pilot-and-mains operation, even if the mains cooling valve closes the bypass connection during pilot-and-mains operation.
Alternatively, in the second cooling flow option, the mains manifold may be configured such that flow through the mains manifold splits into a first fraction which passes in series across respective entrances to a first portion of the mains flow scheduling valves, and a second fraction which passes in second series across respective entrances to a remaining second portion of the mains flow scheduling valves, the bypass connection between the mains and pilot fuel manifolds comprising a fuel line extending from the mains manifold from a location on the mains manifold which is downstream of the last entrances of the first and second portions of the mains flow scheduling valves. This arrangement also allows fuel cooling of the fuel line of the bypass connection during pilot-and-mains operation, particularly if the mains cooling valve allows a leakage flow to pass from the mains fuel manifold to the pilot fuel manifold.
In the second cooling flow option, the pilot manifold may include a section which is within the mains cooling valve such that at least a portion of the pilot fuel flow passes through the mains cooling valve. This can help to cool the mains cooling valve.
Additionally or alternatively to the above cooling flow options, the mains manifold may be adapted to receive a cooling air flow thereover (the cooling air flow being taken, for example, from the bypass air flow of a ducted fan gas turbine engine). This can help to avoid coking in the mains manifold, particularly if the fuel in the mains manifold remains stationary (i.e. with no cooling flow of fuel therethrough) when the mains flow scheduling valves are in their pilot-only positions.
The system may further have control means for setting a constant pressure differential between the metered fuel flow received by the splitting unit and the pilot fuel flow out of the splitting unit.
For example, when the splitting unit includes a flow splitting valve having a spool whose position is controllable to control the split of the metered fuel flow between the pilot and mains fuel flows, such control means may comprise:
As another example, the control means may comprise a pressure drop throttle valve located between the splitting unit and the pilot manifold to controllably throttle the pilot fuel flow and/or between the splitting unit and the mains manifold to controllably throttle the mains fuel flow. Such an arrangement can be used to set a constant pressure drop across the splitting unit to the pilot and/or mains fuel outflow. Pilot and/or mains flow can then be made a function of splitting unit (e.g. splitter valve spool) position.
As yet another example, the control means may comprise a flow sensing valve located between the splitting unit and the pilot manifold to measure the flow rate of the pilot fuel flow through the flow sensing valve, or a flow sensing valve located between the splitting unit and the mains manifold to measure the flow rate of the mains fuel flow through the flow sensing valve.
The combustion staging system may further have a plurality of pilot flow scheduling valves, each receiving the pilot fuel flow passed by a respective one of the mains flow scheduling valves, the pilot flow scheduling valves distributing the received pilot fuel flow to their respective pilot discharge orifices when the pilot fuel flow exceeds a cracking pressure set by the pilot flow scheduling valves.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:
With reference to
During operation, air entering the intake 11 is accelerated by the fan 12 to produce two air flows: a first air flow A into the intermediate-pressure compressor 13 and a second air flow B which passes through the bypass duct 22 to provide propulsive thrust. The intermediate-pressure compressor 13 compresses the air flow A directed into it before delivering that air to the high-pressure compressor 14 where further compression takes place.
The compressed air exhausted from the high-pressure compressor 14 is directed into the combustion equipment 15 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low-pressure turbines 16, 17, 18 before being exhausted through the nozzle 19 to provide additional propulsive thrust. The high, intermediate and low-pressure turbines respectively drive the high and intermediate-pressure compressors 14, 13 and the fan 12 by suitable interconnecting shafts.
The engine has a pumping unit comprising a low pressure (LP) pumping stage which draws fuel from a fuel tank of the aircraft and supplies the fuel at boosted pressure to the inlet of a high pressure (HP) pumping stage. The LP stage typically comprises a centrifugal impeller pump while the HP pumping stage may comprise one or more positive displacement pumps. e.g. in the form of twin pinion gear pumps. The LP and HP stages are typically connected to a common drive input, which is driven by the engine HP or IP shaft via an engine accessory gearbox.
A fuel supply system then accepts fuel from the HP pumping stage for feeds to the combustor 15 of the engine 10. This system typically has a hydro-mechanical unit (HMU) comprising a fuel metering valve operable to control the rate at which fuel is allowed to flow to the combustor. The HMU further typically comprises: a pressure drop control arrangement (such as a spill valve and a pressure drop control valve) which is operable to maintain a substantially constant pressure drop across the metering valve, and a pressure raising and shut-off valve at the fuel exit of the HMU which ensures that a predetermined minimum pressure level is maintained upstream thereof for correct operation of any fuel pressure operated auxiliary devices (such variable inlet guide vane or variable stator vane actuators) that receive fuel under pressure from the HMU. Further details of such an HMU are described in EP A 2339147 (which is hereby incorporated by reference).
An engine electronic controller (EEC) commands the HMU fuel metering valve to supply fuel to fuel injectors 34 of the combustor 15 at a given flow rate. The metered fuel flow leaves the HMU and arrives at a staging system at a pressure Pfmu.
Staging System—Embodiment 1
A first embodiment of the staging system 30 is shown schematically in
In more detail, the staging system 30 has a fuel flow splitting valve (FFSV) 35, which receives the metered fuel flow from the HMU at pressure Pfmu. A spool is slidable within the FFSV under the control of a servo valve 46, the position of the spool determining the outgoing flow split between a pilot connection pipe 36 which delivers fuel to the first 31 and second 32 pilot manifolds and a mains connection pipe 37 which delivers fuel to the mains manifold 33. The spool can be positioned so that the mains stage is deselected, with the entire metered flow going to the pilot stage. An LVDT 38 provides feedback on the position of the spool to the EEC, which in turn controls staging by control of the servo valve.
The pilot discharge orifices are divided into two groups by the first 31 and second 32 pilot manifolds in order to provide lean blow out protection. More particularly, the second pilot manifold connects to the pilot connection pipe 36 via a further connection pipe 39 (at a PBp2) and a lean blow out protection valve 41. This is operable to terminate or substantially reduce the supply of fuel to the second pilot manifold and associated pilot discharge orifices, when desired, so as to increase the flow of fuel to the first pilot manifold and associated discharge orifices under low fuel conditions for a given metered flow from the HMU. In the arrangement illustrated, the valve 41 is controlled by way of a solenoid operated control valve 42, although other forms of control are possible, such as by a servo-type valve (for example an electro hydraulic servo valve). In this way, under low fuel conditions the flow of fuel to the pilot discharge orifices may be directed preferentially to the discharge orifices served by the first pilot manifold, whereby the risk of a lean blow out condition arising can be reduced. Further details of such lean blow out protection are described in EP A 2469057.
The part of the staging system 30 comprising the FFSV 35, servo valve 46, lean blow out protection valve 41 and control valve 42 is mounted to the fan case 24. The connection pipes 36, 37, 39 then extend across the bypass duct 22 to the manifolds 31, 32, 33, which wrap around the core engine in proximity to the injectors 34.
In the staging system described in EP A 2469057, each injector has a pilot FSV and a mains FSV for respectively the flows from pilot and mains manifolds. In contrast, in the staging system shown in
In this pilot-only operating mode, the position of the FFSV 35, controlled by the servo valve 46, is such that there is a large flow number opening between the HMU supply and the pilot connection pipe 36, such that Pfmu=PBp1=ffsv). Any difference between the metered fuel pressure (Pfmu) from the HMU supply and the pilot manifold pressures (PBp1 and PBp2) is generally less than 10 psid (69 kPa). This is insufficient to open the FSVs 40, which may have a cracking pressure of typically 30 paid (207 kPa). In the pilot-only mode there can be a small opening in the FFSV between the HMU supply and the mains connection pipe 37 to allow for thermal expansion of fuel in the mains manifold 33 (i.e. to prevent a trapped volume in the mains manifold). The mains manifold remains fully primed in pilot-only mode, such that there is no hazardous failure to meet acceleration requirements when mains staging is selected. When mains staging is selected the FFSV 35 (controlled by the servo-valve 46) moves to increase the opening between the HMU supply and the mains connection pipe 37. This reduces PBp1 and PBp2 relative to Pfsv, resulting in fuel flow to the mains discharge orifices of the injectors 34 (
If one of the FSVs 40 fails such that it opens in pilot-and-mains mode, fuel flows from the HMU supply through the FFSV 35 to the mains manifold 33 and thence through the open port in the failed FSV to the mains discharge orifice of the respective injector 34. However, as the FSVs have a relatively low cracking pressure, only a marginal increase in pressure in the mains manifold, resulting from flow through the port in the failed FSV, causes the other FSVs to open. This then leads to a relatively even distribution of fuel flow injection around the combustor. Thus, by ensuring that the other FSVs open before a severe level of fuel flow through the failed FSV is reached (i.e. a level that results in hot streaks and turbine damage), the staging system 30 can mitigate the potentially hazardous mal-distribution issues associated with failed open mains FSVs in the system of EP A 2469057 which incorporates high cracking pressure FSVs. Further, with a relatively low pressure differential acting across the FSV pistons, the FSVs 40 are less susceptible to incorrect opening due to pump ripple in pilot-only mode if the pressure ripples either side of the FSV piston are in phase.
The staging system 30 also allows complex cooling recirculation architectures to be avoided, which avoids the hazards that can result from combustion gases leaking past mains FSVs and thence to the low pressure side of the fuel system.
Cooling of the FSVs 40 can be provided by the pilot flow that is continuously routed through the FSVs. If necessary, however, further cooling arrangements can be provided for the pilot manifolds 31, 32 and particularly the mains 33 manifold, e.g. by using a small portion of the air flow B through the bypass duct 22.
The pilot/mains flow split is achieved via movement of the spool within the FFSV 35. However, an accurate spilt (which may be otherwise by affected by FSV tolerances, variation and friction) can be promoted by either measuring the FFSV pressure differentials or by setting a constant pressure differential Pfmu−PBp1 across the FFSV 35 inflow and outflow metering ports. This can be achieved in a number of ways. For example, the system 30 can have pressure sensors to measure Pfmu−PBp1 and/or Pfmu−Pfsv. Combined with the spool position feedback provided by the LVDT 38, knowledge of the pressure drop(s) across the pilot/mains metering ports in the FFSV can allow the EEC to compute the pilot and mains flows, driving the FFSV via the servo valve 46 to set the required pilot/mains flow split. As another example, a pressure drop throttle valve located on the pilot connection pipe 36 can sense the pressure drop Pfmu−PBp1 and throttle the pilot flow to maintain a constant Pfmu−PBp1 pressure differential. With this pressure differential nominally constant, the pilot flow can be set as a function of spool position with position measurement provided by the LVDT 38.
As yet another example, a flow sensing valve can be located on the pilot connection pipe 36 or the mains connection pipe 37. Such an example is illustrated in the variant staging system 30 shown in
In the variant staging system 30 of
When the pilot-and-mains operating mode is selected (see
Thus inclusion of the MFFSV 43 on the mains connection pipe 37 enables accurate control of the pilot/mains split irrespective of FSV tolerances, variation and friction. The MFFSV position from the LVDT 44 is a measure of mains manifold cooling flow during pilot-only operation, and total mains burnt flow during pilot-and-mains operation. This flow measurement signal is sent to and used by the EEC control logic to provide an MFFSV position demand signal that is used to drive the FFSV servo valve 46 to move the FFSV 35 to set the correct pilot/mains flow split (during pilot-and-mains operation) or the correct mains cooling flow (during pilot-only operation).
The plot of
Staging System—Embodiment 2
A second embodiment of the staging system 30 is shown schematically in
In more detail, the staging system 30 has a fuel flow splitting valve (FFSV) 35, which receives the metered fuel flow from the HMU at pressure Pfmu. A spool is slidable within the FFSV under the control of a servo valve 46, the position of the spool determining the outgoing flow split between a pilot connection pipe 36 which delivers fuel to the first 31 and second 32 pilot manifolds and a mains connection pipe 37 which delivers fuel to the mains manifold 33. The spool can be positioned so that the mains stage is deselected, with the entire metered flow going to the pilot stage (except that a cooling flow is sent to the mains manifold during pilot-only operation, as discussed in more detail below). An LVDT (not shown) can provide feedback on the position of the spool to the EEC, which in turn controls staging by control of the servo valve 46.
The pilot discharge orifices are divided into two groups by the first 31 and second 32 pilot manifolds in order to provide lean blow out protection. More particularly, the second pilot manifold connects to the pilot connection pipe 36 via a further connection pipe 39 (at a PBp2) and a lean blow out protection valve 41. This is operable to terminate or substantially reduce the supply of fuel to the second pilot manifold and associated pilot discharge orifices, when desired, so as to increase the flow of fuel to the first pilot manifold and associated discharge orifices under low fuel conditions for a given metered flow from the HMU. In the arrangement illustrated, the valve 41 is controlled by way of a solenoid operated control valve 42, although other forms of control are possible, such as by a servo-type valve (for example an electro hydraulic servo valve). In this way, under low fuel conditions the flow of fuel to the pilot discharge orifices may be directed preferentially via the first pilot manifold, whereby the risk of a lean blow out condition arising can be reduced. Further details of such lean blow out protection are described in EP A 2469057.
The part of the staging system 30 comprising the FFSV 35, servo valve 46, lean blow out protection valve 41 and control valve 42 is mounted to the fan case 24. The connection pipes 36, 37, 39 then extend across the bypass duct 22 to the manifolds 31, 32, 33, which wrap around the core engine in proximity to the injectors 34.
In the staging system described in EP A 2469057, each injector has a pilot FSV and a mains FSV for respectively the flows from pilot and mains manifolds. In contrast, in the staging system shown in
In this pilot-only operating mode, the position of the FFSV 35, controlled by the servo valve 46, is such that there is a large flow number opening between the HMU supply and the pilot connection pipe 36, such that Pfmu≈PBp1≈Pfsv. Any difference between the metered fuel pressure (Pfmu) from the HMU supply and the pilot manifold pressures (PBp1 and PBp2) is generally less than 10 psid (69 kPa). This is insufficient to open the FSVs 40, which may have a cracking pressure of typically 30 psid (207 kPa). In the pilot-only mode there is a small opening in the FFSV between the HMU supply and the mains connection pipe 37 to allow for the cooling flow in the mains manifold 33. The mains manifold remains fully primed in pilot-only mode, such that there is no hazardous failure to meet acceleration requirements when mains staging is selected. When mains staging is selected the FFSV 35 (controlled by the servo-valve 46) moves to increase the opening between the HMU supply and the mains connection pipe 37. This reduces PBp1 and PBp2 relative to Pfsv, resulting in fuel flow to the mains discharge orifices of the injectors 34.
If one of the FSVs 40 falls such that it opens in pilot-and-mains mode, fuel flows from the HMU supply through the FFSV 35 to the mains manifold 33 and thence through the open port in the failed FSV to the mains discharge orifice of the respective injector 34. However, as the FSVs have a relatively low cracking pressure, only a marginal increase in pressure in the mains manifold, resulting from flow through the port in the failed FSV, causes the other FSVs to open. This then leads to a relatively even distribution of fuel flow injection around the combustor. Thus, by ensuring that the other FSVs open before a severe level of fuel flow through the failed FSV is reached (i.e. a level that results in hot streaks and turbine damage), the staging system 30 can mitigate the potentially hazardous mal-distribution issues associated with failed open mains FSVs in the system of EP A 2469057 which incorporates high cracking pressure FSVs.
The staging system 30 also allows complex cooling recirculation architectures to be avoided, which avoids the hazards that can result from combustion gases leaking past mains FSVs and thence to the low pressure side of the fuel system of the system.
Cooling of the FSVs 40 can be provided by the pilot flow that is continuously routed through the FSVs. Cooling arrangements can be provided for the pilot manifolds 31, 32 and the mains 33 manifold, e.g. by using a small portion of the air flow B through the bypass duct 22, and for the mains manifold in pilot-only operation using the cooling flow discussed below.
The pilot/mains flow split is achieved via movement of the spool within the FFSV 35. However, an accurate split (which may be otherwise by affected by FSV tolerances, variation and friction) can be promoted by either measuring the FFSV pressure differentials or by setting a constant pressure differential Pfmu−PBp1 across the FFSV 35 inflow and outflow metering ports. This can be achieved in a number of ways. For example, the system 30 can have pressure sensors to measure Pfmu−PBp1 and/or Pfmu−Pm (where Pm is the pressure in mains connection pipe 37). Combined with the spool position feedback provided by an LVDT, knowledge of the pressure drop(s) across the pilot/mains metering ports in the FFSV can allow the EEC to compute the pilot and mains flows, driving the FFSV via the servo valve 46 to set the required pilot/mains flow split. As another example, a pressure drop throttle valve located on the pilot connection pipe 36 can sense the pressure drop Pfmu−PBp1 and throttle the pilot flow to maintain a constant Pfmu−PBp1 pressure differential. With this pressure differential nominally constant, the plot flow can be set as a function of spool position with position measurement provided by an LVDT.
As yet another example, a flow sensing valve can be located on the pilot connection pipe 36 or the mains connection pipe 37. Such an example is illustrated in
To provide the cooling flow in the mains manifold 33 during pilot-only operation, the system 30 has a single-stage solenoid-operated mains cooling valve 47 which in pilot-only operation opens a bypass connection between the mains 33 and second pilot 32 fuel manifolds, allowing the cooling flow to pass from the mains fuel manifold to the pilot fuel manifold, and thence onwards for burning at the pilot orifices of the injectors 34. The mains cooling valve 47 closes during pilot-and-mains operation. The cooling flow in the bypass connection has a relatively large orifice size compared to possible alternative cooling arrangements such as distributed cooling orifices in the mains FSVs 40, and thus is relatively insensitive to contamination and ice build-up. The mains cooling valve 47 may be located in a relatively hot engine zone close to the injectors 34 to simplify pipework. The circumferential position of the valve on the engine can affect the amount of engine heat soak-back into the valve, and thus the resultant valve temperature. Accordingly, a location at the base of the engine is generally preferred.
More particularly, in the plot-only operating mode the cooling flow of fuel passes continuously from the mains manifold 33 to the second pilot fuel manifold 32, which maintains cooling in the mains manifold. This cooling flow is sensed by the MFFSV 43 and the feedback signal from the MFFSV LVDT 44 to the EEC is used to adjust the spool position of the FFSV 35 (via the servo valve 46) if the cooling flow needs to be altered. In the pilot-only operating mode, even with the cooling flow the pressure drop across each FSV piston (Pfsv−PBp) is typically low, e.g. <5 psid (34 kPa). This is insufficient to open the FSVs which typically require 30 psid (207 kPa) for cracking and 27 psid (186 kPa) to lift the piston off its stop.
When the pilot-and-mains operating mode is selected, the spool position of the FFSV 35 is altered to increase the opening of the mains port of the FFSV and reduce the opening of the pilot port of the FFSV, which increases the pressure differential Pfmu−PBp1 across the pilot port, thus producing a rise in pressure Pfsv relative to PBp1 and PBp2. This results in the pistons of the FSVs 40 opening against their respective spring forces, and fuel flowing through the FSV to the mains discharge orifices of the injectors 34. The MFFSV now senses the flow to the mains discharge orifices of the injectors and the feedback signal from the LVDT 44 is used to adjust the FFSV spool position via the EEC and FFSV servo valve 46 to set the correct pilot/mains flow split.
Thus inclusion of the MFFSV 43 on the mains connection pipe 37 enables accurate control of the pilot/mains split irrespective of FSV tolerances, variation and friction. The MFFSV position from the LVDT 44 is a measure of mains manifold cooling flow during pilot-only operation, and total mains burnt flow during pilot-and-mains operation. This flow measurement signal is sent to and used by the EEC control logic to provide an MFFSV position demand signal that is used to drive the FFSV servo valve 46 to move the FFSV 35 to set the correct pilot/mains flow split (during pilot-and-mains operation) or the correct mains cooling flow (during pilot-only operation).
The MFFSV 43 also provides the ability to independently close off the cooling flow to the mains manifold 33. This can assist with a health monitoring determination of whether the mains FSVs 40 are failed open. More particularly, since the MFFSV provides a means of indicating the flow in the mains connection pipe 37, the MFFSV can identify deviations of cooling flow in pilot-only mode flow from expected values. For example, if the mains cooling valve 47 is shut initially when mains is de-staged, a flow registered by the MFFSV would indicate either that the valve 47 has not closed (when it should be closed) or that one or more of the mains FSVs 40 is open, when they should be closed.
Various configurations for routing the cooling flow through the mains 33 and second pilot 32 manifolds are possible. One such configuration is shown schematically in
In pilot-only operating mode (
A variant routing configuration is shown schematically in
In a pilot-only operating mode (
The staging system of the present invention has mains FSVs 40 and optional pilot FSVs 47, which are typically located at the head of each injector. The mains FSVs close when mains is deselected and at shut down, and the optional pilot FSVs close at shut down, in order to:
The system also addresses potentially hazardous failure modes and complexity associated with systems having complex recirculation architectures. To summarise:
While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1504720.2 | Mar 2015 | GB | national |
1505195.6 | Mar 2015 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4337616 | Downing | Jul 1982 | A |
5402634 | Marshall | Apr 1995 | A |
5448882 | Dyer | Sep 1995 | A |
5809771 | Wernberg | Sep 1998 | A |
5881550 | Toelle | Mar 1999 | A |
6813876 | Griffiths et al. | Nov 2004 | B2 |
7322373 | Lewis | Jan 2008 | B2 |
8572977 | Oda | Nov 2013 | B2 |
8887752 | Rawlinson | Nov 2014 | B2 |
20090320480 | Scully | Dec 2009 | A1 |
20090320482 | Scully | Dec 2009 | A1 |
20120159953 | Griffiths | Jun 2012 | A1 |
20120227842 | Griffiths | Sep 2012 | A1 |
20130061599 | Van Alen | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
2 063 087 | May 2009 | EP |
2339147 | Jun 2011 | EP |
2469057 | Jun 2012 | EP |
2554823 | Feb 2013 | EP |
2312250 | Oct 1997 | GB |
2523126 | Aug 2015 | GB |
Number | Date | Country | |
---|---|---|---|
20160273775 A1 | Sep 2016 | US |