Combustor for a gas turbine engine with effusion cooled baffle

Information

  • Patent Grant
  • 8220269
  • Patent Number
    8,220,269
  • Date Filed
    Tuesday, September 30, 2008
    15 years ago
  • Date Issued
    Tuesday, July 17, 2012
    11 years ago
Abstract
A combustor (1) for a gas turbine engine, particularly for a gas turbine having sequential combustion, includes a combustor wall (4) defining a mixing region (5) and a combustion region (6). The mixing region (5) has at least one first inlet (2) for introducing combustion air into the mixing region (5) and at least one second inlet for introducing fuel into the mixing region (5), the combustion region (6) extending downstream of the mixing region. The mixing region (5) crosses over to the combustion region (6) in a transition region (14). A baffle (9) extends from the transition region (14) generally in the downstream direction (15), forming at least one space (10) between the combustor wall (4) and the baffle (9).
Description
BACKGROUND

1. Field of Endeavor


The present invention relates to a combustor for a gas turbine, particularly for a gas turbine having sequential combustion.


2. Brief Description of the Related Art


A gas turbine with sequential combustion is known to improve the efficiency of a gas turbine. This is achieved by increasing the turbine inlet temperature. In a sequential combustion gas turbine engine, fuel is burnt in a first combustor and the hot combustion gases are passed through a first turbine and subsequently supplied to a secondary combustor into which additional fuel is introduced. The combustion of the hot gases and the fuel is completed in the secondary combustor and the exhaust gases are subsequently supplied to the low pressure turbine. The secondary combustor has a mixing region where fuel is introduced and mixed with the combustion gases, and a downstream combustion region. The two regions are defined by a combustor wall having a combustion front panel positioned generally between the mixing and combustion regions.


The secondary combustor is known in the art as an SEV (Sequential EnVironmental) combustor and the first combustor is known as EV (EnVironmental) or AEV (Advanced EnVironmental) combustor. Partly due to the introduction of hydrogen (H2) rich syngas fuels, which have higher flame speeds and temperatures, there is a requirement to reduce emissions, particularly of NOx, which are produced under these conditions.


SUMMARY

One of numerous aspects of the present invention involves a novel way to reduce NOx emissions, by providing a combustor for a gas turbine engine, particularly for a gas turbine having sequential combustion, with a reduced flame temperature, thereby permitting reducing levels of NOx emissions.


Another aspect of the present invention relates to a combustor for a gas turbine engine, particularly for a gas turbine having sequential combustion, having a combustor wall defining a mixing region and a combustion region, in which the mixing region has at least one first inlet for introducing combustion air into the mixing region and at least one second inlet for introducing fuel into the mixing region,


The combustion region extends downstream of the mixing region, and the mixing region crosses over to the combustion region in a transition region.


A baffle extends from the transition region generally in the downstream direction forming at least one space between the combustor liner wall and the baffle.


It has been found that providing a baffle in this area has the effect of splitting the classical SEV or EV flame into two less intense or low heat release flames. The peak temperatures of these flames in this staged combustion is significantly reduced compared to the peak temperatures encountered in a single flame as seen in conventional combustors, therefore the production of NOx is also significantly reduced. In addition to reduced emissions, the thermoacoustic oscillations due to heat release fluctuations are reduced due to distributed heat release.


In a further preferred embodiment adhering to principles of the present invention, the baffle extends generally in the flow direction from a combustion front panel and the baffle is cooled by a cooling fluid or cooling air. The cooling provided to the baffle improves the cooling of the flame contributing to further reduction in NOx.


In another exemplary embodiment, the amount of fuel and air flow rates through the mixing regions can be varied to obtain the desired flame characteristics.


The above and other aspects, features, and advantages of the invention will become more apparent from the following description of certain preferred embodiments thereof, when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described referring to an embodiment depicted schematically in the drawings, and will be described with reference to the drawings in more details in the following.


The drawings show schematically in:



FIG. 1 a combustor according to one embodiment of the invention,



FIG. 2 a prior art combustor for a sequential combustion gas turbine engine, and



FIG. 3 a combustor according to a second embodiment of the invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS


FIG. 2 schematically illustrates a combustor 1 for use in a sequentially operated gas turbine arrangement according to the state of the art.


The combustor 1 shown in FIG. 2 is an SEV (Sequential EnVironmental) combustor. A first inlet 2 is provided at the upstream end of the combustor 1 for introducing the hot gases from the first combustor (not shown) into the SEV combustor 1. These hot gases contain sufficient oxidizer for further combustion in the SEV combustor 1. A second inlet 3 arranged in a lance is provided downstream of the first inlet for introducing fuel into the SEV combustor 1. The wall 4 of the combustor 1 defines a region 5 for mixing the fuel with the hot gases and a combustion region 6. The mixing region 5 crosses over to the combustion region 6 in a transition region 14. The cross sectional area of the mixing region 5 is smaller than the cross sectional area of the combustion region 6. A combustor front panel 7 is arranged in a region between the mixing region 5 and the combustion region 6. The characteristics of combustion in such a combustor are largely determined by the amount of mixing of the fuel with the combustion gas in the mixing region 5. Higher levels of fuel/air mixing induce thermoacoustic pulsations, where as lower levels of mixing results in formation of NOx. There are therefore conflicting aero/thermal goals, whereby it is difficult to achieve one without detriment to the other. The dotted line 8 represents the general shape of the flame in the conventional combustor 1. It can be seen that the flame front develops in the region of the combustor front panel 7 and extends a certain distance into the combustion region 6. The area of the high temperature part of the flame is relatively large which leads to high levels of NOx production.


Now referring to FIG. 1, which schematically illustrates a combustor 1 according to a preferred embodiment of the invention, the same features as in FIG. 2 are designated with the same reference numerals. The combustor 1 may be for use in a sequentially operated gas turbine arrangement. A baffle 9 extends from the transition region 14 generally in the downstream direction 15 forming at least one space 10 between the combustor wall 4 and the baffle 9. The baffle extends preferably from the wall 4 of the combustor 1. The space 10 is only exposed to the main gas flow through the combustor at its downstream end. It has been found that providing a baffle 9 in this area has the effect of splitting the classical flame into two less intense flames denoted by the dotted lines 11 and 12. The first flame 11 develops from the area of the combustion front panel and the second flame develops from the area at the end of the baffle 9. As can be seen from the figure, the size of the first flame 11 is reduced compared to the single conventional flame 8 and the size of the flame 12 is larger than the size of the conventional flame 8. The high temperature area of these flames 11, 12 in this staged combustion is significantly reduced compared to the high temperature area of the single flame 8 in conventional combustors, therefore the production of NOx is also significantly reduced. Introducing the baffle 9 into the combustor in the position shown in FIG. 1 has been found to cool the hottest part of the flame and distribute the heat to the less hot parts of the flame thereby creating a more even temperature distribution throughout the flame, which is beneficial to reducing emissions. The turbine inlet temperature, which is critical in determining the power of the turbine, remains the same.


The baffle 9 is shown extending parallel with the centre axis of the combustor 1. It can however also extend at an angle to the centerline of the combustor 1, or it may have a curved form. The baffle 9 extends preferably from the combustion front panel 7. The length of baffle 9 in the axial direction is chosen such that a secondary flame 12 can be created during combustion or such that sufficient cooling of the flame takes place.


Cooling air or air from the combustion gases of a first combustor in a sequential combustion system is preferably introduced into the space between the combustor wall 4 and the baffle 9. The cooling air can be introduced through the combustor front panel 7 or it can be introduced through a passage in the baffle 9. Alternatively the baffle can be effusion cooled whereby a plurality of small holes is provided in the baffle 9. The baffle 9 is cooled so that it has itself a cooling effect on the flame, which helps in reducing peak temperatures and NOx emissions.


Principles of the invention can also be applied to an AEV (Advanced EnVironmental) combustor as shown schematically in FIG. 3. In an AEV combustor, the oxidization air inlet 2 is formed by axial slots in the wall 4 of the combustor 1. The fuel is also injected through a plurality of holes in the wall 4 of the combustor 1.


Due to the introduction of the baffles 9, the emissions of NOx can be reduced. Therefore less stringent procedures can be adopted for controlling the fuel air mixing in the mixing region 5.


The preceding description of the embodiments according to the present invention serves only an illustrative purpose and should not be considered to limit the scope of the invention.


Particularly, in view of the preferred embodiments, different changes and modifications in the form and details can be made without departing from the scope of the invention. Accordingly the disclosure should not be limiting. The disclosure herein should instead serve to clarify the scope of the invention which is set forth in the following claims.


LIST OF REFERENCE NUMERALS


1. Combustor



2. First inlet



3. Second inlet



4. Combustor wall



5. Mixing region



6. Combustion region



7. Combustion front panel



8. Dotted line



9. Baffle



10. Space



11. First flame



12. Second flame



13. Slot(s)



14. Transition region



15. Flowdirection


While the invention has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned documents is incorporated by reference herein.

Claims
  • 1. A combustor for a gas turbine engine, comprising: a combustor wall defining a mixing region and a combustion region, the mixing region comprising at least one first inlet for introducing combustion air into the mixing region and at least one second inlet for introducing fuel into the mixing region, the combustion region extending downstream of the mixing region, the mixing region crossing over to the combustion region in a transition region; anda baffle extending from the transition region generally in the downstream direction, forming at least one space between the combustor wall and the baffle, the baffle comprising holes for effusion cooling of the baffle with air or combustion gas.
  • 2. The combustor according to claim 1, wherein the cross sectional area of the combustor increases between the mixing region and the combustion region.
  • 3. The combustor according to claim 2, further comprising: a combustion front panel; andwherein the baffle extends generally in the flow direction from the combustion front panel.
  • 4. The combustor according to claim 1, further comprising: a cooling fluid in the space between the combustor wall and the baffle.
  • 5. The combustor according to claim 1, further comprising cooling air or exhaust gas in the baffle.
  • 6. The combustor according to claim 1, wherein the axial length of baffle is such that a secondary flame can be created during combustion.
  • 7. The combustor according to claim 1, wherein the combustor is an SEV combustor and comprises a fuel lance which projects into the combustor, and wherein the at least one second inlet for introducing fuel into the combustor is located on the fuel lance.
  • 8. The combustor according to claim 1, wherein the combustor is an AEV combustor having through slots or holes in the walls of the combustor, and wherein the at least one first inlet and the at least one second inlet comprise said slots or holes.
  • 9. A sequentially operated gas turbine comprising a combustor according to claim 1.
US Referenced Citations (71)
Number Name Date Kind
1866311 Leiman Jul 1932 A
2701164 Orent et al. Feb 1955 A
3510064 Read et al. May 1970 A
3648457 Bobo Mar 1972 A
4133485 Bouvin Jan 1979 A
4258544 Gebhart et al. Mar 1981 A
4457241 Itse et al. Jul 1984 A
4603548 Ishibashi et al. Aug 1986 A
4952136 Collins et al. Aug 1990 A
4982570 Waslo et al. Jan 1991 A
5054280 Ishibashi et al. Oct 1991 A
5129333 Frederick et al. Jul 1992 A
5201181 Ohmori et al. Apr 1993 A
5216885 Taniguchi et al. Jun 1993 A
5393220 Couwels et al. Feb 1995 A
5405082 Brown et al. Apr 1995 A
5465570 Szillat et al. Nov 1995 A
5490380 Marshall Feb 1996 A
5617718 Althaus Apr 1997 A
5687571 Althaus et al. Nov 1997 A
5701732 Nesbitt et al. Dec 1997 A
5749219 DuBell May 1998 A
5836164 Tsukahara et al. Nov 1998 A
6027331 Dobbeling et al. Feb 2000 A
6055813 Keller et al. May 2000 A
6076356 Pelletier Jun 2000 A
6089024 Hatanaka Jul 2000 A
6098407 Korzendorfer et al. Aug 2000 A
6174161 Slavejkov et al. Jan 2001 B1
6202399 Frutschi Mar 2001 B1
6270338 Eroglu et al. Aug 2001 B1
6339923 Halila et al. Jan 2002 B1
6349886 Bouti Feb 2002 B1
6351947 Keller et al. Mar 2002 B1
6431467 Joshi et al. Aug 2002 B1
6460344 Steinthorsson et al. Oct 2002 B1
6539724 Cornwell et al. Apr 2003 B2
6581386 Young et al. Jun 2003 B2
6622488 Mansour et al. Sep 2003 B2
6679061 Steinbach et al. Jan 2004 B2
6832482 Martling et al. Dec 2004 B2
6871503 Inoue et al. Mar 2005 B1
6978622 Dittmann et al. Dec 2005 B2
6981358 Bellucci et al. Jan 2006 B2
7082770 Martling et al. Aug 2006 B2
7140183 Ruck et al. Nov 2006 B2
7155913 Beule et al. Jan 2007 B2
7174717 Prociw Feb 2007 B2
7185497 Dudebout et al. Mar 2007 B2
7416404 Chan Aug 2008 B2
7426833 Yoshida et al. Sep 2008 B2
7454914 Prociw Nov 2008 B2
7503178 Bucker et al. Mar 2009 B2
7568335 Althaus Aug 2009 B2
7568345 Furletov et al. Aug 2009 B2
7762070 Dawson et al. Jul 2010 B2
7908842 Eroglu et al. Mar 2011 B2
7934381 Eroglu et al. May 2011 B2
7950239 Lilley et al. May 2011 B2
7992808 Micheli Aug 2011 B2
8015815 Pelletier et al. Sep 2011 B2
8020384 Pelletier et al. Sep 2011 B2
20060005542 Campbell et al. Jan 2006 A1
20070107437 Evulet et al. May 2007 A1
20070227155 Nemet et al. Oct 2007 A1
20090211257 Cankovic et al. Aug 2009 A1
20090293482 Davis et al. Dec 2009 A1
20100071374 Fox et al. Mar 2010 A1
20100077720 Poyyapakkam Apr 2010 A1
20100077756 Poyyapakkam Apr 2010 A1
20100205970 Hessler et al. Aug 2010 A1
Related Publications (1)
Number Date Country
20100077757 A1 Apr 2010 US