The present invention generally involves an igniter for a combustor. More specifically, the invention relates to a igniter having micro channels for cooling.
During operation of a gas turbine engine, pressurized air from a compressor flows into a head end volume defined within the combustor. The pressurized air flows from the head end volume into an inlet to a corresponding premix passage of a respective fuel nozzle. Fuel is injected into the flow of pressurized air within the premix passage where it mixes with the pressurized air so as to provide a fuel and air mixture to a combustion zone or chamber defined downstream from the fuel nozzle.
An ignition system including an igniter lead disposed within an igniter housing or jacket is typically used to ignite the fuel and air mixture within combustion zone. In particular ignition systems, a portion of the igniter body may extend at least partially into the flow of combustion gases. As such, the igniter housing may be subject to an operational temperature that may cause the igniter lead to deteriorate over time. Therefore, improved cooling of the igniter housing may improve performance of the igniter.
Aspects and advantages are set forth below in the following description, or may be obvious from the description, or may be learned through practice.
One embodiment of the present disclosure is an igniter assembly. The igniter assembly includes an igniter housing including an outer surface a first end wall and a second end wall and a preformed cover plate having an inner surface that is attached to the outer surface of the igniter housing. A plurality of micro-cooling channels is formed within at least one of the inner surface of the preformed cover plate and the outer surface of the igniter housing.
Another embodiment of the present disclosure is a combustor. The combustor includes a combustion liner defining a radial opening and a combustion chamber therein, an annular flow passage that surrounds the combustion liner and an igniter assembly. The igniter assembly comprises an igniter housing that extends radially through the radial opening. The igniter housing also includes an outer surface a first end wall and a second end wall. The second end wall is disposed within the combustion chamber. A first portion of the igniter housing extends into the combustion chamber and a second portion of the igniter housing is at least partially disposed within the annular flow passage. The igniter assembly further includes a preformed cover plate having an inner surface attached to the outer surface of the igniter housing and the preformed cover plate is at least partially disposed within the combustion chamber. A plurality of micro-cooling channels is formed within at least one of the inner surface of the preformed cover plate and the outer surface of the igniter housing.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the of various embodiments, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the disclosure.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. The term “radially” refers to the relative direction that is substantially perpendicular to an axial centerline of a particular component, the term “axially” refers to the relative direction that is substantially parallel and/or coaxially aligned to an axial centerline of a particular component, and the term “circumferentially” refers to the relative direction that extends around the axial centerline of a particular component.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Each example is provided by way of explanation, not limitation. In fact, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents. Although exemplary embodiments of the present disclosure will be described generally in the context of an igniter for a combustor of a land based power generating gas turbine for purposes of illustration, one of ordinary skill in the art will readily appreciate that embodiments of the present disclosure may be applied to any style or type of combustor for a turbomachine and are not limited to combustors or combustion systems for land based power generating gas turbines unless specifically recited in the claims.
Referring now to the drawings,
During operation, air 20 flows into the compressor 12 where the air 20 is progressively compressed, thus providing compressed or pressurized air 22 to the combustor 14. At least a portion of the compressed air 22 is mixed with a fuel 24 within the combustor 14 and burned to produce combustion gases 26. The combustion gases 26 flow from the combustor 14 into the turbine 16, wherein energy (kinetic and/or thermal) is transferred from the combustion gases 26 to rotor blades (not shown), thus causing shaft 18 to rotate. The mechanical rotational energy may then be used for various purposes such as to power the compressor 12 and/or to generate electricity. The combustion gases 26 may then be exhausted from the turbine 16. In particular configurations, an ignition system 100 is used to ignite the compressed air 22 and fuel 24 mixture.
In particular embodiments, as shown in
As shown in
In various embodiments, as shown in
As shown in
In certain embodiments, the plurality of micro-cooling channels 116 may have a width and/or depth of less than about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, or 750 μm. The plurality of micro-cooling channels 116 may have circular, semi-circular, oval, curved, rectangular, triangular, or rhomboidal cross-sections. The preceding list is merely illustrative and is not intended to be exhaustive. The width and depth could vary throughout its length. Additionally, in certain embodiments, the plurality of micro-cooling channels 116 may have varying cross-sectional areas. Heat transfer enhancements such as turbulators or dimples may be installed in the plurality of micro-cooling channels 116 as well.
In particular embodiments, as shown in
In particular embodiments, as shown in
As shown collectively in
In particular embodiments, as shown collectively in
In particular embodiments, the micro-cooling channels 130 may extend along the inner surface 132 of the preformed cover plate in a serpentine pattern. In particular embodiments, the micro-cooling channels 130 may extend along the inner surface 132 of the preformed cover plate in a helical pattern. In particular embodiments, one or more of the plurality of micro-cooling channels 130 defined along the inner surface 132 of the preformed cover plate 118 may be aligned with a respective micro-cooling channel 116 defined along the outer surface of the igniter housing 104.
In operation, a cooling medium such as the compressed air 22 from the compressor 12, enters at least one channel inlet 120 of the one or more channel inlets and flows through the plurality of micro-cooling channels defined beneath the preformed cover plate 118 and/or through the plurality of micro-cooling channels 130 defined along the inner surface 132 of the preformed cover plate 118, thereby transferring thermal energy provided by the combustion gases 26 away from the igniter housing 104 and/or the preformed cover plate 118. In particular embodiments, a portion or all of the cooling medium may be exhausted from the micro-cooling channels 116, 130 into the annular flow passage 36 via one or more of the channel outlets 122 disposed within the annular flow passage 36 so that it may be mixed with the compressed air 22 flowing though the annular flow passage 36 upstream from the combustion chamber 34, thereby increasing the compressed air flow to the head end volume of the combustor 14. In particular embodiments, a portion or all of the cooling medium may be exhausted from the micro-cooling channels 116, 130 via one or more of the channel outlets 122 defined along the second end wall 126 of the igniter housing 104, thereby providing a film of cooling medium to the second end wall 126.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.