The present invention relates to a combustion-type power tool, and more particularly, to such power tool capable of driving a fastener of driving such as a nail, an anchor, and a staple into a workpiece by igniting a mixture of air and gaseous fuel, which in turn causes a linear momentum of a piston.
U.S. Pat. Nos. 5,197,646 and 4,522,162 disclose a combustion type power tool having a combustion chamber arrangement in which motive power of a piston is generated upon ignition of air-fuel mixture to drive a fastener such as a nail and a rivet into a workpiece.
The power tool generally includes a housing frame, a head cover, a combustion chamber frame, a cylinder, a piston, and a driver blade. The head cover is positioned at one end of the housing frame. The combustion chamber frame is reciprocally movable and abuttable on the head cover. The cylinder is disposed in the housing frame. The piston is reciprocally movable within the cylinder. The driver blade is attached to the piston to drive the fastener by the movement of the piston. A sealed combustion chamber is defined by the head cover, combustion chamber frame, cylinder, and piston when the combustion chamber frame is in abutment with the head cover. A gas canister accumulating therein a combustible fuel is provided in the housing frame. An ignition plug is provided to generate a spark for igniting air-fuel mixture when the fuel is injected and vaporized in the combustion chamber. Upon explosive combustion, the piston is rapidly moved to move the driver blade so that the fastener is driven into the workpiece.
In the conventional combustion type power tools, ignition trouble may occur in spite of the spark as a result of manipulation to a trigger. Thus, undesirable fastener driving work may result.
It is therefore an object of the present invention to provide a combustion type power tool having sufficient ignitability without any defective ignition.
This and other object of the present invention will be attained by a combustion-type power tool including a housing, a cylinder, a piston, a combustion chamber frame, a fan, and an ignition unit.
The housing has one end. The cylinder head is disposed at the one end and formed with a fuel injection passage. The cylinder is disposed in and fixed to the housing. The cylinder defines an axial direction. The piston is slidably disposed in the cylinder and reciprocally movable in the axial direction. The combustion chamber frame is disposed in the housing and movable in the axial direction. The combustion chamber frame is abuttable on the cylinder head to provide a combustion chamber in cooperation with the cylinder head and the piston. The fan is rotatably disposed in the combustion chamber for agitating and mixing an air with a combustible gas injected into the combustion chamber through the fuel injection passage. The ignition unit includes an ignition plug and an ignition ground. The ignition plug is exposed to the combustion chamber and has a tapered tip end portion providing an acute angle of less than or equal to 45 degree. The ignition ground generates a spark between the ignition plug and the ignition ground to ignite a mixture of air and the combustible gas, to thus provide a fire.
In another aspect of the invention, there is provided an ignition arrangement in a combustion type power tool in which a fan is provided in a combustion chamber defined by a cylinder head, a movable combustion chamber frame, a cylinder and a piston, a motive power of the piston being generated upon combustion of a mixture of air and a combustible gas in the combustion chamber. The ignition arrangement includes an ignition plug and an ignition ground. The ignition plug is exposed to the combustion chamber and has a tapered tip end portion providing an acute angle of less than or equal to 45 degree. The ignition ground is disposed in the combustion chamber and generates a spark between the ignition plug and the ignition ground to ignite the mixture to thus provide a fire.
In another aspect of the invention, there is provided a combustion-type power tool including a housing, a combustion chamber, and an ignition unit. The housing defines an outer frame. The combustion chamber is provided in the housing. The ignition unit includes an ignition plug exposed to the combustion chamber and has a tapered tip end portion providing an acute angle of less than or equal to 45 degrees.
In the drawings;
A combustion-type power tool according to an embodiment of the invention will be described with reference to
The combustion-type nail driver 1 shown in
A nose 7 extends from near the lower end of the housing 2. The nose 7 is integral with a cylinder 20 described later and has a tip end abuttable on a workpiece 28. The nose 7 is adapted for guiding sliding movement of a driver blade 23a described later and for guiding the nail driven into the workpiece 28. A push lever 9 is reciprocally slidingly movably supported to the nose 7, and projects from the tip end 7a of the nose 7.
As shown in
A compression coil spring 22 is interposed between the connector section 12B and the cylinder 20 for normally urging the push lever 9 in a protruding direction from the housing 2. When the housing 2 is pressed toward a workpiece 28 while the push lever 9 is in abutment with the workpiece against a biasing force of the compression coil spring 22, an upper portion of the push lever 9 is retractable into the housing 2.
A cylinder head 11 is fixedly secured to the top of the housing 2 and substantially covers the open top end of the housing 2. A motor 18 is disposed at one side of the cylinder head 11 opposite the combustion chamber 26 as will be described later. An ignition plug 50 (see
A switch container 31 is provided in the lower side of the canister housing 29. A switch 32 is contained the switch container 31 for detecting an uppermost stroke end position of the combustion-chamber frame 10 described later when the nail driver 1 is pressed against the workpiece 28. Thus, the switch 32 can be turned ON when the push lever 9 is elevated to a predetermined position for starting rotation of the motor 18.
The cylinder head 11 has a handle side in which is formed a fuel ejection passage 25 which allows a combustible gas to pass therethrough. One end of the ejection passage 25 opens at the lower surface of the cylinder head 11. Another end of the ejection passage 25 serves as a gas canister connecting portion 25a in communication with a gas canister 30.
The combustion-chamber frame 10 is provided in the housing 2 and is movable in the lengthwise direction of the housing 2. The uppermost end of the combustion-chamber frame 10 is abuttable on the lower surface of the cylinder head 11. The combustion-chamber frame includes a base chamber frame 10a and a chamber head 10b connected integrally using a bolt 10c (see
A piston 23 is slidably and reciprocally movably provided in the cylinder 20. The piston 23 divides an inner space of the cylinder 20 into an upper space above the piston 23 and a lower space below the piston 23. The driver blade 23a extends downwards from the lower surface of the piston 23 to the nose 7, so that the tip end of the driver blade 23a can strike against the nail (not shown). A bumper 24 made from an elastic material such as rubber is disposed at a lower side of the cylinder 20. The piston 23 strikes against the bumper 24 when the piston 23 is moved downward toward a bottom dead center.
When the upper end of the combustion-chamber frame 10 abuts the cylinder head 11, the cylinder head 11, the combustion-chamber frame 10, and the upper cylinder space above the piston 23 define a combustion chamber 26 (see
The motor 18 has a fan shaft 18A, and a fan 19 positioned in the combustion chamber 26 is fixed to a tip end of the fan shaft 18A. Rotation of the fan 19 performs the following three functions. First, the fan 19 stirs and mixes the air with the combustible gas as long as the combustion-chamber frame 10 remains in abutment with the cylinder head 11. Second, after the mixed gas has been ignited, the fan 19 causes turbulence of the air-fuel mixture, thus promoting the turbulent combustion of the air-fuel mixture in the combustion chamber 26. Third, the fan 19 performs scavenging such that the exhaust gas in the combustion chamber 26 can be scavenged therefrom and also performs cooling of the cylinder 20 when the combustion-chamber frame 10 moves away from the cylinder head 11 and when the first and second flow passages 27A and 27B are provided.
A plurality of ribs 10A protrudes radially inwardly from the portion of the combustion chamber frame 10, the portion defining the combustion chamber 26. Each rib 10A extends in the axial direction of the combustion chamber frame 10. The ribs 10A promote stirring and mixing of the air and the combustible gas in the combustion chamber 26 in cooperation with the fan 18.
Next, operation of the combustion-type power tool 1 will be described. In the non-operational state of the combustion-type nail driver 1, the push lever 9 is biased downward by the biasing force of the compression coil spring 22, so that the push lever 9 protrudes from the lower end of the nose 7. Thus, the uppermost end of the combustion-chamber frame 10 is spaced away from the cylinder head 11 because the combustion-chamber frame 10 is in association with the push lever 9 through the arm section 8. Further, a part of the combustion-chamber frame 10 which part defines the combustion chamber 26 is also spaced apart from the top portion of the cylinder 20. Hence, the first and second flow passages 27A and 27B are provided. In this condition, the piston 23 stays at the top dead center in the cylinder 20.
With this state, if the push lever 9 is pushed onto the workpiece 28 while holding the handle 4 by a user, the push lever 9 is moved upward against the biasing force of the compression coil spring 22. At the same time, the combustion-chamber frame 10 which is connected to the push lever 9 through the connection unit 12 is also moved upward, as shown in
In accordance with the movement of the push lever 9, the gas canister 30 is tilted toward the cylinder head 11. Thus, the injection rod 30a of the gas canister 30 is pressed against a gas canister connecting portion 25a of the cylinder head 11. Therefore, the liquidized combustible gas in the gas canister 30 is ejected once from the ejection port of the fuel ejection passage 25 into the combustion chamber 26.
Further, in accordance with the movement of the push lever 9, the combustion-chamber frame 10 reaches the uppermost stroke end whereupon the switch 32 is turned ON to supply electric power to the motor 18 and start rotation of the fan 19. Rotation of the fan 19 in the combustion chamber 26 in which a hermetically sealed space is provided, stirs and mixes the ejected combustible gas with air in the combustion chamber 26.
In this state, when the trigger switch 5 provided at the handle 4 is turned ON, spark is generated at the ignition plug 50 to ignite the combustible gas. As a result of combustion, volumetric expansion of the combustion gas occurs within the combustion chamber 26 to move the piston 23 downwardly. Accordingly, the driver blade 23a drives the nail held in the nose 7 into the workpiece 28 until the piston 23 strikes against the bumper 24.
After the nail driving, the piston 23 strikes against the bumper 24, and the combustion gas is discharged out of the cylinder 20 through the exhaust hole 21 of the cylinder 20. When the inner space of the cylinder 20 and the combustion chamber 26 becomes the atmospheric pressure, the exhaust-gas check valve 21A is closed. Combustion gas still remaining in the cylinder 20 and the combustion chamber 26 has a high temperature at a phase immediately after the combustion. The heat is absorbed through the inner surfaces of the cylinder 20 and the combustion-chamber frame 10, and the temperature of these components is also increased. However, the absorbed heat is released to the atmosphere through the outer surfaces of the cylinder 20 and the combustion-chamber frame 10.
Combustion heat of the combustion gas is absorbed into such components as the cylinder 20, so that the combustion gas is abruptly cooled down and a volume of the combustion gas is decreased. Thus, the pressure in the sealed space in the cylinder 20 above the piston 23 further drops to less than the atmospheric pressure, creating a so-called “thermal vacuum”. Accordingly, the piston 23 is moved back to the initial top dead center position.
Thereafter, the trigger switch 5 is turned OFF, and the user lifts the nail driver 1 until the push lever 9 is separated from the workpiece 28. As a result, the push lever 9 and the combustion-chamber frame 10 move downward due to the biasing force of the compression coil spring 22. In this case, the fan 19 keeps rotating for a predetermined period of time in spite of OFF state of the trigger switch 5 because of an operation of a control portion (not shown). In the state shown in
Next, an ignition arrangement including the ignition plug 50 and an ignition ground 51 will be described with reference to
The ignition plug 50 is fixed to the cylinder head 11 and an ignition point is exposed to the combustion chamber 26 through one end face 11A of the cylinder head 11. The one end face 11A defines the upper end of the combustion chamber 26. The ignition plug 50 has a core 60 having a cylindrical stem portion and a tapered tip end portion. A motor boss 11B for storing the motor 18 protrudes from the one end face 11A. The motor boss 11B has an end portion from which the fan shaft 18A extends. An ignition ground holding portion 52 protrudes from the end face 11A and extends in a generally radial direction. The ignition ground 51 is attached to the ignition ground holding portion 52 at a position in confrontation with the ignition plug 50.
Generally, a spark 53 is shot between the ignition point of the ignition plug 50 and the ignition ground 51. The spark 53 is shot from an acute corner 61 of the core 60. In the first embodiment, a tip end of the core 60 has an acute angle θ1 of not more than 45 degrees (30 degrees in the illustrated embodiment). With this arrangement, an emitting point of the spark 53 can be concentrated to the tip end 61 of the core 60. The acute angle will lead to an increase in an angle at a discontinuous portion 62 at a boundary between the cylindrical stem portion and the tapered tip end portion. Thus, emission of an unwanted spark from the discontinuous portion 62 can be avoided. The unwanted spark is a spark that does not cause ignition of the air-fuel mixture.
In order to reduce a thermal capacity of the ignition ground 51 so as to enhance ignitability, a side 55 opposite to the spark seating face of the ignition ground 51 is tapered as shown in
According to the embodiments described above, heat absorption into the tip end portion of the ignition plug and into the apex end of the ignition ground can be reduced or restrained, and generation of unwanted spark can be avoided, thereby avoiding misfiring so that stabilized ignition can be realized.
Number | Date | Country | Kind |
---|---|---|---|
P2005-043277 | Feb 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4522162 | Nikolich | Jun 1985 | A |
5197646 | Nikolich | Mar 1993 | A |
5373214 | McCready | Dec 1994 | A |
5408961 | Smith | Apr 1995 | A |
5598816 | Pedersen | Feb 1997 | A |
6495948 | Garrett, III | Dec 2002 | B1 |
6611084 | Teramura et al. | Aug 2003 | B2 |
6783047 | Granacher | Aug 2004 | B2 |
Number | Date | Country |
---|---|---|
03-025307 | Feb 1991 | JP |
07-036985 | Feb 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20060185629 A1 | Aug 2006 | US |