The present disclosure relates generally to combustors used in gas turbine engines, and more specifically to a combustor including a metallic case and a burner seal.
Engines, and particularly gas turbine engines, are used to power aircraft, watercraft, power generators and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. The combustor is a component or area of a gas turbine engine where combustion takes place. In a gas turbine engine, the combustor receives high pressure air and adds fuel to the air which is burned to produce hot, high-pressure gas. After burning the fuel, the hot, high-pressure gas is passed from the combustor to the turbine. The turbine extracts work from the hot, high-pressure gas to drive the compressor and residual energy is used for propulsion or sometimes to drive an output shaft.
Combustors may include burner seals that locate off the fuel nozzles and contain the burning fuel during operation of a gas turbine engine. The burner seal included in the combustor is designed and built to withstand high-temperatures induced during combustion. In some cases, burner seals may be made from metallic superalloys. Components made of metal alloys often require significant cooling to be maintained at or below their maximum use temperatures. The operational efficiencies of gas turbine engines are sometimes increased with the use of CMC materials that require less cooling and have operating temperatures that exceed the maximum use temperatures of most metal alloys. The reduced cooling required by CMC materials when compared to metal alloy materials can permit greater temperature uniformity and can lead to reduced undesirable emissions.
One challenge relating to the use of CMC materials is that they are sometimes secured to the surrounding metal shell via metal fasteners. Metal fasteners can lose their strength and may even melt at CMC operating temperatures. Since the allowable operating temperature of a metal fastener is typically lower than the allowable operating temperature of the CMC, metal fasteners, and/or the area surrounding it, is often cooled to allow it to maintain its strength. Such configurations may undermine the desired high temperature capability of the CMC. Moreover, challenges arise when the mismatch between thermal expansion of CMC materials and metallic materials is considered. Accordingly, new techniques and configurations are needed for coupling components, such as CMC, to surrounding structures experiencing high-temperature environments.
The present disclosure may comprise one or more of the following features and combinations thereof.
According to a first aspect of the present disclosure, a combustor for use in a gas turbine engine includes a combustor shell, a burner seal, and a burner seal retainer. The combustor shell includes metallic materials and is adapted to be mounted in the gas turbine engine and is formed to define an interior combustion space. The combustor shell includes an outer annular wall that extends circumferentially around a central reference axis. The combustor shell may further include an inner annular wall arranged radially inward from the outer annular wall to provide the interior combustion space between the outer annular wall and the inner annular wall. The combustor shell may further include a dome panel coupled to axially-forward ends of the outer annular wall and the inner annular wall. In some embodiments, the dome panel is formed to include a plurality of fuel nozzle apertures spaced circumferentially around the central reference axis.
In some embodiments, the burner seal includes ceramic matrix composite materials and is arranged to extend through one of the fuel nozzle apertures included in the plurality of fuel nozzle apertures along a burner seal axis. In some embodiments, the burner seal retainer is configured to couple the burner seal to the dome panel in a fixed axial position
In some embodiments, the burner seal retainer is sized to retain the burner seal to the dome panel while allowing the burner seal to float in radial and circumferential directions to accommodate thermal growth of the dome panel and the burner seal retainer at an expansion rate not equal to an expansion rate of the burner seal.
In some embodiments, the burner seal includes a burner seal body with an inlet end and an outlet end spaced axially from the inlet end and an inlet flange located at the inlet end that extends radially outward from the burner seal body relative to the burner seal axis. In some embodiments, the inlet flange is spaced from the burner seal axis a first distance and the fuel nozzle aperture is spaced apart from the burner seal axis a second distance greater than the first distance so that the burner seal is inserted through the fuel nozzle aperture from an aft side of the dome panel.
In some embodiments, the burner seal retainer includes a first retainer half-ring formed to include a first semi-circular channel and a second retainer half-ring formed to include a second semi-circular channel and the inlet flange is received in the first and second semi-circular channels when the burner seal retainer is installed on the burner seal. In some embodiments, an anti-rotation pin extends axially through each retainer half ring and into the inlet flange to block rotation of the burner seal relative to the burner seal retainer about the burner seal axis.
In some embodiments, each retainer half-ring is joined directly to the dome panel to couple the burner seal to the dome panel in the fixed axial position. In some embodiments, each retainer half-ring includes a mount plate coupled to an axially forward surface of the dome panel, a link segment coupled to the mount plate and arranged to extend axially forward from the mount plate, and a retainer plate coupled to the link segment and spaced apart from the mount plate to provide the first and second semi-circular channels axially between the mount plate and the retainer plate.
In some embodiments, the inlet flange has a distal end spaced apart from a radially inner surface of the link segment to provide a gap between the inlet flange and the link segment to accommodate the expansion rate of the burner seal retainer.
In some embodiments, the mount plate has a proximal end and a distal end and an inner radius is defined between the burner seal axis and the proximal end, and the inner radius of the mount plate is less than a radius of the fuel nozzle aperture. In some embodiments, an outer radius of the mount plate is defined between the burner seal axis and the distal end, and the outer radius of the mount plate is greater than the radius of the fuel nozzle aperture.
In some embodiments, the combustor further includes a retainer bracket configured to retain each of the half-rings together to enclose the inlet flange, the retainer bracket including an annular mount ring coupled to the dome panel and a retention panel engaged with the mount plate of each retainer half-ring to couple the burner seal retainer to the dome panel. In some embodiments, an anti-rotation pin extends through the retainer bracket and into at least one of the retainer half-rings to block rotation of the retainer half-rings relative to the retainer bracket about the burner seal axis.
In some embodiments, the retention panel includes a plurality of castellation tabs that extend radially inward toward the burner seal axis and the burner seal retainer includes a plurality of castellation tabs opposite the castellation tabs of the retention panel so that the retainer bracket and the burner seal retainer provide a cam lock when the castellation tabs of the burner seal retainer move past the castellation tabs of the retention panel and the burner seal retainer is rotated relative to the retention panel so that the that the castellation tabs of the burner seal are aligned with the castellation tabs of the burner seal retainer.
In some embodiments, the burner seal retainer further includes a plurality of anti-rotation pins that extend through apertures formed in the castellation tabs of the burner seal retainer and the castellation tabs of the retention panel to block rotation of the burner seal retainer relative to the retention panel.
In some embodiments, the burner seal retainer includes a locator ring with a pair of mount flanges arranged on opposite circumferential sides from one another and a corresponding pair of retainer fastener assemblies each having a fastener and a washer.
In some embodiments, each washer engages the inlet flange of the burner seal and each fastener extends through an aperture formed in the dome panel and receives a corresponding nut to mount the burner seal retainer and the burner seal to the dome panel in the fixed axial position.
According to another aspect of the present disclosure, a method of retaining a burner seal to a dome panel in a combustor of a gas turbine engine includes forming the combustor from metallic materials to define an interior cavity. The combustor includes a dome panel formed to include at least one fuel nozzle aperture that opens into the interior cavity.
In some embodiments, the method further includes inserting the burner seal through the fuel nozzle aperture from an aft side of the dome panel, the burner seal comprising ceramic matrix composite materials.
In some embodiments, the method further includes retaining the burner seal in a fixed axial position while allowing the burner seal to float in radial and circumferential directions to accommodate thermal growth of the dome panel at an expansion rate not equal to an expansion rate of the burner seal.
In some embodiments, the burner seal includes a burner seal body that extends circumferentially around a burner seal axis with an inlet end and an outlet end spaced axially from the inlet end and an inlet flange at the inlet end that extends radially outward from the burner seal body relative to the burner seal axis and the step of retaining the burner seal includes engaging the inlet flange with a burner seal retainer without fixing the burner seal in the radial and circumferential directions.
In some embodiments, the step of engaging the inlet flange includes enclosing the inlet flange with a first retainer half-ring formed to include a first semi-circular channel and a second retainer half-ring formed to include a second semi-circular channel, the inlet flange being received in the first and second semi-circular channels when the burner seal retainer is installed on the burner seal and the first and second retainer half rings engaged with the forward surface of the dome panel to block movement of the burner seal axially aft through the fuel nozzle aperture.
In some embodiments, the step of retaining the burner seal further comprises providing a retainer bracket that engages each retainer half-ring and is coupled to the dome panel to retain the first and second retainer half-rings together.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
The arrangement of an illustrative combustor 10 in a gas turbine engine 110 is shown in
The combustor 10 is an annular combustor and includes a combustor shell 12, a plurality of burner seals 14 that extend through corresponding fuel nozzle apertures 18 formed in the combustor shell 12, and a burner seal retainer 16 for each burner seal 14 as shown in
The combustor shell 12 is made from metallic materials while each burner seal 14 is made from ceramic matrix composite (CMC) materials as shown in
Each burner seal 14 is allowed to float relative to the combustor shell 12 to accommodate the different rates of thermal expansion between the combustor shell 12 and the burner seals 14. Each burner seal retainer 16 is configured to retain a corresponding burner seal 14 to the combustor shell 12 in a fixed axial position without directly fixing the burner seals 14 to the combustor shell 12 by other means such as rigid fasteners, welding, brazing, or the like. The burner seal retainer 16 is sized to allow movement of the burner seals 14 in radial and circumferential directions. In this way, binding stresses, which may be formed in the CMC materials due to the different rates of thermal expansion, are avoided to increase the durability of the components.
The combustor shell 12 includes an outer annular wall 22, an inner annular wall 24, and a dome panel 26 coupled to axially-forward ends of the outer wall 22 and the inner wall 24 as shown in
Although the combustor 10 includes a plurality of burner seals 14 and corresponding burner seal retainers 16, each burner seal 14 and each burner seal retainer 16 is identical in the illustrative embodiment. Accordingly, only one burner seal 14 and corresponding burner seal retainer 16 is referred to below.
The burner seal 14 is sized to be inserted through a corresponding fuel nozzle aperture 18 along a burner seal axis 30 as shown in
The burner seal retainer 16 is configured to couple the burner seal 14 to the dome panel 26 as shown in
The burner seal retainer 16 includes a first retainer half-ring 42 and a second retainer half-ring 44 as shown in
Each retainer half-ring 42, 44 includes a mount plate 50, 52, a link segment 54, 56, and a retainer plate 58, 60 as shown in
The inlet flange 34 of the burner seal 14 has an outer diameter spaced apart from the burner seal axis 30 by a first distance 62. The fuel nozzle aperture 18 is spaced apart from the burner seal axis 30 by a second distance 64 as shown in
The inlet flange 34 and the burner seal retainer 16 cooperate to block axial movement of the burner seal 14 relative to the dome panel 26 along the burner seal axis 30. All of this is done without any holes being drilled into the burner seal 14 and subsequently retained to the dome panel 26 with fasteners or other means that could affect the strength or durability of the burner seal 14. Each mount plate 50, 52 has a proximal end 66 and a distal end 68. An inner radius 70 is defined between the burner seal axis 30 and the proximal end 66. The inner radius 70 of the mount plates 50, 52 is less than the second distance 64 which is equal to a radius of the fuel nozzle aperture 18. An outer radius 72 of the mount plates 50, 52 is defined between the burner seal axis 30 and the distal end 68. The outer radius 72 of the mount plates 50, 52 is greater than the second distance 64.
In the illustrative embodiment, the combustor 10 further includes a retainer bracket 82 configured to retain the first and second retainer half-rings 42, 44 together after they enclose the inlet flange 34 as shown in
Anti-rotation pins 88, 90 may be provided to block rotation of the burner seal 14 and/or the burner seal retainer 16 about the burner seal axis 30 as shown in
Another embodiment of a combustor 210 is shown in
The combustor 210 includes a combustor shell 212, a burner seal 214, and a burner seal retainer 216. However, combustor 210 does not include a retainer bracket to couple the burner seal retainer 216 to the combustor shell 212. Instead the burner seal retainer 216 is coupled directly to the combustor shell 212 after installing the burner seal 214. The burner seal retainer 216 may be joined to the combustor shell 212 by welding, brazing, soldering, or any other suitable metal joining process. An anti-rotation pin 290 may be used to block rotation of the burner seal 214 relative to the burner seal retainer 216 about burner seal axis 230.
Another embodiment of a combustor 310 is shown in
The combustor shell 312 includes a dome panel 326. A fuel nozzle aperture 318 is formed in the dome panel 326. Although only one fuel nozzle aperture 318 is shown in
The burner seal 314 is sized to be inserted through fuel nozzle aperture 318 along a burner seal axis 330 as shown in
The burner seal retainer 316 is configured to couple the burner seal 314 to the dome panel 326 as shown in
Each retainer half-ring 342, 344 includes a mount plate 350, 352, a link segment 354, 356, and a retainer plate 358, 360 as shown in
In the illustrative embodiment, the combustor 10 further includes a retainer bracket 382 configured to retain the first and second retainer half-rings 342, 344 together after they enclose the inlet flange 334 as shown in
To install the burner seal 314, the burner seal 314 is inserted through the fuel nozzle aperture 318 from an aft side of the dome panel 326 until inlet flange 334 protrudes axially forward of the retainer bracket 382. The retainer half rings 342, 344 are then positioned to enclose the inlet flange 334. The retention panel 386 includes a plurality of castellation tabs 387 that extend radially inward toward the burner seal axis 330 as shown in
The retainer bracket 382 and the burner seal retainer 316 cooperate to provide a cam lock when castellation tabs 351, 353 move past castellation tabs 387 and the burner seal retainer 316 is rotated relative to the retention panel 382 so that the that castellation tabs 351, 353 are aligned with castellation tabs 387. The burner seal 314 and the burner seal retainer 316 are then fixed axially by being located axially between castellation tabs 387 and dome panel 326. Anti-rotation pins 355 may be inserted in to apertures 357 formed in one or more of the castellation tabs to block rotation of the burner seal retainer 316 relative to the retainer bracket 382.
Another embodiment of a combustor 410 is shown in
The combustor shell 412 includes a dome panel 426. A fuel nozzle aperture 418 is formed in the dome panel 426. Although only one fuel nozzle aperture 418 is shown in
The burner seal 414 is sized to be inserted through fuel nozzle aperture 418 along a burner seal axis 430 as shown in
The burner seal retainer 416 is configured to couple the burner seal 414 to the dome panel 426 as shown in
The locator ring 435 includes a body ring 441 and a pair of mount flanges 443 arranged on opposite circumferential sides from one another on the body ring 441. The body ring 441 has an outer diameter that matches an outer diameter of the inlet flange 434. Both of the mount flanges 443 are at least partially offset axially from the body ring 441. The offset matches a thickness of the inlet flange so that the inlet flange 434 is flush with the mount flanges 443 when installed.
Each retainer assembly 437 includes a fastener 445, a washer 447, and a nut 449. Each fastener 445 extends through an aperture formed in a corresponding mount flange 443 and the dome panel 426 and receives nut 449 to couple the locator ring 435 to the dome panel 426. Each washer 447 is located between a head of the fastener 445 and the mount flange 443 and extends outwardly from the fastener to overlap with the inlet flange 434. In this way, the washers 447 retain the burner seal 414 to the locator ring 435 and the dome panel 426.
The ceramic matrix composite materials in the illustrative embodiments described herein may comprise silicon carbide fibers suspended in a silicon carbide matrix (SiC—SiC CMC), however, any suitable ceramic matrix composite composition may be used. The burner seals are made from silicon carbide fiber preforms that are infiltrated with ceramic matrix material. The fiber preforms may be a two-dimensional ply preform or a three-dimensionally woven or braided preform. Prior to infiltration, the preforms may be molded into a desired shape. Once molded into the desired shape, the fiber preforms are infiltrated with ceramic matrix material through chemical vapor infiltration to solidify and/or densify the fibers. The fiber preforms may be also be processed through other suitable processes such as slurry infiltration, melt infiltration and/or polymer infiltration and pyrolysis. Once densified, the finished ceramic matrix composite component may be machined to finalize the desired shape.
In some embodiments, the combustor in a gas turbine operates at extremely high temperatures and, thus, challenges the capabilities of metallic alloys that are used to form the combustion chamber. SiC—SiC CMC may offer a higher temperature option to deal with this extreme environment. In addition, as environmental regulations on gas turbine emissions (ICAO regulations) become increasingly stringent over time, a greater fraction of the air entering the combustor may be needed for emissions control/reduction features in order to have a compliant engine design. As such, a smaller fraction of air may be available for adequate wall cooling in future combustors. The higher temperature-capable CMC material offers the capability of using less of the combustor air for cooling the structure. One location that may benefit from such a material change is the burner seal. The fuel nozzle inserts into the burner seal. The seal is fixed axially but is allowed to float in the radial and circumferential directions so as not to over constrain the fuel nozzle. One way of implementing a CMC burner seal is to hold it without allowing for too much movement due to the coefficient of thermal expansion mis-match.
In some embodiments, a funnel shaped burner seal (or other shape designated by aero considerations) is inserted through the dome panel from the aft face forward as shown in
In some embodiments, the retaining brackets or half-rings include castellated features that engage with equivalent but negative features in the dome panel to form a cam-lock arrangement as shown in
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
4216652 | Herman | Aug 1980 | A |
4934145 | Zeisser | Jun 1990 | A |
5222358 | Chaput | Jun 1993 | A |
5271219 | Chaput et al. | Dec 1993 | A |
5956955 | Schmid | Sep 1999 | A |
5996335 | Ebel | Dec 1999 | A |
6679063 | Ebel | Jan 2004 | B2 |
7478534 | Guezengar et al. | Jan 2009 | B2 |
7617689 | Schumacher et al. | Nov 2009 | B2 |
7665306 | Bronson et al. | Feb 2010 | B2 |
7690207 | Markarian et al. | Apr 2010 | B2 |
7775051 | Hernandez et al. | Aug 2010 | B2 |
7845174 | Parkman et al. | Dec 2010 | B2 |
7861530 | Hawie et al. | Jan 2011 | B2 |
7926280 | Morenko et al. | Apr 2011 | B2 |
8943835 | Corsmeier et al. | Feb 2015 | B2 |
9222675 | Gerendas | Dec 2015 | B2 |
9243561 | Carlisle | Jan 2016 | B2 |
9803869 | Clemen et al. | Oct 2017 | B2 |
9964309 | Corsmeier et al. | May 2018 | B2 |
10041415 | Clemen et al. | Aug 2018 | B2 |
20030061815 | Young | Apr 2003 | A1 |
20070084215 | Hernandez | Apr 2007 | A1 |
20070269757 | Commaret | Nov 2007 | A1 |
20080229750 | Sipson | Sep 2008 | A1 |
20110271682 | Sandelis | Nov 2011 | A1 |
20130152603 | Bunel | Jun 2013 | A1 |
20130199194 | Carlisle | Aug 2013 | A1 |
20150059346 | Bunel | Mar 2015 | A1 |
20170276356 | Mulcaire | Sep 2017 | A1 |
20180094812 | Corsmeier | Apr 2018 | A1 |
20180202659 | Stieg | Jul 2018 | A1 |
20210102701 | Freeman | Apr 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20210108799 A1 | Apr 2021 | US |