The present invention generally involves a combustor assembly. More specifically, the invention relates to a combustor including an axially staged fuel injector assembly.
A gas turbine engine generally includes a compressor section, a combustion section, and a turbine section. The combustion section typically includes at least one combustor which includes a fuel nozzle and a combustion liner positioned within a combustor casing. The combustion liner defines a primary combustion chamber within the combustor downstream from the fuel nozzle. The combustion liner may be circumferentially surrounded by a sleeve such as an impingement sleeve or a flow sleeve.
The sleeve is radially spaced from the combustion liner and a flow or cooling passage is defined therebetween. In particular configurations, a fuel injector extends radially through the sleeve, the cooling passage and the combustion liner. The fuel injector is axially staged or positioned downstream from the fuel nozzle(s). In particular configurations, a boss extends from the sleeve to the liner. The boss defines and/or circumferentially surrounds an opening in the combustion liner. The fuel injector extends radially within the boss and terminates proximate to the opening in the combustion liner. In order to accommodate the fuel injector, the boss must be sized larger than the fuel injector.
During operation of the combustor, compressed air flows through the cooling passage, past the boss and into a head-end volume of the combustor. The relatively large boss creates a bluff body or flow restriction within the cooling passage which results in non-uniform flow through the cooling passage upstream from the head-end volume. Once the compressed air reaches the head-end volume, it reverses flow direction and enters the fuel nozzle and/or the primary combustion chamber. Non-uniformity of the compressed air flowing into the head-end volume and into the fuel nozzle may effect overall combustor performance.
Aspects and advantages are set forth below in the following description, or may be obvious from the description, or may be learned through practice.
One embodiment of the present disclosure is a fuel injector assembly. The fuel injector assembly includes an injector body having an inner wall and a boss that is rigidly connected to the injector body and that includes an inner wall. The inner wall of the boss and the inner wall of the injector body together define a flow passage of the fuel injector assembly. The injector body defines an inlet to the flow passage and the boss defines an outlet of the flow passage.
Another embodiment of the present disclosure is a combustor. The combustor includes a combustion liner that defines a hot gas path within the combustor and a first radial opening. The combustor further includes a fuel injector assembly including an injector body having an inner wall and a boss including an inner wall. An upstream end of the boss is rigidly connected to the injector body and a downstream end of the boss is connected to the combustion liner. The inner wall of the boss and the inner wall of the injector body together define a flow passage of the fuel injector assembly. The flow passage is in fluid communication with the hot gas path via the first radial opening.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of various embodiments, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the disclosure.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. The term “radially” refers to the relative direction that is substantially perpendicular to an axial centerline of a particular component, the term “axially” refers to the relative direction that is substantially parallel and/or coaxially aligned to an axial centerline of a particular component, and the term “circumferentially” refers to the relative direction that extends around the axial centerline of a particular component.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Each example is provided by way of explanation, not limitation. In fact, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents. Although exemplary embodiments of the present disclosure will be described generally in the context of a combustor for a land based power generating gas turbine for purposes of illustration, one of ordinary skill in the art will readily appreciate that embodiments of the present disclosure may be applied to any style or type of combustor for a turbomachine and are not limited to combustors or combustion systems for land based power generating gas turbines unless specifically recited in the claims.
Referring now to the drawings,
During operation, air 20 flows into the compressor 12 where the air 20 is progressively compressed, thus providing compressed or pressurized air 22 to the combustor 14. At least a portion of the compressed air 22 is mixed with a fuel 24 within the combustor 14 and burned to produce combustion gases 26. The combustion gases 26 flow from the combustor 14 into the turbine 16, wherein energy (kinetic and/or thermal) is transferred from the combustion gases 26 to rotor blades (not shown), thus causing shaft 18 to rotate. The mechanical rotational energy may then be used for various purposes such as to power the compressor 12 and/or to generate electricity. The combustion gases 26 may then be exhausted from the gas turbine 10.
One or more combustion liners or ducts 38 may at least partially define a combustion chamber or zone 40 downstream from the one or more fuel nozzles 34 and/or may at least partially define a hot gas path 42 through the combustor 14 for directing the combustion gases 26 (
In particular embodiments, the combustion liner 38 is at last partially circumferentially surrounded by an outer sleeve 46. The outer sleeve 46 may be formed as a single component or formed by multiple sleeve segments such as by a flow sleeve and an impingement sleeve. The outer sleeve 46 is radially spaced from the combustion liner 38 so as to define a cooling flow passage 48 therebetween. The outer sleeve 46 may define a plurality of inlets or holes (not shown) which provide fluid communication between the cooling flow passage 48 and the high pressure plenum 30. The cooling flow passage 48 provides a flow path between the high pressure plenum 30 and the head-end volume 36. In various embodiments, as shown in
In particular embodiments, a centerbody 108 extends coaxially within the flow passage 104. A plurality of swirler or turning vanes 110 extends from the centerbody 108 to an inner surface or wall 112 of the injector body 102. The plurality of turning vanes 110 is annularly arranged around the centerbody 108 with respect to a centerline of the fuel injector assembly 100. In particular embodiments, the injector body 102 includes a flange or projection 114 that extends outwardly from the centerline of the fuel injector assembly 100 and at least partially circumferentially around the injector body 102.
In particular embodiments, the injector body 102 may include and/or define a fuel plenum 116 disposed within the injector body 102 between the inner wall 112 and an outer wall 118 of the injector body 102. Each or at least one turning vane 110 of the plurality of turning vanes 110 may include at least one fuel port 120 which is in fluid communication with the fuel plenum 116. In particular embodiments, the centerbody 108 may define a fluid passage 122 therein. The fluid passage 122 may be used to provide fuel to the hot gas path 42 via the centerbody 108 and/or to provide cooling air to a downstream end or tip portion 124 of the centerbody 108.
As further shown in
In particular embodiments, the boss 126 is rigidly connected to the combustion liner 38. For example, the boss 126 may be welded or mechanically fastened via bolts or the like. In particular embodiments, the boss 126 may be cast or formed as part of the combustion liner 38. The downstream end 132 of the boss 126 extends into and/or circumferentially surrounds or defines a first radial opening 50 through the combustion liner 38. The first radial opening 50 is defined downstream from the fuel nozzle(s) 34 and provides for fluid communication from the flow passage 104 of the fuel injector assembly 100 into the hot gas path 42.
In particular embodiments, as shown in
As shown in
In particular embodiments, as shown in
In particular embodiments at least one of the injector body 102 and the boss 126 defines a plurality of manifold outlets 146 circumferentially spaced about at least one of the inner wall 112 of the injector body 102 and the inner wall 128 of the boss 126. Each manifold outlet 146 is in fluid communication with the purge air manifold 142. One or more manifold outlets 146 of the plurality of manifold outlets 146 may be disposed or formed along or proximate to a joint 148 that is formed where the inner wall 112 of the injector body 102 and the inner wall 128 of the boss 126 intersect. Due to tolerances and/or alignment issues, the inner wall 112 of the injector body 102 and the inner wall 128 of the boss 126 may not form a smooth continuous surface at the joint 148, thereby potentially resulting in flow disruptions within the flow passage 104 across the joint 148. During operation, a purge medium such as a portion of the compressed air 22 may enter the purge air manifold 142 via the inlet(s) 144 and exit the purge air manifold via the outlets 146, thereby providing a film of air across the joint 148, thereby reducing flow disruptions within the flow passage 104.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.