The present disclosure relates to a combustor component, a combustor including the combustor component, and a gas turbine including the combustor.
Patent Documents 1 and 2 each disclose a technique of providing an acoustic device called an acoustic liner or an acoustic damper in a combustor of a gas turbine in order to reduce combustion vibration. Such acoustic device has a resonance space (cavity) communicating with a combustion region of the combustor.
Patent Document 1: JP2007-132640A
Patent Document 2: JP2013-117231A
Among such acoustic devices, in an acoustic device having a multiple-story configuration with respect to the radial direction of the combustor (for example, a two-story structure of a first acoustic device and a second acoustic device), in order to discharge fuel which was not combusted during an operation of the gas turbine from the combustion region or to introduce purging air to the combustion region, it may be configured such that a resonance space (first cavity) of the first acoustic device communicates with an outer space of a combustion cylinder of a combustion device. In this case, there is a problem that the first acoustic device and the second acoustic device are acoustically coupled, if it is configured such that the first cavity communicates with the outer space via a resonance space (second cavity) of the second acoustic device disposed so as to cover the first acoustic device.
In view of the above, an object of at least one embodiment of the present disclosure is to provide a combustor component, which allows the first cavity of the first acoustic device and the outer space of the combustion cylinder to communicate with each other while suppressing the acoustic coupling between the first acoustic device and the second acoustic device, a combustor including the combustor component, and a gas turbine including the combustor.
In order to achieve the above object, the combustor component according to the present disclosure is a combustor component of a combustor for combusting fuel to produce a combustion gas, that includes a combustion cylinder forming a passage for the combustion gas, a first acoustic device which internally includes a first cavity communicating with the passage via a first through hole formed in the combustion cylinder, a second acoustic device which is located on a radially outer side of the first acoustic device so as to cover the first acoustic device, and internally includes a second cavity communicating with the passage via a second through hole formed in the combustion cylinder, and a first communication passage causing the first cavity and an outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity.
With the combustor component of the present disclosure, since the first communication passage is disposed which causes the first cavity and the outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity, it is possible to cause the first cavity of the first acoustic device and the outer space of the combustion cylinder to communicate with each other, while suppressing acoustic coupling between the first acoustic device and the second acoustic device.
Hereinafter, a combustor component, a combustor including the combustor component, and a gas turbine including the combustor according to Embodiments of the present disclosure will be described with reference to the drawings. The embodiments each indicate one aspect of the present disclosure, do not intend to limit the disclosure, and can optionally be modified within a range of a technical idea of the present disclosure.
<Configuration of Gas Turbine and Combustor According to Embodiment 1 of Present Disclosure>
As shown in
As shown in
More specifically, the combustor 3 includes a nozzle portion 10, a swirler support cylinder 14, and a combustion cylinder 12. The swirler support cylinder 14 and the combustion cylinder 12 are connected to each other. The nozzle portion 10 has at least one nozzle 16 for injecting the fuel supplied from outside toward the inside of the swirler support cylinder 14 and the combustion cylinder 12. The combustion nozzle 16 may include, for example, one pilot nozzle, and a plurality of main nozzles disposed concentrically around the pilot nozzle.
The swirler support cylinder 14 and the combustion cylinder 12 each have a cylindrical shape. The nozzle portion 10 is joined to one end side (upstream end side) of the swirler support cylinder 14, and a passage 18 for a combustion gas, which is produced by combusting the fuel injected from the combustion nozzle 16, is defined in the swirler support cylinder 14 and the combustion cylinder 12. The passage 18 is supplied with the compressed air via gaps between the combustion nozzles 16, and the fuel reacts with the compressed air to be combusted, producing the combustion gas.
<Configuration of Combustor Component of Combustor According to Embodiment 1 of Present Disclosure>
As shown in
The first acoustic device 21 includes a first housing 21a having a side wall 21a1 and an upper wall 21a2, and the first housing 21a internally defines a first cavity 22. The second acoustic device 23 includes a second housing 23a having a side wall 23a1 and an upper wall 23a2, and the second housing 23a internally defines a second cavity 24. Herein, of the walls respectively forming the first housing 21a and the second housing 23a, the upper walls 21a2 and 23a2 are, respectively, walls each having the longest radial distance from the combustion cylinder 12, that is, walls respectively defining radially outer boundaries of the first cavity 22 and the second cavity 24. Further, of the walls respectively forming the first housing 21a and the second housing 23a, the side walls 21a1 and 23a1 are, respectively, walls respectively defining outer boundaries of the first cavity 22 and the second cavity 24 in the axial direction of the combustion cylinder 12. The first cavity 22 communicates with the passage 18 via a first through hole 26 formed in the combustion cylinder 12. The second cavity 24 communicates with the passage 18 via a second through hole 27 formed in the combustion cylinder 12.
The partition wall 25 is disposed on the radially outer side of the first acoustic device 21 so as to form a radial gap constituting a partition space 28 with the first acoustic device 21, and separates the partition space 28 from the second cavity 24. The partition wall 25 extends in the axial direction of the combustion cylinder 12 through the radially inside of the second acoustic device 23, and is supported by a support member 29 on an outer surface 12a of the combustion cylinder 12. By providing such support member 29, it is possible to support the partition wall 25 by the support member 29 without having a cantilever support structure, making it possible to reliably support the partition wall 25.
Further, in an axial range of the combustion cylinder 12 where at least one of the first acoustic device 21 or the second acoustic device 23 is disposed, if the combustion cylinder 12 has a cylindrical wall 12b in which a hollow portion is formed such as an MT fin (internal cooling passage structure), it is preferable that the support member 29 is disposed on an outer surface 12cl of a solid cylindrical wall 12c outside the range of the cylindrical wall 12b. In this case, the partition wall 25 is configured to extend to the support member 29 along the axial direction of the combustion cylinder 12 beyond a boundary 12d between the cylindrical wall 12b and the cylindrical wall 12c. With such configuration, since the support member 29 is disposed on the solid portion (cylindrical wall 12c) of the combustion cylinder 12 having excellent strength in the absence of the hollow portion, it is possible to support the partition wall 25 more reliably.
As shown in
As shown in
Since the partition space 28 and the outer space 30 communicate with each other as described above, the first hole 31, which causes the partition space 28 and the first cavity 22 to communicate with each other, constitutes a first communication passage which causes the first cavity 22 and the outer space 30 to communicate with each other via the partition space 28. That is, the first communication passage causes the first cavity 22 and the outer space 30 to communicate with each other without via the first through hole 26 and the second cavity 24. Further, since the first cavity 22 and the second cavity 24 do not communicate with each other on the radially outer side of the combustion cylinder 12, no acoustic coupling between the first acoustic device 21 and the second acoustic device 23 is formed. At least one second hole 32 may be formed in the second housing 23a of the second acoustic device 23, as necessary.
<Technical Effect of Combustor Component According to Embodiment 1 of Present Disclosure>
As shown in
As shown in
The fuel which was not combusted during the operation of the gas turbine 1 may be discharged from the passage 18 during or after the stop of the gas turbine 1, or the purging air may be introduced to the passage 18 during the operation of the gas turbine 1. In the former case in Embodiment 1, the fuel in the passage 18 flows into the first cavity 22 via the first through hole 26, and then the fuel in the first cavity 22 flows into the partition space 28 via the first hole 31. Since the partition space 28 communicates with the outer space 30, the fuel in the partition space 28 is discharged to the outer space 30. On the other hand, in the latter case, the air in the outer space 30 as the purging air sequentially flows through the partition space 28, the first hole 31, the first cavity 22, and the first through hole 26 and is introduced into the passage 18. Introduction of the purging air to the passage 18 and discharge of the uncombusted fuel are also possible via the second through hole 27, the second cavity 24, and the second hole 32.
As described above, since the first hole 31 is disposed which causes the first cavity 22 and the outer space 30 to communicate with each other without via the first through hole 26 and the second cavity 24, it is possible to cause the first cavity 22 and the outer space 30 to communicate with each other, while suppressing acoustic coupling between the first acoustic device 21 and the second acoustic device 23. As a result, it is possible to discharge fuel from the passage 18 during or after the stop of the gas turbine 1, or to introduce purging air to the passage 18 during the operation of the gas turbine 1.
<Description of Modified Example of Combustor Component of Combustor According to Embodiment 1 of Present Disclosure>
In Embodiment 1, as shown in
Next, the combustor component according to Embodiment 2 will be described. The combustor component according to Embodiment 2 is modified from Embodiment 1 so as to have a three-story configuration. In Embodiment 2, the same constituent elements as those in Embodiment 1 are associated with the same reference characters and not described again in detail. The terms “two-story” and “three-story” in the specification can be paraphrased as “double structure” and “triple structure” or “two-layer structure” and “triple structure”, respectively, and what they mean is the same.
<Configuration of Combustor Component of Combustor According to Embodiment 2 of Present Disclosure>
As shown in
The combustor component 20 according to Embodiment 2 further includes a third acoustic device 41. The third acoustic device 41 includes a third housing 41a having a side wall 41a1 and an upper wall 41a2, and the third housing 41a internally defines a third cavity 42. The third acoustic device 41 is located on the radially outer side of the second acoustic device 23 so as to cover the second acoustic device 23, and the third cavity 42 communicates with the passage 18 via a third through hole 36 formed in the combustion cylinder 12. Between the second acoustic device 23 and the third acoustic device 41, a radial gap, which constitutes a second partition space 48 communicating with the outer space 30, is formed by the second partition wall 35 disposed so as to extend in the axial direction of the combustion cylinder 12, and the second cavity 24 and the second partition space 48 communicate with each other via the second hole 32.
Since the second partition space 48 and the outer space 30 communicate with each other, the second hole 32, which causes the second partition space 48 and the second cavity 24 to communicate with each other, constitutes a second communication passage which causes the second cavity 24 and the outer space 30 to communicate with each other via the second partition space 48. That is, the second communication passage causes the second cavity 24 and the outer space 30 to communicate with each other without via the second through hole 27 and the third cavity 42. Further, since the first cavity 22 and the second cavity 24, and the third cavity 42 do not communicate with each other on the radially outer side of the combustion cylinder 12, no acoustic coupling among the first acoustic device 21, the second acoustic device 23, and the third acoustic device 41 is formed. At least one third hole 33 may be formed in the third housing 41a of the third acoustic device 41, as necessary.
Further, in Embodiment 2, another acoustic device 43 adjacent to the second acoustic device 23 may be disposed between the partition space 28 and the second partition space 48. Other configurations are the same as Embodiment 1.
<Technical Effect of Combustor Component According to Embodiment 2 of Present Disclosure>
If the fuel which was not combusted during the operation of the gas turbine 1 is discharged from the passage 18 during or after the stop of the gas turbine 1, or if the purging air is introduced to the passage 18 during the operation of the gas turbine 1, in Embodiment 1, the communication between the passage 18 and the outer space 30 via the partition space 28, the first hole 31, the first cavity 22, and the first through hole 26 is used. In Embodiment 2, in addition to this form, in the former case, the fuel in the passage 18 flows into the second cavity 24 via the second through hole 27, and then the fuel in the second cavity 23 flows into the second partition space 48 via the second hole 32. Since the second partition space 48 communicates with the outer space 30, the fuel in the second partition space 48 is discharged to the outer space 30. On the other hand, in the latter case, the air in the outer space 30 as the purging air sequentially flows through the second partition space 48, the second hole 32, the second cavity 24, and the second through hole 27 and is introduced into the passage 18.
As described above, even in the acoustic device having the three-story configuration with respect to the radial direction of the combustion cylinder 12, since the second hole 32 is further disposed which causes the second cavity 24 and the outer space 30 to communicate with each other without via the second through hole 27 and the third cavity 42, it is possible to cause the outer space 30 to communicate with each of the first cavity 22 and the second cavity 24, while suppressing acoustic coupling between the third acoustic device 41, and each of the first acoustic device 21 and the second acoustic device 23.
<Description of Modified Example of Combustor Component of Combustor According to Embodiment 2 of Present Disclosure>
In Embodiment 2, the first communication passage may not be disposed which causes the first cavity 22 and the outer space 30 to communicate with each other without via the first through hole 26 and the second cavity 24. Even in this case, since the passage 18 and the outer space 30 communicate with each other via the second partition space 48, the second hole 32, the second cavity 24, and the second through hole 27, it is possible to discharge the fuel, which was not combusted during the operation of the gas turbine 1, from the passage 18 during or after the stop of the gas turbine 1, and to introduce the purging air to the passage 18 during the operation of the gas turbine 1. In the description of the operation in Embodiment 1, the specific operation in this case can read the first cavity 22, the second cavity 24, the partition space 28, the first through hole 26, the second through hole 27, and the first hole 31 as the second cavity 24, the third cavity 42, the second partition space 48, the second through hole 27, the third through hole 36, and the second hole 32, respectively.
Next, the combustor component according to Embodiment 3 will be described. The combustor component according to Embodiment 3 is modified from Embodiment 1 in the configuration of the first communication passage. In Embodiment 3, the same constituent elements as those in Embodiment 1 are associated with the same reference characters and not described again in detail.
<Configuration of Combustor Component of Combustor According to Embodiment 3 of Present Disclosure>
As shown in
Each of the first cavities 22, 22 and the partition space 28 communicate with each other via an internal passage 50 formed in the upper wall 21a2 (wall member) of the first housing 21a of each of the two first acoustic devices 21, 21. The internal passage 50 is configured to extend in the upper wall 21a2 along the axial direction of the combustion cylinder 12. Since the partition space 28 and the outer space 30 communicate with each other, the internal passage 50, which causes the partition space 28 and each of the first cavities 22, 22 to communicate with each other, constitutes the first communication passage which causes each of the first cavities 22, 22 and the outer space 30 to communicate with each other via the partition space 28. In
In
<Technical Effect of Combustor Component According to Embodiment 3 of Present Disclosure>
In the configuration of Embodiment 3 shown in
<Description of Modified Example of Combustor Component of Combustor According to Embodiment 3 of Present Disclosure>
As shown in
The second cavity 24 and the outer space 30 communicate with each other via an internal passage 60 formed in the upper wall 23a2 and the upper wall 43a2. The internal passage 60 is configured to extend in the upper wall 21a2 along the axial direction of the combustion cylinder 12. In this modified example, the internal passage 60 constitutes the second communication passage causing the second cavity 24 and the outer space 30 to communicate with each other.
In this modified example, even in the acoustic device having the three-story configuration with respect to the radial direction of the combustion cylinder 12, since the internal passage 60 is further disposed which causes the second cavity 24 and the outer space 30 to communicate with each other without via the second through hole 27 and the third cavity 42, it is possible to cause the outer space 30 to communicate with each of the first cavity 22 and the second cavity 24, while suppressing acoustic coupling between the third acoustic device 41, and each of the first acoustic device 21 and the second acoustic device 23.
Next, the combustor component according to Embodiment 4 will be described. The combustor component according to Embodiment 4 is modified from Embodiment 1 so as not to include the partition wall 25. In Embodiment 4, the same constituent elements as those in Embodiment 1 are associated with the same reference characters and not described again in detail.
<Configuration of Combustor Component of Combustor According to Embodiment 4 of Present Disclosure>
As shown in
Each of the first cavities 22, 22 and the outer space 30 communicate with each other via the internal passage 50 formed in the upper wall 21a2 of the first housing 21a of each of the two first acoustic devices 21, 21 and the upper wall 43a2 (wall member) of the housing 43a of the another acoustic device 43. The internal passage 50 extends in the upper wall 21a2 and the upper wall 43a2 along the axial direction of the combustion cylinder 12, passes through the radially outer side of the another acoustic device 43 located between the combustion cylinder 12 and the second cavity 24 of the second acoustic device 23 in the radial direction, and opens to the outer space 30 opposite to the two first acoustic devices 21, 21 across the another acoustic device 43. The internal passage 50 constitutes the first communication passage causing the outer space 30 to communicate with each of the two first cavities 22, 22. In
<Technical Effect of Combustor Component According to Embodiment 4 of Present Disclosure>
In the configuration of Embodiment 4 shown in
The contents described in the above embodiments would be understood as follows, for instance.
[1] A combustor component according to one aspect is a combustor component (20) of a combustor (3) for combusting fuel to produce a combustion gas, that includes a combustion cylinder (12) forming a passage (18) for the combustion gas, a first acoustic device (21) which internally includes a first cavity (22) communicating with the passage (18) via a first through hole (26) formed in the combustion cylinder (12), a second acoustic device (23) which is located on a radially outer side of the first acoustic device (21) so as to cover the first acoustic device (21), and internally includes a second cavity (24) communicating with the passage (18) via a second through hole (27) formed in the combustion cylinder (12), and a first communication passage (first hole 31/internal passage 50) causing the first cavity (22) and an outer space (30) of the combustion cylinder (12) to communicate with each other without via the first through hole (26) and the second cavity (24).
With the combustor component of the present disclosure, since the first communication passage is disposed which causes the first cavity and the outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity, it is possible to cause the first cavity of the first acoustic device and the outer space of the combustion cylinder to communicate with each other, while suppressing acoustic coupling between the first acoustic device and the second acoustic device.
[2] A combustor component according to another aspect is the combustor component defined in [1], that includes a partition wall (25) separating the second cavity (24) from a partition space (28) on a radially inner side of the second cavity (24). The first communication passage (first hole 31/internal passage 50) causes the first cavity (22) and the outer space (30) of the combustion cylinder (12) to communicate with each other via the partition space (28).
With the above configuration, if the first communication passage is formed so as to cause the first cavity and the partition space to communicate with each other, it is possible to cause the first cavity and the outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity. Thus, it is possible to simplify formation work of the first communication passage.
[3] A combustor component according to still another aspect is the combustor component defined in [2], the first acoustic device (21) includes a first housing (21a) defining the first cavity (22), and the first communication passage includes a first hole (31) penetrating the first housing (21a) so as to cause the partition space (28) and the first cavity (22) to communicate with each other.
With the above configuration, since the first communication passage can be the first hole penetrating the first housing so as to cause the partition space and the first cavity to communicate with each other, it is possible to simplify the formation work of the first communication passage.
[4] A combustor component according to yet another aspect is the combustor component defined in [3], the partition wall (25) is disposed on the radially outer side of the first acoustic device (21) so as to form a radial gap constituting the partition space (28) between the partition wall (25) and the first acoustic device (21), and the first hole (31) includes an upper opening disposed in an upper wall (21a2) of the first housing (21a).
With the above configuration, since the first communication passage can be the upper opening disposed in the upper wall of the first housing, it is possible to simplify the formation work of the first communication passage.
[5] A combustor component according to yet another aspect is the combustor component defined in [3], the partition wall (25) extends through a radially inner side of the second acoustic device (23) from a side wall (21a1) of the first housing (21a) of the first acoustic device (21) in an axial direction of the combustion cylinder (12), and the first hole (31) includes a lateral opening disposed in the side wall (21a1) of the first housing (21a).
With the above configuration, since the first communication passage can be the lateral opening disposed in the side wall of the partition wall of the first housing, it is possible to simplify the formation work of the first communication passage.
[6] A combustor component according to yet another aspect is the combustor component defined in any one of [2] to [5], that includes a support member (29) for supporting the partition wall (25) on an outer surface (12a) of the combustion cylinder (12). The partition wall (25) extends to the support member (29) through a radially inner side of the second acoustic device (23) along an axial direction of the combustion cylinder (12).
With the above configuration, it is possible to support the partition wall, which extends through the radially inner side of the second acoustic device in the axial direction, by the support member without having a cantilever support structure. Thus, it is possible to reliably support the partition wall.
[7] A combustor component according to yet another aspect is the combustor component defined in [6], the combustion cylinder (12) includes a cylindrical wall (12b) where a hollow portion is formed in an axial range in which at least one of the first acoustic device (21) or the second acoustic device (23) is disposed, the support member (29) is disposed on the outer surface (12c1) of the combustion cylinder (cylindrical wall 12c) outside the axial range in which the hollow portion is formed, and the partition wall (25) extends to the support member (29) along the axial direction beyond a boundary (12d) of the axial range in which the hollow portion is formed.
With such configuration, since the support member is disposed on the solid portion of the combustion cylinder having excellent strength in the absence of the hollow portion, it is possible to support the partition wall more reliably.
[8] A combustor component according to yet another aspect is the combustor component defined in any one of [2] to [7], the partition wall (25) includes an annular wall extending in a circumferential direction along an outer surface (12a) of the combustion cylinder (12), and the partition space (28) communicates with the outer space (30) of the combustion cylinder (12) in at least one end portion of the annular wall in the circumferential direction.
With the configuration, since the partition space and the outer space can communicate with each other without forming the through hole in the partition wall, it is possible to suppress that formation work of the combustor component becomes complicated.
[9] A combustor component according to yet another aspect is the combustor component defined in any one of [1] to [8], the first acoustic device (21) includes a first housing (21a) defining the first cavity (22), and the first communication passage includes an internal passage (50) which is disposed in a wall member including at least the first housing (21a).
With the above configuration, by causing the first communication passage to serve as the internal passage disposed in the wall member including at least the first housing, it is possible to make the partition wall unnecessary. Thus, it is possible to downsize the overall configuration of the combustor component.
[10] A combustor component according to yet another aspect is the combustor component defined in [9], that includes a partition wall (25) separating the second cavity (24) from a partition space (28) on a radially inner side of the second cavity (24). The internal passage (50) extends along an axial direction of the combustion cylinder (12), and opens to the partition space (28) located at a position away from the first cavity (22) in the axial direction.
With the above configuration, even if the partition wall is provided in the above configuration [9], the internal passage can cause the first cavity and the outer space of the combustion cylinder to communicate with each other via the partition space.
[11] A combustor component according to yet another aspect is the combustor component defined in [9], the internal passage (50) extends along an axial direction of the combustion cylinder (12), passes through a radially outer side of another acoustic device (43) located between the combustion cylinder (12) and the second cavity (24) in a radial direction, and opens to the outer space (30) opposite to the first acoustic device (21) across the another acoustic device (43).
With the above configuration, if the partition wall is not provided, the internal passage can cause the first cavity and the outer space of the combustion cylinder to directly communicate with each other. Thus, it is possible to downsize the overall configuration of the combustor component, and even if the partition wall is provided, the internal passage can cause the first cavity and the outer space of the combustion cylinder to communicate with each other via the partition space.
[12] A combustor component according to yet another aspect is the combustor component defined in any one of [1] to [11], that includes a third acoustic device (41) which is located on a radially outer side of the second acoustic device (23) so as to cover the second acoustic device (23), and internally includes a third cavity (42) communicating with the passage (18) via a third through hole (36) formed in the combustion cylinder (12), and a second communication passage (second hole 32/internal passage 60) causing the second cavity (24) and the outer space (30) of the combustion cylinder (12) to communicate with each other without via the second through hole (27) and the third cavity (42).
With the above configuration, even in the acoustic device having the three-story configuration with respect to the radial direction of the combustion cylinder, since the second communication passage is further disposed which causes the second cavity and the outer space to communicate with each other without via the second through hole and the third cavity, it is possible to cause the outer space to communicate with each of the first cavity and the second cavity, while suppressing acoustic coupling between the third acoustic device, and each of the first acoustic device and the second acoustic device.
[13] A combustor according to one aspect includes the combustor component (20) defined in any one of [1] to [12], and a fuel nozzle (16) for injecting the fuel.
With the combustor of the present disclosure, since the first communication passage is disposed which causes the first cavity and the outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity, it is possible to cause the first cavity of the first acoustic device and the outer space of the combustion cylinder to communicate with each other, while suppressing acoustic coupling between the first acoustic device and the second acoustic device.
[14] A gas turbine according to one aspect includes the combustor (3) defined in [13], and a turbine (4) which is driven by the combustion gas produced by the combustor (3).
With the gas turbine of the present disclosure, since the first communication passage is disposed which causes the first cavity and the outer space of the combustion cylinder to communicate with each other without via the first through hole and the second cavity, it is possible to cause the first cavity of the first acoustic device and the outer space of the combustion cylinder to communicate with each other, while suppressing acoustic coupling between the first acoustic device and the second acoustic device.
Number | Date | Country | Kind |
---|---|---|---|
2019-232278 | Dec 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/047619 | 12/21/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/132128 | 7/1/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7080514 | Bland | Jul 2006 | B2 |
7334408 | Bethke | Feb 2008 | B2 |
7832211 | Ikeda | Nov 2010 | B2 |
8469141 | Wang | Jun 2013 | B2 |
8727070 | Huber | May 2014 | B2 |
8978382 | Huber | Mar 2015 | B2 |
8991185 | Huber | Mar 2015 | B2 |
9163837 | Sutcu | Oct 2015 | B2 |
10546070 | Hellat | Jan 2020 | B2 |
10712004 | Kugimiya | Jul 2020 | B2 |
20110220433 | Nakamura et al. | Sep 2011 | A1 |
20110265484 | Huber | Nov 2011 | A1 |
20150020498 | Schilp | Jan 2015 | A1 |
20150059345 | Hellat | Mar 2015 | A1 |
20150082794 | Schilp | Mar 2015 | A1 |
20220373180 | Akamatsu | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
104033926 | Sep 2014 | CN |
1 666 795 | Jun 2006 | EP |
2007-132640 | May 2007 | JP |
2013-117231 | Jun 2013 | JP |
6129420 | May 2017 | JP |
Entry |
---|
Office Action dated Dec. 1, 2022 in counterpart CN Application No. 202080069304.7. |
Notice of Reasons for Refusal dated Feb. 14, 2023 in corresponding Japanese Patent Application No. 2021-567426, with English language translation. |
International Search Report dated Feb. 22, 2021 in International (PCT) Application No. PCT/JP2020/047619. |
Number | Date | Country | |
---|---|---|---|
20220373180 A1 | Nov 2022 | US |