The present invention relates to gas turbine engines. More particularly, embodiments of the present invention relate to an apparatus and method for cooling an end cap assembly of a gas turbine combustion system.
Gas turbine engines operate to produce mechanical work or thrust. One type of gas turbine engine is a land-based engine that has a generator coupled thereto which harnesses the mechanical work for the purposes of generating electricity. A gas turbine engine comprises at least a compressor section having a series of rotating compressor blades. Air enters the engine through an inlet and then passes through the compressor, where the rotating blades compress the air, thereby raising its pressure and temperature. The compressed air is then directed into one or more combustors where fuel is injected into the compressed air and the mixture is ignited.
The combustor can take on a variety of configurations. Typically combustors have one or more chambers where fuel and air are mixed and then ignited. In order to provide the lowest possible emissions, it is necessary to thoroughly mix the fuel and air, so as to burn as many fuel particles as possible. Also, due to the reaction temperatures of the combustion process, it is necessary to actively cool the combustion liner.
The hot combustion gases are directed from the combustion section to a turbine section by a transition duct. The hot combustion gases pass through the turbine, causing the turbine to rotate, where the turbine is in turn coupled to the compressor by a shaft located along an engine centerline.
Embodiments of the present invention are directed towards a system and method for, among other things, providing an end cap assembly for a gas turbine combustor having a configuration capable of providing improved cooling to a surface of the end cap assembly that is exposed to the combustion process.
In one embodiment of the present invention, an end cap assembly is disclosed having an effusion plate with a first plurality of cooling holes and a first plurality of premix tube holes. An impingement plate having a second plurality of cooling holes and a second plurality of premix tube holes is located generally parallel to the effusion plate, but spaced apart by a first axial distance. A generally cylindrical sleeve extends from the effusion plate to and beyond the impingement plate. A plurality of premix tubes extend from the first plurality of premix tube holes in the effusion plate and through the second plurality of premix tube holes in the impingement plate to proximate a rear plate. A supply of cooling fluid, such as air, can be directed through the second plurality of cooling holes in the impingement plate and onto a backside of the effusion plate. The cooling fluid then passes through the first plurality of cooling holes in the effusion plate. The second plurality of cooling holes are positioned about the impingement plate so as to direct the supply of cooling fluid towards specific regions of the effusion plate.
In an alternate embodiment of the present invention, the end cap assembly further comprises a forward support structure positioned generally parallel to the impingement plate, a rear plate positioned generally parallel to the forward support structure and adjacent an end of the premix tubes. This embodiment also includes a flow shield located proximate the rear plate for minimizing the amount of cooling fluid that may get trapped in an area adjacent to the rear plate. This inclined wall portion also serves to redirect a portion of the cooling fluid towards the inlet of the plurality of premix tubes.
In yet another embodiment of the present invention, a method of providing cooling fluid to increase cooling flow to a portion of an end cap assembly is disclosed. The method comprises providing a combustor end cap assembly as previously disclosed and directing a supply of a cooling fluid, such as air, into the end cap assembly, around the plurality of premix tubes, and then directing the cooling fluid in a generally axial direction, through a second plurality of cooling holes in an impingement plate. The axial distance between the impingement plate from the effusion plate as well as the location and size of the second plurality of cooling holes are determined so as to improve the effectiveness of the cooling fluid distribution onto the effusion plate. The cooling fluid then passes through the first plurality of cooling holes in the effusion plate to cool the effusion plate.
Additional advantages and features of the present invention will be set forth in part in a description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned from practice of the invention.
The present invention is described in detail below with reference to the attached drawing figures, wherein:
The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different components, combinations of components, steps, or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies.
Referring initially to
The pressure drops taken across the end cap assembly 100 are taken in a manner so as to also improve cooling to a surface of the end cap that is directly exposed to the combustion process. Referring initially to
The impingement plate 104 is spaced a first axial distance D1 from the effusion plate 102. The effusion plate 102 has a first plurality of premix tube holes 106 and the impingement plate 104 has a second plurality of premix tube holes 108, as shown in
Referring back to
In an embodiment of the present invention, a forward support structure 112 is positioned generally parallel to the impingement plate 104 and spaced a second axial distance D2 from the effusion plate 102, as depicted in
Extending generally between the forward support structure 112 and the effusion plate 102 is a generally cylindrical sleeve 114. This generally cylindrical sleeve 114 is shown in more detail in
This embodiment of the end cap assembly 100 also comprises a rear plate 116 that is positioned generally parallel to the forward support structure 112 and is spaced a third axial distance D3 from the effusion plate 102, as shown in
As previously discussed, the end cap assembly 100 is designed as a pressure boundary leading to the combustion liner 300. As such, a portion of the end cap assembly 100, specifically the effusion plate 102, is directly exposed to the hot combustion gases contained within the combustion liner 300. Therefore, in order to avoid cracking and thermal metal fatigue (TMF) of the effusion plate 102, it is necessary to provide the effusion plate 102 with sufficient cooling. The air directed to cool the effusion plate 102 can then be used in the combustion process within the combustion liner 300.
Referring now to
The impingement plate 104 of the end cap assembly 100 further comprises a second plurality of cooling holes 120, which are depicted in
For the embodiment of the present invention depicted in the FIGS., the second plurality of cooling holes 120 comprises approximately 130 holes located generally about the perimeter of the impingement plate 104 and proximate the plurality of struts 115, since an area of concern requiring additional cooling for an embodiment of the end cap assembly 100 is the perimeter regions of the effusion plate 102 and area between the premix tubes 110.
Furthermore, a portion of the second plurality of cooling holes 120 have a larger diameter so as to direct an increased cooling fluid supply to a portion of the effusion plate 102. For an embodiment depicted in
The effectiveness of the cooling fluid flow is also a function of the distance between the impingement plate 104 and the effusion plate 102. For the embodiment depicted herein, the impingement plate 104 is located approximately one inch from the effusion plate 102. However, the position of the impingement plate 104 can vary depending on the desired effect of the cooling fluid penetration onto the effusion plate 102. For example, the impingement plate 104 can be closer to the effusion plate 102, such as within approximately a quarter of an inch to provide more discrete jets of cooling flow onto the effusion plate 102, or further away, such as up to three inches from the effusion plate 102 for a more distributed flow of the cooling fluid.
The end cap assembly 100 is inserted into a combustion liner 300 as shown in
In an embodiment of the present invention, the end cap assembly 100 also comprises additional features such as a flow shield 124 that is attached to the rear plate 116. The flow shield 124 is positioned to encourage the cooling air flow that does not enter through the circumferential opening 122 to maintain its flow along the outer edge of the end cap assembly and enter into the plurality of premix tubes 110. Another feature of an embodiment of the present invention is an outer support ring 126. The outer support 126 is used for securing the end cap assembly 100 to the end cover and combustion case of the combustor. Also, as it can be seen from
The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope.
From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects set forth above, together with other advantages which are obvious and inherent to the system and method. It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. This is contemplated by and within the scope of the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/024,319, filed on Jan. 29, 2008.
Number | Name | Date | Kind |
---|---|---|---|
5253471 | Richardson | Oct 1993 | A |
5274991 | Fitts | Jan 1994 | A |
5357745 | Probert | Oct 1994 | A |
5396759 | Richardson | Mar 1995 | A |
5509270 | Pearce et al. | Apr 1996 | A |
5941076 | Sandelis | Aug 1999 | A |
5956955 | Schmid | Sep 1999 | A |
6438959 | Dean et al. | Aug 2002 | B1 |
6497105 | Stastny | Dec 2002 | B1 |
6546733 | North et al. | Apr 2003 | B2 |
6923002 | Crawley et al. | Aug 2005 | B2 |
6978618 | Pacheco-Tougas et al. | Dec 2005 | B2 |
7036316 | Howell et al. | May 2006 | B2 |
7219498 | Hadder | May 2007 | B2 |
7328582 | Sandelis et al. | Feb 2008 | B2 |
20060191268 | Widener et al. | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090188255 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61024319 | Jan 2008 | US |