Gas turbine engines are the preferred class of internal combustion engine for many high power applications. Fundamentally, a gas turbine engine features an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber in-between. The combustion chamber can include multiple fuel/air mixer assemblies to mix fuel and air for combustion. Fuel can be supplied to the combustion chamber in a staged combustion scheme, where the fuel injectors or fuel/air mixers are divided into groups or stages, typically two to four stages. Each stage can be operated separately to provide optimal emission and operability of the engine across full power range by turning on the combustion sequentially in stages.
When the engine operates at lower power settings, only one or some of the stages are turned on to flow fuel for combustion. The remaining stages are off and have no fuel flow but airflow, in order to maintain adequate flame quality such as combustion stability and efficiency.
When the engine operates at higher power setting, where the combustor's environments are harsher, all stages of fuel injector or fuel/air mixers are turned on so to spread out the fuel flow across the combustor dome evenly so to minimize the damaging hot flame streaks and the resulting high emissions that may otherwise exacerbated by uneven distribution of fuel and flames if some stages were left off.
Like reference symbols in the various drawings indicate like elements.
As shown, the gas turbine engine 10 generally facilitates a continuous axial flow of gas. That is, gas generally flows through the engine 10 in the axially downstream direction indicated by the arrows in
The combustor 100 includes an assembly with a combustion shield 102, multiple fuel injectors or fuel/air mixers 104, and a combustor dome and dome assembly 106 that includes the fuel injectors or fuel/air mixers 104. At the combustor 100, the high-pressure air 18 is mixed with liquid hydrocarbon fuel and ignited to produce heated combustion products 22. The combustion products 22 are passed through multiple stages of a turbine 24. The turbine 24 extracts energy from the high-pressure, high-temperature combustion products 22. Energy extracted from the combustion products 22 by the turbine 24 drives the compressor 16, which is coupled to the turbine 24 by the main shaft 20. Exhaust gas 26 leaving the turbine 24 is accelerated into the atmosphere through an exhaust nozzle 28 to provide thrust or propulsion power.
The combustor dome assembly 200 includes an annular, ring-shaped arrangement of multiple fuel/air mixer assemblies 210, 212. The fuel/air mixer assemblies 210, 212 can be arranged nested circumferentially about the longitudinal axis of the combustor. Although only one ring of fuel/air mixer assemblies 210, 212 is shown, multiple rings of fuel/air mixer assemblies 210, 212 can be used. Also, the arrangement of fuel/air mixer assemblies 210, 212 can have configurations other than annular.
The combustor assembly 200 can include multiple, different types of mixer assemblies. For example,
In the example fuel/air mixer assemblies 210, 212, the mixer elements 214 are affixed to each other as well as to the center element 208 and located symmetrically around the center mixer element 208, equidistant from a center location (at the center of the center mixer element 208). The mixer elements 208, 214 can be located in other configurations (e.g. asymmetrically and/or otherwise).
The first and second types of mixer assemblies 210, 212 can be positioned alternately (i.e., alternating between the first type of mixer 210 and the second type of mixer 212) around the combustor assembly. In other implementations, the mixer assemblies 210, 212 can be positioned in other arrangements, including different alternating patterns and non-alternating arrangements.
The fuel injector assemblies 220a-k are fluidly connected to one set of fuel circuits, and the fuel injector assemblies 222a-k are fluidly connected to a separate, independent set of fuel circuits. Fuel can be supplied to fuel injector assemblies 222a-k independently of fuel injector assemblies 220a-k. The fuel injector assemblies 220a-k, 222a-k are thus a staged system that can to supply fuel independently to different groups of fuel injectors and mixer assemblies. The separate fuel circuits can be selectively supplied or denied fuel for different modes of operation to produce different combustion conditions. For example, for low-power operation, fuel can be supplied only to the fuel injector assemblies 220a-k coupled to the recessed mixer assemblies 210, while no fuel or only partial fuel is supplied to fuel injector assemblies 222a-k coupled to mixer assemblies 212. For high-power operation, fuel can be supplied to all fuel injector assemblies 220a-k and 222a-k.
The recessed mixer assemblies 210 as shown in
As above, during low-power operation, fuel is supplied to the recessed mixer assemblies 310 and is partially supplied or not supplied to the non-recessed mixer assemblies 312. In this example however, each recessed mixer assembly 310 has fewer fuel injector tips and fuel/air mixer elements than the recessed mixer assemblies 210 in the combustor dome assembly 200 from
The mixer assembly 506 is coupled to a fuel injector assembly 512, the recessed mixer assembly 504 is coupled to a separate fuel injector assembly 510, and the center mixer 514 is coupled to another separate, independent fuel injector assembly 516. The fuel injector assemblies 510, 512, and 516 can each be independently supplied with fuel in order to provide different modes of operation, such as a low-power operation or a high-power operation. As in
Notably, the concepts herein have been discussed in connection with a combustor and assemblies for a gas turbine engine. However, they are not so limited. For example, the same concepts could be applied to other forms of engines, as well as other apparatus using combustors and/or combustion chambers.
While this specification contains many details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features specific to particular examples. Certain features that are described in this specification in the context of separate implementations can also be combined. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple embodiments separately or in any suitable sub-combination.
It follows from the discussion above that the concepts herein encompass a gas turbine combustor dome assembly with a first fuel/air mixer assembly that includes a first fuel injector and a plurality of first fuel/air mixer elements. Each first fuel/air mixer element defines an air flow passage therethrough and has an outlet in a first plane. The gas turbine combustor dome assembly includes a second fuel/air mixer assembly. The second fuel/air mixer assembly includes a second fuel injector and a plurality of second fuel/air mixer elements. Each second mixer element defines an air flow passage therethrough and has an outlet in a second plane. The second plane is longitudinally offset from the first plane.
The concepts also encompass supplying air without fuel at an outlet of a first fuel/air mixer assembly in a gas turbine combustor assembly. Concurrently, a fuel and air mixture is burned at an outlet of a second, adjacent fuel/air mixer assembly in the gas turbine combustor assembly. The second mixer assembly has an outlet in a second plane that is recessed relative to a first plane of an outlet of the first fuel/air mixer assembly.
The concepts also encompass a device with a plurality of gas turbine fuel/air mixer assemblies arranged in a ring. A subset of the fuel/air mixer assemblies is recessed from the remainder of the fuel/air mixer assemblies.
The aspects above include some, none, or all of the following features. The first fuel injector can be changeable between supplying fuel and supplying no fuel, independent of whether the second fuel injector is supplying fuel. A plurality of second fuel/air mixer assemblies can be nested into ring with a plurality of first fuel/air mixer assemblies. The first and second fuel/air mixer assemblies are arranged in alternating order around the ring. The second fuel/air mixer elements produce a flame in the longitudinal direction at operating conditions. The second plane is longitudinally offset from the first plane a distance substantially equal to the length of the flame. The second fuel/air mixer elements are behind the first fuel/air mixer elements. The plurality of first fuel/air mixer elements are arranged around a center location and the first fuel injector resides at the center location. A center of each first fuel/air mixer elements is equal distance from the center location. The gas turbine combustor assembly includes the plurality of first fuel/air mixer elements. The first fuel/air mixers can have a different number of first fuel/air mixer elements than the number of second fuel/air mixer elements of the second fuel/air mixer assembly. The air flow passage can be a venturi.
A number of examples have been described. Nevertheless, it will be understood that various modifications can be made. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3905192 | Pierce et al. | Sep 1975 | A |
5197290 | Lee et al. | Mar 1993 | A |
5333459 | Berger | Aug 1994 | A |
5343693 | Komatsu et al. | Sep 1994 | A |
5373693 | Zarzalis et al. | Dec 1994 | A |
5417054 | Lee et al. | May 1995 | A |
5490378 | Berger et al. | Feb 1996 | A |
5505045 | Lee et al. | Apr 1996 | A |
5664412 | Overton | Sep 1997 | A |
5749219 | DuBell | May 1998 | A |
6199367 | Howell | Mar 2001 | B1 |
6530223 | Dodds et al. | Mar 2003 | B1 |
7200986 | Sanders | Apr 2007 | B2 |
7302801 | Chen | Dec 2007 | B2 |
7500347 | Sanders et al. | Mar 2009 | B2 |
7827795 | Hicks et al. | Nov 2010 | B2 |
7832377 | Lee et al. | Nov 2010 | B2 |
8205643 | Lee et al. | Jun 2012 | B2 |
8234873 | Houtman et al. | Aug 2012 | B2 |
9188341 | McMasters et al. | Nov 2015 | B2 |
20070028620 | McMasters et al. | Feb 2007 | A1 |
20070074452 | Yates | Apr 2007 | A1 |
20080163627 | Elkady et al. | Jul 2008 | A1 |
20100051724 | Hicks et al. | Mar 2010 | A1 |
20110056205 | Carroni | Mar 2011 | A1 |
20120031097 | McMahan | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
2557362 | Feb 2013 | EP |
2626635 | Aug 2013 | EP |
H0518537 | Jan 1993 | JP |
WO2010128882 | Nov 2010 | WO |
Entry |
---|
PCT International Search Report and Written Opinion of the International Searching Authority, PCT/US2015/011419, Apr. 2, 2015, 12 pages. |
Lee et al., “Gas Turbine Engine Flow Regulating”, PCT Application Serial No. PCT/US13/46413, filed Jun. 18, 2013, 25 pages. |
Lee, “Multi-Swirler Fuel/Air Mixer with Centralized Fuel Injection”, U.S. Appl. No. 14/076,902, filed Nov. 11, 2013, 24 pages. |
PCT International Preliminary Report on Patentability, PCT/US2015/011419, Aug. 11, 2016, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20150211742 A1 | Jul 2015 | US |