This invention relates generally to combustor liners for gas turbine engines and more particularly to liners which are assembled from a plurality of annular bands.
A gas turbine engine includes a compressor that provides pressurized air to a combustor wherein the air is mixed with fuel and ignited for generating hot combustion gases. These gases flow downstream to one or more turbines that extract energy therefrom to power the compressor and provide useful work such as powering an aircraft in flight. Combustors used in aircraft engines typically include inner and outer combustor liners to protect the combustor case and surrounding engine components from the intense heat generated by the combustion process.
One particular type of combustor liner is comprised of a plurality of annular sheet metal bands that are joined together at overlapping circumferential joints to form an assembled liner. Prior art inner and outer liners of this type are presently constructed by brazing the sheet metal bands together at the overlapping joints. The process involves tack welding the bands in place, followed by manually applying a braze filler at each braze joint, followed by a furnace cycle braze operation. The braze joints are then inspected, for example by x-raying the joints. A large proportion of liners joined in this manner, in some instances over 90%, exhibit defects such as voids in the braze joints, which require a second braze operation involving the application of more slurry in the areas which have braze voids and a subsequent second furnace cycle and additional x-ray inspection. Brazing of the liners is costly and increases the manufacturing cycle time needed to produce the liners.
Accordingly, there is a need for combustor liners having a lower cost and simplified manufacturing process.
The above-mentioned need is met by the present invention, which provides a combustor liner having first and second annular bands which have an overlapping circumferential joint area. A weld is disposed in the joint area and encompasses substantially all of the axial length of the joint area. The invention also provides a method for producing such a combustor liner.
The present invention and its advantages over the prior art will become apparent upon reading the following detailed description and the appended claims with reference to the accompanying drawings.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the concluding part of the specification. The invention, however, may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
Referring now to
The axial length L2 of the weld joint area 126 may be made shorter than the brazed joint area axial length L1 because of the greater strength of the welded joint as compared to the brazed joint. The axial length L2 may of course be varied to suit a particular application. If the axial length L2 is too short the joint between the bands will not be able to sustain the expected shear loads during operation. On the other hand, excessive axial length requires additional processing and materials without providing an additional benefit. In the illustrated example the weld joint area axial length L2 is about 3 to 5 times the total thickness T of both bands 116 at the weld joint area 126.
The bands 116 are joined by a laser welding process. The laser welding process is especially suited to joining the bands 116, which have a thickness of only about 1.0 mm (0.04 in.) each. The laser welding process, unlike other welding processes, allows the bands 116 to be joined without overheating them or distorting them into an out-of-round condition. Initially, the bands 116 are temporarily held together by a plurality of tack welds in an known manner. Referring to
The laser weld parameters are chosen to result in the full penetration weld described above. Suitable examples of weld parameters would include a Nd:YAG laser of about 500 to about 3000 Watts output power, operated continuously, with a weld speed of about 5 to about 1500 inches per minute, or an Nd:YAG laser pulsed at about 10 to about 60 Joules/pulse with a weld speed of about 3 to about 30 inches per minute. A CO2 laser of about 1000 to about 5000 Watts output power could also be used, operated continuously, with a weld speed of about 50 to about 500 inches per minute. These parameters are intended as examples and may be varied to suit a particular application. Any type of laser weld equipment and parameters operable to produce full penetration welds may be used.
After the first weld bead 128 is created around the entire circumference of the weld joint area 126, the laser beam is de-energized and the laser apparatus 158 is then moved a small distance along the Y axis. The beam is again directed at the weld joint area 126 while the inner liner 114 is rotated. This forms a second weld bead 130 which penetrates both bands 116 in the joint area 126 and also overlaps the first weld bead 128 in the axial direction, as shown in
The invention described herein provides an improved combustor liner and method for its assembly. The process described herein will be much less labor intensive relative to brazing of liners since the braze slurry application is eliminated, there is no furnace cycle time required and no second braze operation. The end result is a significant reduction in cost and cycle time to complete the liner joining process.
The foregoing has described a combustor liner having first and second annular bands which define an overlapping circumferential joint area, wherein a weld is disposed in the joint area encompassing substantially all of the axial length of the joint area; and a method for producing such a combustor liner. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention as defined in the appended claims.
This application is a Division of application Ser. No. 10/028,028, filed Dec. 21, 2001 now U.S. Pat. No. 6,651,437.
Number | Name | Date | Kind |
---|---|---|---|
2702987 | Nicolin | Mar 1955 | A |
4149373 | Jones et al. | Apr 1979 | A |
4296606 | Reider | Oct 1981 | A |
4358658 | Van Blarigan et al. | Nov 1982 | A |
4458481 | Ernst | Jul 1984 | A |
4485630 | Kenworthy | Dec 1984 | A |
4787209 | Taylor et al. | Nov 1988 | A |
4821387 | Bouillot et al. | Apr 1989 | A |
5086968 | Fawley et al. | Feb 1992 | A |
5168142 | Gartner et al. | Dec 1992 | A |
5209067 | Barbier et al. | May 1993 | A |
5302795 | Kurokawa et al. | Apr 1994 | A |
5375420 | Falls et al. | Dec 1994 | A |
6032361 | Makino et al. | Mar 2000 | A |
6054672 | Foster et al. | Apr 2000 | A |
6112642 | Jarrett et al. | Sep 2000 | A |
6434821 | Nelson et al. | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
408200681 | Aug 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20040103665 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10028028 | Dec 2001 | US |
Child | 10722101 | US |