The application relates generally to gas turbine engine and, more particularly, to combustor heat shield cooling.
Gas turbine combustors are the subject of continual improvement, to provide better cooling, better mixing, better fuel efficiency, better performance, etc. at a lower cost. For example, heat shields are known to provide better protection to the combustor, but heat shields also require cooling. The heat shield panels are typically mounted to the combustor shell by means of studs extending from the back face of each panel for engagement with bolts on the outside of the combustor shell. The cooling of some panel areas around the studs may be challenging, especially on smaller sized heat shield panels, and, thus, hot spots may occur.
In one aspect there is provided a combustor heat shield for a gas turbine engine, comprising: a heat shield panel adapted to be mounted to in spaced-apart relationship to an inner surface of a combustor shell to define an air gap therebetween them, a plurality of studs projecting from the back face of the heat shield panel, at least one of the studs having a threaded portion at a distal end and a channel defined in a peripheral surface of the at least one stud, the channel extending along the at least one stud from an inlet end at the stud distal end connectable to a source of cooling air outside of the combustor shell to an outlet end disposed so as to communicate with the air gap when the heat shield panel is mounted to the combustor shell.
In a second aspect, there is provided a gas turbine engine combustor comprising: a combustor shell defining a combustion chamber; and a heat shield mounted to an inner surface of the combustor shell, the heat shield having a back face facing the inner surface of the combustor shell and being spaced therefrom to define an air gap, cooling holes in said combustor shell for directing a primary flow of cooling air over said back face of the heat shield, the heat shield further having studs projecting from the back face thereof through corresponding mounting holes defined in the combustor shell for threaded engagement with associated nuts outside of the combustor shell, each stud and associated nut forming a stud and nut assembly, at least one of said stud and nut assembly defining a channel extending longitudinally between an inlet end connected to a source of cooling air and an outlet end in communication with the air gap, the outlet end being oriented to direct cooling air flowing through said channel in a direction generally corresponding to the primary flow of the cooling air flowing over the back face of the heat shield panel.
Reference is now made to the accompanying figures, in which:
The combustor 16 is housed in a plenum 17 supplied with compressed air from compressor 14. As shown in
The radially inner and outer liners 24, 26 and the bulkhead 28 are provided on their hot interior side with heat shields. The heat shields can be segmented to provide a thermally decoupled combustor arrangement. For instance, circumferential arrays of heat shield panels 32a, 32b can be respectively mounted to the hot interior side of the radially inner and radially outer liners 24, 26, and another circumferential array of heat shield panels 32c can be mounted to the hot interior side of the dome or bulkhead 28. It is understood that more than one circumferential array of heat shield panels can be mounted axially along the inner and outer liners 24, 26. Reference numeral 32 will be used herein after to generally refer to the heat shield panels irrespectively of their positions on the combustor shell 20.
The heat shield panels 32 are mounted to the combustor shell 20 with the back face of the heat shield panels 32 in closed facing, space-apart, relationship with the interior surface of the combustor shell 20. The back face of the heat shield panels 32 and the interior surface of the combustor shell 20 define an air gap 34 for receiving cooling air to cool down the heat shield panels 32. Cooling holes, such as impingement holes, shown at 35 in FIG.3, are defined in the combustor shell 20 for directing air from the plenum 17 into the air gap 34. Sealing rails 36 projecting from the back face of the heat shield panels 32 into sealing engagement with the interior surface of the combustor shell 20 provide for the compartmentalization of the air gap 34 formed by each array of heat shield panels 32 and the interior side of the combustor shell 20. The sealing rails 36 may take various forms. For instance, they can take the form of a ring 36a (
As shown in
More particularly, as shown in
The cooling of the heat shield panels 32 around the base of the studs 44 may be challenging. This is especially true for small combustion shells where there is little or no room in the combustor shells to provide cooling holes adjacent to and on the downstream side of the studs relative to a primary flow direction of cooling air over the back face of the heat shield panel. Also, when used, washers around the studs may block cooling holes in the combustor liner and, thus, prevent the delivery of cooling air around the base of the studs. Improper or insufficient cooling of the areas around the studs may result in hot spots. Also if the studs are not properly cooled their structural integrity may be compromised.
As shown in
Referring to
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For instance, the air cooling channel could be partly or totally defined in the nut engaged on the threaded faster. A slot could be formed at the inner diameter of the nut. Any modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4422300 | Dierberger | Dec 1983 | A |
4749298 | Bundt | Jun 1988 | A |
5072785 | Dressler | Dec 1991 | A |
5079912 | Cires | Jan 1992 | A |
9518737 | Pidcock | Dec 2016 | B2 |
20020124572 | Pidcock | Sep 2002 | A1 |
20030123953 | Razzell | Jul 2003 | A1 |
20080104962 | Patel | May 2008 | A1 |
20080264065 | Gerendas | Oct 2008 | A1 |
20110011095 | Ladd | Jan 2011 | A1 |
20160186997 | Sadil | Jun 2016 | A1 |
20160313005 | Chang | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
202418176 | Sep 2010 | CN |
Number | Date | Country | |
---|---|---|---|
20150096302 A1 | Apr 2015 | US |