This invention relates generally to gas turbines, and more particularly, to combustor dome mixer retainers used with turbine engines.
At least some known gas turbine engines use a lean dome combustor that includes a center mixer assembly that is formed integrally with a fuel nozzle and a dome-mounted mixer assembly that forms a portion of a dome assembly. As a result, at least some known dome mixer assemblies are large and may be difficult to retain using only the dome.
Known methods of assembling such combustors generally includes retaining or rigidly coupling mixers to the dome via welding or brazing. The inner and outer cowls may be formed with retaining means that are used to maintain the mixers in position. Incorporating the retaining means requires providing enough material for both the retaining means and the cowl. For example, forging weights of inner and outer cowls may be 55 pounds and 135 pounds, respectively. However, final machined inner and outer cowl weights may be 1.6 pounds and 5.7 pounds, respectively, such that 183 pounds of material waste is generated per engine.
Consequently, combustors assembled using known fabrication methods use retaining means that require additional material and labor resulting in increased maintenance and manufacturing costs.
In one aspect, a method of assembling a combustor for use in a turbine engine is disclosed. The method includes providing a dome assembly ring including a plurality of assembly ring openings, positioning a plurality of elongated rings on the dome assembly ring, providing a cowl assembly including an inner cowl portion and an outer cowl portion that are fabricated from sheet material, and coupling the inner and outer cowl portions to the dome assembly ring such that each of the plurality of elongated rings is coupled to the dome assembly ring.
In another aspect, a mixer retainer assembly for use in a turbine engine combustor is disclosed. The retainer assembly includes a dome assembly ring including a plurality of assembly ring openings, a plurality of elongated rings positioned on the dome assembly ring, an inner cowl fabricated from sheet material, and an outer cowl fabricated from sheet material. The inner cowl and the outer cowl are coupled to the dome assembly ring such that each of the plurality of elongated rings is coupled to the dome assembly ring.
In yet another aspect, a combustor assembly for use in a turbine engine is disclosed. The assembly includes a dome ring comprising a plurality of ring openings, a plurality of elongated rings positioned on said dome ring, an inner cowl fabricated from sheet material, and an outer cowl fabricated from sheet material. The inner cowl and the outer cowl are coupled to the dome ring such that each of the plurality of elongated rings is coupled to the dome ring and such that the inner cowl and the outer cowl together constitute a single cowl.
An annular dome assembly 100 extends between, and is coupled to, outer and inner liners 52 and 54 near their upstream ends. Each swirler assembly 72 receives compressed air from opening 68 and fuel from a corresponding fuel injector 74. Fuel and air are swirled and mixed together by swirler assemblies 72, and the resulting fuel/air mixture is discharged into combustion chamber 60. Combustor 16 includes a longitudinal axis 75 which extends from a forward end 76 to an aft end 78 of combustor 16. In the exemplary embodiment, combustor 16 is a single annular combustor. Alternatively, combustor 16 may be any other combustor, including, but not limited to a double annular combustor.
Mixers 108 include a plurality of swirlers 109 that are each sized and shaped to correspond to each of the plurality of openings 116 of assembly ring 106. More specifically, each swirler 109 is configured as an elongated ring having a first circular end 103, a second circular end 105, and a plurality of circumferentially and uniformly spaced members 107 extending therebetween. Each swirler 109 defines an opening 111 having a diameter 113. It should be appreciated that members 107 may be any length and opening 111 may have any diameter 113 that enables dome assembly 100 to function as described herein. Although the exemplary embodiment describes swirlers 109 as each having a circular cross-section that is sized and shaped to correspond to openings 116, other embodiments may use swirlers 109 having any shape or size that enables swirlers 109 to function as described herein.
Inner cowl 110 is positioned such that each inner cowl lip 128 is aligned with and corresponds to one of swirlers 109. Consequently, each one of inner cowl lips 128 is positioned against a corresponding one of the plurality of swirlers 109, thus facilitating providing cyclonic retention of swirlers 109. Likewise, outer cowl 130 is positioned such that each outer cowl lip 140 is adjacent a corresponding swirler 109. Consequently, each one of the plurality of outer cowl lips 140 is positioned against one of the plurality of swirlers 109, thus facilitating providing cyclonic retention of swirlers 109. Each of the plurality of inner cowl lips 128 is positioned on each of the plurality of swirlers 109 such that each inner cowl lip 128 is diametrically opposed to a corresponding one of the outer cowl lips 140 positioned on the same swirler 109. Thus, each swirler 109 is retained in position exclusively by an inner cowl lip 128 and an outer cowl lip 140. No other retaining means, or technique, such as, but not limited to, brazing and welding is required. It should be appreciated that although the exemplary embodiment describes inner cowl lips 128 and outer cowl lips 140 as being diametrically positioned relative to each other on a swirler 109, other embodiments may position inner cowl lips 128 with respect to outer cowl lips 140 in any manner that enables inner cowl 110 and outer cowl 130 to function as described herein. Moreover, it should be appreciated that inner cowl 110 and outer cowl 130, upon constructing dome assembly 100, together constitute a single cowl.
The above-described method and apparatus facilitates retaining swirlers in a dome assembly that may be installed in a combustor. Specifically, the inner and outer cowls may be fabricated from sheet metal to have a plurality of circumferentially and uniformly spaced lips. Each cowl is installed such that each lip is positioned to correspond with a swirler. The inner cowl lips and the outer cowl lips are diametrically opposed with respect to each other on each swirler and each apply a retaining force to the swirler. As a result, the inner and outer cowl lips facilitate retaining each swirler in position.
In one embodiment, a method of retaining combustor mixers for use in a turbine engine combustor is disclosed. The method includes providing a dome assembly ring comprising a plurality of assembly ring openings, providing a plurality of elongated rings and positioning each of the plurality of elongated rings on the dome assembly ring, forming an inner cowl and an outer cowl from sheet metal, and coupling the inner and outer cowls to the dome assembly ring such that each of the plurality of elongated rings is coupled to the dome assembly ring.
In each embodiment the above-described inner and outer cowls facilitate reducing component part costs. More specifically, in each embodiment, the method facilitates reducing costs by fabricating the cowls from sheet metal material instead of machining them from forgings. As a result, less expensive cowls may be used to retain mixers. Accordingly, turbine engine performance and component useful life are each facilitated to be enhanced in a cost effective and reliable manner.
Although the method and apparatus described herein are described in the context of retaining mixers in a gas turbine engine, it is understood that the method and apparatus are not limited to gas turbine engines or combustors. Likewise, the gas turbine engine and combustor liner components illustrated are not limited to the specific embodiments described herein, but rather, components of both the gas turbine engine and the combustor liner can be utilized independently and separately from other components described herein.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3854285 | Stenger et al. | Dec 1974 | A |
4232527 | Reider | Nov 1980 | A |
5237820 | Kastl et al. | Aug 1993 | A |
5323604 | Ekstedt et al. | Jun 1994 | A |
5630319 | Schilling et al. | May 1997 | A |
5865024 | Kress et al. | Feb 1999 | A |
6314739 | Howell et al. | Nov 2001 | B1 |
6334298 | Aicholtz | Jan 2002 | B1 |
6502400 | Freidauer et al. | Jan 2003 | B1 |
6725667 | Farmer et al. | Apr 2004 | B2 |
6976363 | McMasters et al. | Dec 2005 | B2 |
7062920 | McMasters et al. | Jun 2006 | B2 |
7222488 | Farmer et al. | May 2007 | B2 |
20050034460 | McMasters et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080110022 A1 | May 2008 | US |