The present disclosure relates to a command field, and more particularly to a command device and a manufacturing method thereof.
Currently, a wearable device which is manufactured as a command device that can communicate with an external device (e.g., a mobile phone) is developed. For example, it is increasingly common to manufacture a smart wristwatch by disposing a wireless antenna and a functional module in a wristwatch. A chip antenna, a helix or spiral antenna, a patch antenna, or a loop antenna is usually utilized in the conventional smart wristwatch for receiving and transmitting signals. The above-mentioned antennas are a type of electromagnetic antenna. That is, the above-mentioned antennas receive and transmit signals by an electromagnetic field.
The conventional smart wristwatch structure usually comprises a glass, a dial, a watch case, and a bottom case. The dial, the watch case, and the bottom case construct an accommodating space from top to bottom. The antenna is disposed in the accommodating space inside the smart wristwatch or in the watch case. However, the dial, the watch case, and the bottom case of the conventional smart wristwatch are generally made of metal. The metal has the characteristics of shielding signals. Accordingly, the signals received or transmitted by the antenna disposed in the accommodating space or in the watch case of the conventional smart wristwatch are affected by the watch case, the bottom case, and the dial which are made of metal.
Even if at least one of the dial, the watch case, and the bottom case constructing the accommodating space is not made of metal or a part of at least one of the dial, the watch case, and the bottom case is not made of metal, the antenna is still affected by the objects (the watch case, the bottom case, and the dial) constructing the accommodating space, a movement, a functional module, or a battery in the accommodating space because the antenna is in the accommodating space or in the watch case. As a result, a wireless communication distance between the antenna and a mobile terminal is significantly reduced.
Furthermore, a conventional wristwatch does not comprise a touch screen and does not have an electronic knob (a button). Even if the conventional wristwatch is attached with various communicating and operating modules, only gesture recognition can operate the conventional wristwatch. There is no other way to operate the conventional wristwatch. A user might not be familiar with an action for operating the conventional wristwatch. For example, if the user rotates the conventional wristwatch three times, the wristwatch can control a mobile phone to generate a sound. However, the user might not be familiar with the correct action for rotating the conventional wristwatch, so that the conventional wristwatch cannot be operated correctly.
Consequently, there is a need to solve the above-mentioned problems in the prior art.
An objective of the present disclosure is to provide a command device and a manufacturing method thereof which can solve the problems in the prior art.
The command device of the present disclosure comprises a top cover; a housing; a bottom cover, the top cover, the housing, and the bottom case constructing an accommodating space from top to bottom; a transparent conductive film formed on a lower surface of the top cover, wherein after the transparent conductive film is formed on the surface of the top cover, a structure formed by the top cover and the transparent conductive film has a transmittance greater than 70%, and a combination of the top cover and the transparent conductive film does not display an image; and a functional module disposed in the accommodating space, the functional module comprising: a touch detection unit configured to sense a signal change via the transparent conductive film, wherein the signal change is generated by an action performed on the top cover or above the top cover; and a processor configured to receive the signal change and output a corresponding command according to the signal change.
The command device of the present disclosure comprises a top cover; a housing; a bottom cover, the top cover, the housing, and the bottom case constructing an accommodating space from top to bottom; a transparent conductive film formed on a lower surface of the top cover, wherein after the transparent conductive film is formed on the surface of the top cover, a structure formed by the top cover and the transparent conductive film has a transmittance greater than 70%, and a combination of the top cover and the transparent conductive film does not display an image; and a functional module disposed in the accommodating space, the functional module comprising: a wireless communication unit configured to wirelessly communicate with a mobile terminal via the mobile terminal; a touch detection unit configured to sense a signal change via the transparent conductive film, wherein the signal change is generated by an action performed on the top cover or above the top cover; and a processor configured to receive the signal change and output a corresponding command according to the signal change.
The command device of the present disclosure comprises a transparent base material; a transparent conductive film formed on a surface of the transparent base material, wherein after the transparent conductive film is formed on the surface of the transparent base material, a structure formed by the transparent base material and the transparent conductive film has a transmittance greater than 70%, and a combination of the transparent base material and the transparent conductive film does not display an image; and a functional module disposed in the accommodating space, the functional module comprising: a touch detection unit configured to sense a signal change via the transparent conductive film, wherein the signal change is generated by an action performed on the top cover or above the top cover; and a processor configured to receive the signal change and output a corresponding command according to the signal change.
A manufacturing method of a command device of the present disclosure comprises providing a top cover, a housing, and a bottom cover, wherein the top cover, the housing, and the bottom cover construct an accommodating space from top to bottom; forming a transparent conductive film on a lower surface of the top cover, wherein after the transparent conductive film is formed on the surface of the top cover, a structure formed by the top cover and the transparent conductive film has a transmittance greater than 70%, and a combination of the top cover and the transparent conductive film does not display an image; and disposing a functional module in the accommodating space, the functional module comprising: a touch detection unit configured to sense a signal change via the transparent conductive film, wherein the signal change is generated by an action performed on the top cover or above the top cover; and a processor configured to receive the signal change and output a corresponding command according to the signal change.
A manufacturing method of a command device of the present disclosure comprises providing a transparent base material; forming a transparent conductive film on a surface of the transparent base material, wherein after the transparent conductive film is formed on the surface of the transparent base material, a structure formed by the transparent base material and the transparent conductive film has a transmittance greater than 70%, and a combination of the transparent base material and the transparent conductive film does not display an image; and disposing a functional module in the accommodating space, the functional module comprising: a touch detection unit configured to sense a signal change via the transparent conductive film, wherein the signal change is generated by an action performed on the top cover or above the top cover; and a processor configured to receive the signal change and output a corresponding command according to the signal change.
In the command device of the present disclosure, the transparent conductive film can sense an action performed on the top cover or over the top cover. That is, the command device of the present disclosure can sense the action on the top cover or above the top cover even if a touch panel is not dispose in the command device. A user can operate the command device more easily. The command device may be a wristwatch, an electronic watch, glasses, and so on.
The present disclosure is a command device comprising a short distance communication module disposed therein. The command device may be but not limited to a wristwatch. Please refer to
The command device comprises a top cover 10, a transparent conductive film 12, a time display element 14, a movement 16, a functional module 18, a housing 20, a crown 22, a battery 24, and a bottom cover 26.
The top cover 10, the housing 20, and the bottom cover 26 construct an accommodating space 28 from top to bottom. The top cover 10, the housing 20, and the bottom cover 26 are configured to protect mechanical structures and/or electronic devices inside the command device.
Preferably, the top cover 10 is a transparent material (e.g., a glass). The transparent conductive film 12 is formed on and adhered to a lower surface of the top cover 10. It is noted that the transparent conductive film 12 has a short distance communication function. Preferably, the transparent conductive film 12 has a high light transmittance structure. After the transparent conductive film 12 is formed on the lower surface of the top cover 10, a structure formed by the top cover 10 and the transparent conductive film 12 still has a transmittance greater than 70%. Accordingly, when a user checks the time through the top cover 10, the user is not affected by the transparent conductive film 12.
In the present embodiment, the time display element 14 is disposed in the accommodating space 28 and positioned on the functional module 18. The time display element 14 includes physical scales 140 (e.g., one o'clock to twelve o'clock) and at least one indicator 30 (e.g., physical hands including an hour hand, a minute hand, and a second hand) disposed on the physical scales 140. The at least one indicator 30 is driven by the movement 16 and cooperates with the physical scales 140 of the time display element 14 to show the time. Through the transparent top cover 10 and the transparent conductive film 12, the user can perceive the position information (i.e., time information) indicated by the at least one indicator 140.
It is noted that in the present embodiment, the command device is a watch including the at least one indicator 180, and the time display element 18 is a dial. In another embodiment, the communication device is a digital watch, and the time display element 14 is a display which displays time in digits.
The crown 22 is disposed at the lateral side of the command device. The user can adjust the correct time or set an alarm by turning a knob on the crown 22.
The battery 24 can provide the power required by the movement 16 and/or the functional module 18. The battery 24 may be a primary battery or a secondary battery.
The functional module 18 is disposed in the accommodating space 28. As shown in
The wireless communication unit 1824 is electrically connected to the processor 1820 and configured to wirelessly communicate with the mobile terminal via the mobile terminal 40. The mobile terminal 40 has a wireless signal transceiver 42 for receiving and transmitting wireless signals. For example, the wireless signal transceiver 42 may be BLUETOOTH transceiver or a near field communication (NFC) transceiver. It is noted that when the command device is a wristwatch structure, the functional module 18 can also be deployed on a watch strap of the wristwatch structure.
The functional module 18 may also comprise a memory unit 1828. The memory unit 1828 is configured to store the data required by the processor 1820. Also, the memory unit 1828 can be integrated into the processor 1820.
A feature of the present disclosure is that the touch detection unit 1826 is electrically connected to the transparent conductive film 12 and the processor 1820. When the user performs an action on or above the top cover 10 in
For example, when the user clicks the top cover 10 in
Please refer to
As shown in
The transparent conductive film 12 may comprise a communication part 120 and a sensing part 122. The communication part 120 is formed on and adhered to a part of the lower surface of the top cover 10. The sensing part 122 is formed on and adhered to a remaining part of the lower surface of the top cover 10. The communication part 120 and the sensing part 122 are electrically disconnected from each other. The communication part 120 is electrically connected between the wireless communication unit 1824 and the mobile terminal 40 and configured to transmit and receive signals between the wireless communication unit 1824 and the mobile terminal 40. The sensing part 122 is electrically connected to the touch detection unit 1826 and configured to transmit the signal change (e.g., the current change) to the touch detection unit 1826 in
A method for manufacturing the communication part 120 and the sensing part 122 is to form a complete conductive film on the lower surface of the top cover 10 firstly. Then, the complete conductive film is split into the communication part 120 and the sensing part 122 by laser patterning. A slit is formed between the communication part 120 and the sensing part 122. The communication part 120 and the sensing part 122 are not affected by each other.
In the embodiment of
In another embodiment, the sensing part 122 is not split into the two areas, and the sensing part 122 comprises only one area. In yet another embodiment, the sensing part 122 may be split into a plurality of areas which are electrically disconnected from each other or one another.
It is noted that a combination of the top cover 10 and the transparent conductive film 12 does not display an image. Specifically, an operation principle of the command device of the present disclosure is different from that of a liquid crystal display device or a touch device.
It is noted that the command device in
Please refer to
In the present embodiment, the command device is a pair of glasses. The command device comprises a transparent base material 50 and a transparent conductive film 52. The transparent conductive film 52 is formed on a surface of the transparent base material 50. After the transparent conductive film 52 is formed on the surface of the transparent base material 50, a structure formed by the transparent base material 50 and the transparent conductive film 52 has a transmittance greater than 70%. A combination of the transparent base material 50 and the transparent conductive film 52 does not display an image.
In one embodiment, the transparent conductive film 52 may comprise only one area. In another embodiment, the transparent conductive film 52 may be split into a plurality of areas which are electrically disconnected from each other or one another, and sizes of the areas may be same or different.
Please refer to
The touch detection unit 1826 is configured to sense a signal change via the transparent conductive film 52. The signal change is generated by an action performed on or above the transparent base material 50. The signal change sensed by the transparent conductive film 52 is transmitted to the processor 1820 of the functional module 18 via a wireless signal transceiver 54. The processor is configured to receive the signal change and output a corresponding command according to the signal change.
It is noted that in the embodiment of
Please refer to
In step S80, a top cover, a housing, and a bottom cover are provided. The top cover, the housing, and the bottom cover construct an accommodating space from top to bottom.
In step S82, a transparent conductive film is formed on a lower surface of the top cover. After the transparent conductive film is formed on the surface of the top cover, a structure formed by the top cover and the transparent conductive film has a transmittance greater than 70%. A combination of the top cover and the transparent conductive film does not display an image.
In step S84, a functional module is disposed in the accommodating space. The functional module comprises a touch detection unit and a processor. The touch detection unit is configured to sense a signal change via the transparent conductive film. The signal change is generated by an action performed on the top cover or above the top cover. The processor is configured to receive the signal change and output a corresponding command according to the signal change.
Please refer to
In step S90, a transparent base material is provided.
In step S92, a transparent conductive film is formed on a surface of the transparent base material. After the transparent conductive film is formed on the surface of the transparent base material, a structure formed by the transparent base material and the transparent conductive film has a transmittance greater than 70%. A combination of the transparent base material and the transparent conductive film does not display an image.
In step S94, a functional module is electrically connected to the transparent conductive film. The functional module comprises a touch detection unit and a processor. The touch detection unit is configured to sense a signal change via the transparent conductive film. The signal change is generated by an action performed on the top cover or above the top cover. The processor is configured to receive the signal change and output a corresponding command according to the signal change.
In the command device of the present disclosure, the transparent conductive film is formed on the lower surface of the top cover instead of being formed in the accommodating space or inside the housing, and the transparent conductive film may has an antenna function. As a result, when the transparent conductive film transmits or receives signals, the signals are not shielded or affected by the housing. Furthermore, the transparent conductive film of the present disclosure not only can transmit or receive the signals between the command device and an external device, but also can sense an action performed on the top cover. That is, the command device of the present disclosure can sense the action on or above the top cover even if a touch panel is not dispose in the command device. The user can operate the command device more easily.
While the preferred embodiments of the present disclosure have been illustrated and described in detail, various modifications and alterations can be made by persons skilled in this art. The embodiment of the present disclosure is therefore described in an illustrative but not restrictive sense. It is intended that the present disclosure should not be limited to the particular forms as illustrated, and that all modifications and alterations which maintain the spirit and realm of the present disclosure are within the scope as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
106109007 | Mar 2017 | TW | national |