The present invention relates in general to consumer purchasing and, more particularly, to a commerce system and method of controlling the commerce system using personalized shopping list and trip planner.
Economic and financial modeling and planning are commonly used to estimate or predict the performance and outcome of real systems, given specific sets of input data of interest. An economic-based system will have many variables and influences which determine its behavior. A model is a mathematical expression or representation, which predicts the outcome or behavior of the system under a variety of conditions. In one sense, it is relatively easy to review historical data, understand its past performance, and state with relative certainty that past behavior of the system was indeed driven by the historical data. A more difficult task is to generate a mathematical model of the system, which predicts how the system will behave with different sets of data and assumptions.
In its basic form, the economic model can be viewed as a predicted or anticipated outcome of a system defined by a mathematical expression and driven by a given set of input data and assumptions. The mathematical expression is formulated or derived from principles of probability and statistics, often by analyzing historical data and corresponding known outcomes, to achieve a best fit of the expected behavior of the system to other sets of data. In other words, the model should be able to predict the outcome or response of the system to a specific set of data being considered or proposed, within a level of confidence, or an acceptable level of uncertainty.
Economic modeling has many uses and applications. One area in which modeling has been applied is in the retail environment. Grocery stores, general merchandise stores, specialty shops, and other retail outlets face stiff competition for limited consumers and business. Most, if not all, retail stores expend great effort to maximize sales, revenue, and profit. Economic modeling can be an effective tool in helping store owners and managers forecast and optimize business decisions. Yet, as an inherent reality of commercial transactions, the benefits bestowed on the retailer often come at a cost or disadvantage to the consumer. Maximizing sales and profits for a retailer does not necessarily expand competition and achieve the lowest price for the consumer.
On the other side of the transaction, the consumers are interested in quality, low prices, comparative product features, convenience, and receiving the most value for the money. Economic modeling can also be an effective tool in helping consumers achieve these goals. However, consumers have a distinct disadvantage in attempting to compile models for their benefit. Retailers have ready access to the historical transaction log (T-LOG) sales data, consumers do not. The advantage goes to the retailer. The lack of access to comprehensive, reliable, and objective product information essential to providing effective comparative shopping services restricts the consumer's ability to find the lowest prices, compare product features, and make the best purchase decisions.
For the consumer, some comparative product information can be gathered from various electronic and paper sources, such as online websites, paper catalogs, and media advertisements. However, such product information is sponsored by the retailer and slanted at best, typically limited to the specific retailer offering the product and presented in a manner favorable to the retailer. That is, the product information released by the retailer is subjective and incomplete, i.e., the consumer only sees what the retailer wants the consumer to see. For example, the pricing information may not provide a comparison with competitors for similar products. The product descriptions may not include all product features or attributes of interest to the consumer.
Alternatively, the consumer can visit all retailers offering a particular type of product and record the various prices, product descriptions, and retailer amenities to make a purchase decision. The brute force approach of one person physically traveling to or otherwise researching each retailer for all product information is impractical for most people. Many people do compare multiple retailers, e.g., when shopping online, particularly for big ticket items. Yet, the time people are willing to spend reviewing product information decreases rapidly with price. Little time is spent reviewing commodity items. In any case, the consumer has limited time to do comparative shopping and mere searching does not constitute an optimization of the purchasing decision. Optimization requires access to data, i.e., comprehensive, reliable, efficient, and objective product information, so the consumer remains hampered in achieving a level playing field with the retailer.
Another purpose of economic modeling is to develop a marketing plan for the retailer. The retailer may use a mass marketing campaign through a media outlet, such as a newspaper, television, and radio to promote products. A traditional mass marketing approach commonly employs a one-price-fits-all marketing strategy. The retailer puts out an advertisement to the general public, e.g., newspaper ad for a sale or discounted price on a product. Anyone and everyone that responds to the advertisement can purchase the product at the stated advertised sale price.
Even though the retailer expends large amounts of time and money into marketing campaigns, there is little or no feedback as to the success or performance of the particular marketing strategy. The retailer often cannot determine how many consumers actually made a purchase decision as a direct result of responding to the advertisement. The consumer may have selected the item for purchase with no prior knowledge of the advertisement, i.e., the published advertisement was not the catalyst for bringing the consumer into the retailer. Alternatively, the consumer might have purchased the item without a discount. The consumer will of course accept the discounted price, but would have paid regular price. In some cases, the retailer is unnecessarily foregoing profit by mass market discounting the product to the general public.
Retailers have used a variety of techniques to understand the success or performance of a particular marketing strategy. For example, a marketing agency may charge the retailer based on how many people viewed the advertisement, e.g., clicked on the advertisement or promotion on a website. If a consumer views or clicks on the advertisement or promotion, the retailer is charged for that event. However, there is no correlation to an actual consumer purchase. The retailer is charged for the consumer merely coming into contact with the advertisement, even if the consumer does not purchase the product. Moreover, even if the consumer does purchase the product, the marketing evaluation does not take into account whether the consumer would have purchased the product without a promotion. The promotion is accepted by the consumer, but marketing dollars are wasted and potential profit is lost because the promotion was not the controlling factor in making the purchasing decision. Alternatively, the promotion could have caused the consumer to purchase the advertised product at a lower profit margin at the expense of cannibalizing sales of another product having a higher profit margin sold by the same retailer.
Marketing segmentation involves identifying and targeting specific market segments that are more likely to be interested in purchasing the retailer's products. Mass marketing generally does not lend itself to focused market segmentation, other than possibly the type of publication and geographic area where the advertisement is published. If the newspaper is a local fitness publication made available outside health oriented stores, then primarily only the consumers with an interest in fitness who might pick up the fitness publication will see the advertisement. Nonetheless, every fitness oriented consumer who acts on the advertisement receives the same sale or discounted price on the product.
In a highly competitive market, the profit margin is paper thin and consumers and products are becoming more differentiated. Consumers are often well informed through electronic media and will have appetites only for specific products. Retailers must understand and act upon the market segment, which is tuned into their niche product area to make effective use of marketing dollars. The traditional mass marketing approach using gross market segmentation is insufficient to accurately predict consumer behavior across the various market segments. A more refined market strategy is needed to help focus resources on specific market segments that have the greatest potential of achieving a positive purchasing decision by the consumer for a product directed to that particular market segment. The retailers remain motivated to optimize marketing strategy, particularly pricing strategy, to maximize profit and revenue.
From the consumer's perspective, purchasing products from retailers can be both time-consuming and stressful. With limited budgets and limited time, consumers desire to be as cost efficient and time efficient as possible. Consumers desire to purchase products for as low of a price as possible, but often do not have time to compare prices at many different retail outlets before purchasing. Furthermore, searching for the lowest price for a particular product among retailers can be a difficult task, since accurate and reliable pricing data is often difficult to obtain. Additionally, performing price comparisons between individual retailers can be very time-intensive, causing many consumers to choose to purchase products based on convenience rather than spending a great deal of time searching for the best price among competing retailers.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
Economic and financial modeling and planning is an important business tool that allows companies to conduct business planning, forecast demand, and optimize prices and promotions to meet profit and/or revenue goals. Economic modeling is applicable to many businesses, such as manufacturing, distribution, wholesale, retail, medicine, chemicals, financial markets, investing, exchange rates, inflation rates, pricing of options, value of risk, research and development, and the like.
In the face of mounting competition and high expectations from investors, most, if not all, businesses must look for every advantage they can muster in maximizing market share and profits. The ability to forecast demand, in view of pricing and promotional alternatives, and to consider other factors which materially affect overall revenue and profitability is vital to the success of the bottom line, and the fundamental need to not only survive but to prosper and grow.
In particular, economic modeling is essential to businesses that face thin profit margins, such as general consumer merchandise and other retail outlets. Many businesses are interested in economic modeling and forecasting, particularly when the model provides a high degree of accuracy or confidence. Such information is a powerful tool and highly valuable to the business. While the present discussion will involve a retailer, it is understood that the system described herein is applicable to data analysis for other members in the chain of commerce, or other industries and businesses having similar goals, constraints, and needs.
A retailer routinely collects T-LOG sales data for most if not all products in the normal course of business. Using the T-LOG data, the system generates a demand model for one or more products at one or more stores. The model is based upon the T-LOG data for that product and includes a plurality of parameters. The values of the parameters define the demand model and can be used for making predictions about the future sales activity for the product. For example, the model for each product can be used to predict future demand or sales of the product at that store in response to a proposed price, associated promotions or advertising, as well as impact from holidays and local seasonal variations. Promotion and advertising increase consumer awareness of the product.
An economic demand model analyzes historical retail T-LOG sales data to gain an understanding of retail demand as a function of factors such as price, promotion, time, consumer, seasonal trends, holidays, and other attributes of the product and transaction. The demand model can be used to forecast future demand by consumers as measured by unit sales. Unit sales are typically inversely related to price, i.e., the lower the price, the higher the sales. The quality of the demand model—and therefore the forecast quality—is directly affected by the quantity, composition, and accuracy of historical T-LOG sales data provided to the model.
The retailer makes business decisions based on forecasts. The retailer orders stock for replenishment purposes and selects items for promotion or price discount. To support good decisions, it is important to quantify the quality of each forecast. The retailer can then review any actions to be taken based on the accuracy of the forecasts on a case-by-case basis.
Referring to
Business plan 12 includes planning 12a, forecasting 12b, and optimization 12c steps and operations. Business plan 12 gives retailer 10 the ability to evaluate performance and trends, make strategic decisions, set pricing, order inventory, formulate and run promotions, hire employees, expand stores, add and remove product lines, organize product shelving and displays, select signage, and the like. Business plan 12 allows retailer 10 to analyze data, evaluate alternatives, run forecasts, and make decisions to control its operations. With input from the planning 12a, forecasting 12b, and optimization 12c steps and operations of business plan 12, retailer 10 undertakes various purchasing or replenishment operations 14. Retailer 10 can change business plan 12 as needed.
Retailer 10 routinely enters into sales transactions with customer or consumer 16. In fact, retailer 10 maintains and updates its business plan 12 to increase the number of transactions (and thus revenue and/or profit) between retailer 10 and consumer 16. Consumer 16 can be a specific individual, account, or business entity.
For each sale transaction entered into between retailer 10 and consumer 16, information describing the transaction is stored in T-LOG data 20. When a consumer goes through the check-out at a grocery or any other retail store, each of the items to be purchased is scanned and data is collected and stored by a point-of-sale (POS) system, or other suitable data storage system, in T-LOG data 20. The data includes the then current price, promotion, and merchandizing information associated with the product along with the units purchased, and the dollar sales. The date and time, and store and consumer information corresponding to that purchase are also recorded.
T-LOG data 20 contains one or more line items for each retail transaction, such as those shown in Table 1. Each line item includes information or attributes relating to the transaction, such as store number, product number, time of transaction, transaction number, quantity, current price, profit, promotion number, and consumer category or type number. The store number identifies a specific store; product number identifies a product; time of transaction includes date and time of day; quantity is the number of units of the product; current price (in US dollars) can be the regular price, reduced price, or higher price in some circumstances; profit is the difference between current price and cost of selling the item; promotion number identifies any promotion associated with the product, e.g., flyer, ad, discounted offer, sale price, coupon, rebate, end-cap, etc.; consumer identifies the consumer by type, class, region, demographics, or individual, e.g., discount card holder, government sponsored or under-privileged, volume purchaser, corporate entity, preferred consumer, or special member. T-LOG data 20 is accurate, observable, and granular product information based on actual retail transactions within the store. T-LOG data 20 represents the known and observable results from the consumer buying decision or process. T-LOG data 20 may contain thousands of transactions for retailer 10 per store per day, or millions of transactions per chain of stores per day.
The first line item shows that on day/time D1, store S1 has transaction T1 in which consumer C1 purchases one product P1 at $1.50. The next two line items also refer to transaction T1 and day/time D1, in which consumer C1 also purchases two products P2 at $0.80 each and three products P3 at price $3.00 each. In transaction T2 on day/time D1, consumer C2 has four products P4 at price $1.80 each and one product P5 at price $2.25. In transaction T3 on day/time D1, consumer C3 has ten products P6 at $2.65 each, in his or her basket. In transaction T4 on day/time D2 (different day and time) in store S1, consumer C4 purchases five products P1 at price $1.50 each. In store S2, transaction T5 with consumer C5 on day/time D3 (different day and time) involves one product P7 at price $5.00. In store S2, transaction T6 with consumer C6 on day/time D3 involves two products P1 at price $1.50 each and one product P8 at price $3.30.
Table 1 further shows that product P1 in transaction T1 has promotion PROMO1. PROMO1 can be any suitable product promotion such as a front-page featured item in a local advertising flyer. Product P2 in transaction T1 has promotion PROMO2 as an end-cap display in store S1. Product P3 in transaction T1 has promotion PROMO3 as a reduced sale price with a discounted offer. Product P4 in transaction T2 on day/time D1 has no promotional offering. Likewise, product P5 in transaction T2 has no promotional offering. Product P6 in transaction T3 on day/time D1 has promotion PROMO4 as a volume discount for 10 or more items. Product P7 in transaction T5 on day/time D3 has promotion PROMO5 as a $0.50 rebate. Product P8 in transaction T6 has no promotional offering. A promotion may also be classified as a combination of promotions, e.g., flyer with sale price, end-cap with rebate, or individualized discounted offer as described below.
Retailer 10 may also provide additional information to T-LOG data 20 such as promotional calendar and events, holidays, seasonality, store set-up, shelf location, end-cap displays, flyers, and advertisements. The information associated with a flyer distribution, e.g., publication medium, run dates, distribution, product location within flyer, and advertised prices, is stored within T-LOG data 20.
Supply data 22 is also collected and recorded from manufacturers and distributors. Supply data 22 includes inventory or quantity of products available at each location in the chain of commerce, i.e., manufacturer, distributor, and retailer. Supply data 22 includes product on the store shelf and replenishment product in the retailer's storage area.
With T-LOG data 20 and supply data 22 collected, various suitable methods or algorithms can be used to analyze the data and generate demand model 24. Model 24 may use a combination of linear, nonlinear, deterministic, stochastic, static, or dynamic equations or models for analyzing T-LOG data 20 or aggregated T-LOG data and supply data 22 and making predictions about consumer behavior to future transactions for a particular product at a particular store, or across entire product lines for all stores. Model 24 is defined by a plurality of parameters and can be used to generate unit sales forecasting, price optimization, promotion optimization, markdown/clearance optimization, assortment optimization, merchandise and assortment planning, seasonal and holiday variance, and replenishment optimization. Model 24 has a suitable output and reporting system that enables the output from model 24 to be retrieved and analyzed for updating business plan 12.
In
The purchasing decisions made by consumer 44 drive the manufacturing, distribution, and retail portions of commerce system 30. More purchasing decisions made by consumer 44 for retailer 40 lead to more merchandise movement for all members of commerce system 30. Manufacturer 32, distributor 36, and retailer 40 utilize demand model 48 (similar to model 24), via respective control systems 34, 38, and 42, to control and optimize the ordering, manufacturing, distribution, sale of the goods, and otherwise execute respective business plan 12 within commerce system 30 in accordance with the purchasing decisions made by consumer 44.
Manufacturer 32, distributor 36, and retailer 40 provide historical T-LOG data 46 and supply data 50 to demand model 48 by electronic communication link, which in turn generates forecasts to predict the need for goods by each member and control its operations. In one embodiment, each member provides its own historical T-LOG data 46 and supply data 50 to demand model 48 to generate a forecast of demand specific to its business plan 12. Alternatively, all members can provide historical T-LOG data 46 and supply data 50 to demand model 48 to generate composite forecasts relevant to the overall flow of goods. For example, manufacturer 32 may consider a proposed discounted offer, rebate, promotion, seasonality, or other attribute for one or more goods that it produces. Demand model 48 generates the forecast of sales based on available supply and the proposed price, consumer, rebate, promotion, time, seasonality, or other attribute of the goods. The forecast is communicated to control system 34 by electronic communication link, which in turn controls the manufacturing process and delivery schedule of manufacturer 32 to send goods to distributor 36 based on the predicted demand ultimately determined by the consumer purchasing decisions. Likewise, distributor 36 or retailer 40 may consider a proposed discounted offer, rebate, promotion, or other attributes for one or more goods that it sells. Demand model 48 generates the forecast of demand based on the available supply and proposed price, consumer, rebate, promotion, time, seasonality, and/or other attribute of the goods. The forecast is communicated to control system 38 or control system 42 by electronic communication link, which in turn controls ordering, distribution, inventory, and delivery schedule for distributor 36 and retailer 40 to meet the predicted demand for goods in accordance with the forecast.
As described herein, manufacturer 32, distributor 36, retailers 66-70, consumers 62-64, and consumer service provider 72 are considered members of commerce system 60. The retailer generally refers to the seller of the product and consumer generally refers to the buyer of the product. Depending on the transaction within commerce system 60, manufacturer 32 can be the seller and distributor 36 can be the buyer, or distributor 36 can be the seller and retailers 66-70 can be the buyer, or manufacturer 32 can be the seller and consumers 62-64 can be the buyer.
Each consumer goes through a product evaluation and purchasing decision process each time a particular product is selected for purchase. Some product evaluations and purchasing decision processes are simple and routine. For example, when consumer 62 is conducting weekly shopping in the grocery store, the consumer sees a needed item or item of interest, e.g., canned soup. Consumer 62 may have a preferred brand, size, and flavor of canned soup. Consumer 62 selects the preferred brand, size, and flavor sometimes without consideration of price, places the item in the basket, and moves on. The product evaluation and purchasing decision process can be almost automatic and instantaneous but nonetheless still occurs based on prior experiences and preferences. Consumer 62 may pause during the product evaluation and purchasing decision process and consider other canned soup options. Consumer 62 may want to try a different flavor or another brand offering a lower price. As the price of the product increases, the product evaluation and purchasing decision process usually becomes more involved. If consumer 62 is shopping for a major appliance, the product evaluation and purchasing decision process may include consideration of several manufacturers, visits to multiple retailers, review of features and warranty, talking to salespersons, reading consumer reviews, and comparing prices. In any case, understanding the consumer's approach to the product evaluation and purchasing decision process is part of an effective model or comparative shopping service. The model must assist the consumer in finding the optimal price and product attributes, e.g., brand, quality, quantity, size, features, ingredients, service, warranty, and convenience, that are important to the consumer and tip the purchasing decision toward selecting a particular product and retailer.
In
The personal assistant engine 74 can be made available to consumers 62-64 via computer-based online website or other electronic communication medium, e.g., wireless cell phone or other personal communication device.
The electronic communication network 80 further includes consumer service provider 72 with personal assistant engine 74 in electronic communication with network 84 over communication channel or link 92. Communication channel 92 is bi-directional and transmits data between consumer service provider 72 and electronic communication network 84 in a hard-wired or wireless configuration.
Further detail of the computer systems used in electronic communication network 80 is shown in
Computer systems 100 and 114 can be physically located in any location with access to a modem or communication link to network 84. For example, computer 100 or 114 can be located in the consumer's home or business office. Consumer service provider 72 may use computer system 100 or 114 in its business office. Alternatively, computer 100 or 114 can be mobile and follow the user to any convenient location, e.g., remote offices, consumer locations, hotel rooms, residences, vehicles, public places, or other locales with electronic access to electronic communication network 84. The consumer can access consumer service provider 72 by mobile application operating in cell phone 116.
Each of the computers run application software and computer programs, which can be used to display user interface screens, execute the functionality, and provide the electronic communication features as described below. The application software includes an Internet browser, local email application, word processor, spreadsheet, and the like. In one embodiment, the screens and functionality come from the application software, i.e., the electronic communication runs directly on computer system 110 or 114. Alternatively, the screens and functions are provided remotely from one or more websites on servers within electronic communication network 84.
The software is originally provided on computer readable media, such as compact disks (CDs), external drive, or other mass storage medium. Alternatively, the software is downloaded from electronic links, such as the host or vendor website. The software is installed onto the computer system hard drive 104 and/or electronic memory 106, and is accessed and controlled by the computer operating system. Software updates are also electronically available on mass storage medium or downloadable from the host or vendor website. The software, as provided on the computer readable media or downloaded from electronic links, represents a computer program product containing computer readable program code embodied in a computer program medium. Computers 100 and 114 run application software for executing instructions for communication between consumers 82 and 88 and consumer service provider 72, gathering product information, generating consumer models or comparative shopping services, and evaluating promotional programs. The application software is an integral part of the control of purchasing decisions and other commercial activity within commerce system 60.
The electronic communication network 80 can be used for a variety of business, commercial, personal, educational, and government purposes or functions. For example, the consumer using computer 114 can communicate with consumer service provider 72 operating on computer 100, and the consumer using cellular telephone 116 can communicate with consumer service provider 72 operating on computer 100. The electronic communication network 80 is an integral part of a business, commercial, professional, educational, government, or social network involving the interaction of people, processes, and commerce.
To interact with consumer service provider 72, consumers 62 and 64 first create an account and profile with the consumer service provider. Consumers 62 and 64 can use some features offered by consumer service provider 72 without creating an account, but full access requires completion of a registration process. The consumer accesses website 120 operated by consumer service provider 72 on computer system 100 and provides data to complete the registration and activation process, as shown in
The consumer's profile is stored and maintained within central database 76. The consumer can access and update his or her profile or interact with personal assistant engine 74 by entering login name 132 and password 134 in webpage 136, as shown in
One feature of personal assistant engine 74 allows the consumer to enter a list of products of interest or need, i.e., to create a shopping list.
Each product will have product attributes weighted by consumer preference. The consumer weighted attribute values reflect the level of importance or preference that the consumer bestows on each product attribute. The available product attributes can be product-specific attributes, diet/health/nutrient related product attributes, lifestyle related product attributes, environment related product attributes, allergen related product attributes, and social/society related product attributes. The product-specific attributes can include brand, ingredients, size, price, freshness, retailer preference, warranty, and the like. The consumer can also identify a specific preferred retailer as an attribute with an assigned preference level based on convenience and personal experience.
Personal assistant engine 74 stores the shopping list and weighted product attributes of each consumer in central database 76 for future reference and updating. Personal assistant engine 74 can also store prices, product descriptions, names and locations of the retail stores selling the products, offer histories, purchase histories, as well as various rules, policies and algorithms. The individual products in the shopping list can be added or deleted and the weighted product attributes can be changed by the consumer. The shopping list entered into personal assistant engine 74 is defined by each consumer and allows consumer service provider 72 to track products and preferred retailers as selected by the consumer.
In order to store and maintain a shopping list for each consumer, personal assistant engine 74 must have access to up-to-date, comprehensive, reliable, and objective retailer product information. Consumer service provider 72 maintains central database 76 with up-to-date, comprehensive, reliable, and objective retailer product information. The product information includes the product description, product attributes, regular retail pricing, and discounted offers. Consumer service provider 72 must actively and continuously gather up-to-date product information in order to maintain central database 76. In one approach to gathering product information, retailers 66-70 may grant access to T-LOG data 46 for use by consumer service provider 72. T-LOG data 46 collected during consumer check-out can be sent electronically from retailers 66-70 to consumer service provider 72, as shown by communication link 142 in
One or more retailers 66-70 may decline to provide access to its T-LOG data for use with personal assistant engine 74. In such cases, consumer service provider 72 can exercise a number of alternative data gathering approaches and sources. In one embodiment, consumer service provider 72 utilizes computer-based webcrawlers or other searching software to access retailer websites for pricing and other product information. In
Consumer service provider 72 can also dispatch webcrawlers 160 and 162 from computers 164 and 166 used by consumers 62-64, or from consumer cell phone 116, or other electronic communication device, to access and request product information from retailer websites or portals 152-156 or other electronic communication medium or access point. During the registration process of
For example, the consumer logs into the website of consumer service provider 72 via webpage 136. Consumer service provider 72 initiates webcrawler 160 in the background of consumer computer 164 with a sufficiently low execution priority to avoid interfering with other tasks running on the computer. The consumer can also define the time of day and percent or amount of personal computer resources allocated to the webcrawler. The consumer can also define which retailer websites and products, e.g., by specific retailer, market, or geographic region, that can be accessed by the webcrawler using the personal computer resources. Webcrawler 160 executes from consumer computer 164 and uses the consumer's login to gain access to retailer websites 152-156. Alternatively, webcrawler 160 resides permanently on consumer computer 164 and runs periodically. Webcrawler 160 identifies products available from each of retailer websites 152-156 and requests pricing and other product information for each of the identified products. Webcrawler 160 navigates and parses each page of retailer websites 152-156 to locate pricing and other product information. The parsing operation involves identifying and recording product description, UPC, price, ingredients, size, and other product information as recovered by webcrawler 160 from retailer websites 152-156. In particular, the parsing operation can identify discounted offers and special pricing from retailers 66-70. The discounted pricing can be used in part to formulate individualized “one-to-one” discounted offers. The product information from retailer websites 152-156 is sorted and stored in central database 76.
Likewise, webcrawler 162 uses consumer computer 166 and login to gain access to retailer websites 152-156. Webcrawler 162 identifies products available from each of retailer websites 152-156 and requests pricing and other product information for each of the identified products. Webcrawler 162 navigates and parses each page of retailer websites 152-156 to locate pricing and other product information. The parsing operation involves identifying and recording product description, UPC, price, ingredients, size, and other product information as recovered by webcrawler 162 from retailer websites 152-156. In particular, the parsing operation can identify discounted offers and special pricing from retailers 66-70. The discounted pricing can be used in part to formulate individualized “one-to-one” discounted offers. The product information from retailer websites 152-156 is sorted and stored in central database 76. The product information can be specific to the consumer's login. Retailers 66-70 are likely to accept product information requests from webcrawlers 160-162 because the requests originate from consumer computers 164-166 by way of the consumer login to the retailer website.
Consumer service provider 72 can also collect product information from discounted offers transmitted from retailers 66-70 directly to consumers 62-64, e.g. by email or cell phone 116. Consumer 62-64 can make the personalized discounted offers and other product information available to consumer service provider 72.
Returning to
Assume consumer 62 has logged-in to consumer service provider 72 through webpage 136. Consumer 62 is presented with a home page 170, as shown in
Under the define preferred retailers and shopping areas block 176, personal assistant engine 74 presents webpage 180 with a local map 182, as shown in
In addition to selecting retailers 190-194 with traditional brick-and-mortar storefronts, consumer 62 can select retailers with an online or internet-based shopping store. Consumer may enter an online retailer's name in block 186, or search for a particular type of retailer or product in block 186. Instead of or in addition to displaying a map on webpage 180, personal assistant engine 74 may display a list of online retailers for consumer 62 to add to the list of preferred retailers displayed in block 200.
Consumer 62 can also specify all retailers or a selected group of retailers within a geographical shopping area with defined boundaries by clicking shopping area text block 201. Shopping area text block 201 can enable consumer 62 to define the boundaries of a preferred geographical shopping area 202, by entering text or choosing from menu selections. The boundaries can be defined by a city, zip code, named roadways, or given number of miles radius to the consumer's address. Consumer 62 can also draw a box on map 182 with the mouse to define the boundaries of the preferred geographical shopping area 202. The search for retailers would then be limited to a plurality of retail outlets within the preferred geographical shopping area 202.
Consumer 62 may also prefer to conduct some shopping online without having to visit a physical location. Thus, personal assistant engine 74 may also display an interface for consumer 62 to choose a set of preferred retailers that may or may not have a physical retail store, but operate an online or internet website shopping store.
Once the preferred retailers 190-194 or preferred geographical shopping area 202 are identified, consumer 62 clicks on create or update shopping list button 204 to create or update a shopping list of products of interest or need. Consumer 62 can also select block 178 in
In shopping list webpage 210 of
Personal assistant engine 74 also displays, in shopping list webpage 210, a list of previously created shopping lists in block 220. When consumer 62 creates a new shopping list by entering the name of the shopping list in text box 216 and clicking create list button 218, a new shopping list is added to the list of previously created shopping lists. For example,
In the present example, List A, shown in block 224 indicates the name of the shopping list in block 226. The amount that consumer 62 will save off the retail price on products in the shopping list of List A, $18.99, is indicated in block 228. Personal assistant engine 74 compares prices for each product selection within List A at each of the preferred retailers 190-194 or between a plurality of retailer outlets within the preferred geographical shopping area 202, and selects the total of the cheapest prices available among the retailers to determine the total savings for List A in block 228. Alternatively, the total savings for List A shown in block 228 may be based on the quickest shopping trip option, or the shortest shopping trip route. The total savings shown in block 228 for List A may include other options for calculating the total savings for List A, such as the total for the least expensive products among a specific set of retailers.
The number of items in List A, 62, is indicated in block 230. The number of stores for purchasing the products in List A, two, is indicated in block 232. The date that List A was created, Jan. 1, 2001, is indicated in block 234. Consumer 62 can add items to or remove items from List A by clicking edit items button 236. Alternatively, consumer 62 can delete the entire entry for List A by clicking delete button 238. Consumer 62 can also combine or aggregate multiple shopping lists into a single shopping list by clicking combine lists button 240.
Similarly, List B, shown in block 384 indicates the name of the shopping list in block 246. The amount that consumer 62 will save off the retail price on products in the shopping list of List B, $9.02, is indicated in block 248. Personal assistant engine 74 compares prices for each product selection within List B at each of the preferred retailers 190-194 or between a plurality of retailer outlets within the preferred geographical shopping area 202, and selects the total of the cheapest prices available among the retailers to determine the total savings for List B in block 228. Alternatively, the total savings for List B shown in block 228 may be based on the quickest shopping trip option, or the shortest shopping trip route. The total savings shown in block 228 for List B may include other options for calculating the total savings for List B, such as the total for the least expensive products among a specific set of retailers.
The number of items in List B, 32, is indicated in block 250. The number of stores for purchasing the products in List B, three, is indicated in block 252. The date that List B was created, Jan. 2, 2001, is indicated in block 254. Consumer 62 can add items to or remove items from List B by clicking edit items button 256. Alternatively, consumer 62 can delete the entire entry for List B by clicking delete button 258. Consumer 62 can also combine or aggregate multiple shopping lists into a single shopping list by clicking combine lists button 260.
Personal assistant engine 74 also displays, in shopping list webpage 210, a list of previous shopping trips in block 262. When consumer 62 completes a shopping trip, the savings, items, stores, and date of the shopping trip are catalogued and listed as a list of previous shopping trips in block 262. For example,
Similarly, a previous shopping trip for items for a birthday party is shown in block 280, with the name of the previous shopping trip, birthday party, indicated in block 282. The amount consumer 62 saved off the retail price for products purchased during the shopping trip, $10.90, is indicated in block 284. The number of items purchased on the birthday party shopping trip, 36, is indicated in block 286. The number of stores visited during the birthday party shopping trip, two, is indicated in block 288. The date of the birthday party shopping trip, Apr. 21, 2012, is indicated in block 290. Consumer 62 can delete the record of the weekly shopping trip by clicking the delete button 292. Consumer 62 can also review the items purchased during the birthday party shopping trip by clicking on the review items button 294 to bring up or display a separate web page summarizing the shopping list for the birthday party shopping trip.
Personal assistant engine 74 also displays, in shopping list webpage 210, savings data in block 300. In particular, the total cumulative savings of all products purchased by consumer 62 using personal assistant engine 74 is indicated in block 302. Additionally, the average savings for each individual shopping trip is indicated in block 304. Personal assistant engine 74 may additionally segment or group similar shopping trips to calculate and display the average savings for related shopping trips, e.g., for weekly groceries. Personal assistant engine 74 may also calculate and display average daily, weekly, monthly, or yearly savings, or other similar parsing of shopping trip data to provide valuable feedback to consumer 62 about shopping patterns and behavior.
As an illustration for creating a new shopping list,
The name of the shopping list is listed in block 312. The amount that consumer 2 will save off the retail price on products in the shipping list of List C is shown in block 314. Because consumer 62 has not yet added items to List C, the amount of savings is $0.00. The number of items in List C is indicated as zero in block 316, because consumer 62 has not added any items to List C. The number of stores for purchasing the items in List C is also zero, as shown in block 318, because consumer 62 has not added any items to List C. The date that List C was created, Jun. 1, 2012, is indicated in block 320. Consumer 62 can add items to or remove items from List C by clicking edit items button 322. Alternatively, consumer 62 can delete the entire entry for List C by clicking delete button 324. Consumer 62 can also combine or aggregate multiple shopping lists into a single shopping list by clicking combine lists button 326.
Any time a consumer has a need or desire to purchase a product or service, there is an inherent interplay or balance between which retailers or service providers to patronize, which specific products to purchase based on the consumer's general needs or desires, and how much money the consumer must spend. From the consumer's perspective, in an ideal scenario, the consumer will always purchase the highest quality product or service that satisfies a need, from the most convenient retailer or service provider, and at the lowest possible price. Unfortunately, in reality, perfect or reliable information about the highest quality, most convenient, and lowest price product is usually not available. Furthermore, even when information is available, consumers typically do not have the time or energy to find the information and plan the most economically efficient shopping trip. Instead, consumers are often forced to make decisions about quality, price, and convenience based on limited information. Thus, consumers will benefit from a means for helping balance the competing interests of convenience, quality, and price, by providing accurate and reliable information to enable consumers to make shopping decisions that are the most ideal for the individual consumer's needs and desires.
For example, category button 330 is presented for browsing dairy products. Consumer 62 can click category button 330 to browse dairy products. Additionally, subcategory buttons 332 are presented to provide subcategories of dairy products for narrowing the scope of the dairy products for browsing. For example, consumer 62 can select one of the subcategory buttons 332 to browse butter, cheese, eggs, milk, or yogurt products. Consumer 62 can also select weigh category button 333 to weigh attributes for various types of dairy products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
Category button 334 is presented for browsing fresh fruit and vegetable products, with associated subcategory buttons 336. Consumer 62 can select category button 334 to browse fresh fruit and vegetable products. Alternatively, consumer 62 can select one of the subcategory buttons 336 to browse apples, bananas, tomatoes, grapes, or greens products. Consumer 62 can also select weigh category button 337 to weigh attributes for various types of fresh fruits and vegetable products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
Category button 338 is presented for meat and seafood products, with associated subcategory buttons 340. Consumer 62 can select category button 338 to browse meat and seafood products. Alternatively, consumer 62 can select one of the subcategory buttons 340 to browse bacon, steak, ground beef, poultry, or salmon products. Consumer 62 can also select weigh category button 341 to weigh attributes for various types of meat and seafood products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
Category button 342 is presented for grocery item products, with associated subcategory buttons 344. Consumer 62 can select category button 340 to browse grocery item products. Alternatively, consumer 62 can select one of the subcategory buttons 344 to browse cereal, pasta, pasta sauce, peanut butter, or soup products. Consumer 62 can also select weigh category button 345 to weigh attributes for various types of grocery item products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products and product attributes.
Category button 346 is presented for bakery good products, with associated subcategory buttons 348. Consumer 62 can select category button 346 to browse bakery good products. Alternatively, consumer 62 can select one of the subcategory buttons 348 to browse bread, bagels, cookies, crackers, or popcorn products. Consumer 62 can also select weigh category button 349 to weigh attributes for various types of bakery good products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
Category button 350 is presented for personal care products, with associated subcategory buttons 352. Consumer 62 can select category button 350 to browse personal care products. Alternatively, consumer 62 can select one of the subcategory buttons 352 to browse paper towels, shampoo, lotion, tooth paste, or hand soap products. Consumer 62 can also select weigh category button 353 to weigh attributes for various types of personal care products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
Category button 354 is presented for kitchen and cleaning products, with associated subcategory buttons 356. Consumer 62 can select category button 354 to browse kitchen and cleaning products. Alternatively, consumer 62 can select one of the subcategory buttons 356 to browse detergent, surface cleaner, plastic wrap, garbage bags, or dishwashing soap products. Consumer 62 can also select weigh category button 357 to weigh attributes for various types of kitchen and cleaning products for the purposes of having personal assistant engine 74 automatically generate an optimized shopping list based on the consumer's weighted preference for various products.
In addition to browsing products by navigating through product choices using category and subcategory buttons 330-356, consumer 62 can also search for products using keyword phrases. In text box 360, consumer 62 can search for products using natural language keyword phrases. For a natural language keyword search, consumer 62 can enter words in text box 360 that describe a type of product, similar to the categories and subcategories associated with category and subcategory buttons 330-356. For example, if consumer 62 likes vanilla-flavored yogurt, but has no particular brand or size in mind, consumer 62 can simply enter the phrase “vanilla yogurt” in text box 360 to search for all types of vanilla yogurt from all types of brands and retailers.
Consumer 62 can also search for specific products by entering a narrow keyword phrase into text box 360. For example, consumer 62 likes vanilla-flavored yogurt, but specifically prefers the vanilla-flavored yogurt manufactured by Brand A. Additionally, consumer 62 prefers to purchase the Brand A vanilla-flavored yogurt at Retailer A, because consumer 62 has noticed Retailer A tends to frequently restock yogurt, and is likely to have very fresh yogurt. Finally, consumer 62 prefers to buy enough yogurt to last a week, and therefore prefers to purchase 32 ounce packages of yogurt. Consumer 62 can enter a search for “Brand A vanilla flavored yogurt Retailer A 32 ounces” to return search results for products with all of the attributes, or similar attributes, to the specific product preferred by consumer 62.
Consumer 62 can also narrow the search to a particular state, city, town, area, or zip code, using area text box 362. In the present example, consumer 62 chooses to search in Berkeley, Calif., which is convenient to the location of consumer 62. Alternatively, personal assistant engine 74 searches for products among the preferred retailers 190-194 or among a plurality of retailer outlets within the preferred geographical shopping area 202 defined by consumer 62, as shown in
If consumer 62 chooses to search for a product by typing a keyword search phrase in text box 360, personal assistant engine 74 will search the information stored in central database 76 to find all products related to the search term and display the search results in the webpage. Alternatively, if consumer 62 chooses to search for a product by browsing the categories and subcategories shown in
Webpage 328 shows block 370, which includes the name of the shopping list, List C, in pull-down menu 372. Consumer 62 can select pull-down button 374 of pull-down menu 372 to expand pull-down menu 372 to expose a list of all of the other shopping lists previously-created by consumer 62.
Returning to
Text box 396 provides an interface for establishing a budget goal. Consumer 62 can enter a target budget for List C in text box 396, which allows consumer 62 to set or define a goal or maximum amount of money to spend for the products in List C. As consumer 62 adds product attributes to List C, personal assistant engine 74 dynamically calculates and updates the total price for the recommended products within List C in block 398. Alternatively, personal assistant engine 74 displays the remaining portion of the budget defined by consumer 62 in in block 398. In the present example, consumer 62 has defined a budget for List C of $260.00, and after adding vanilla yogurt, cereal, tomatoes, cucumbers, and butter to List C, the total for all products within List C is $26.37, as shown in block 398. The total price shown in block 398 can include the cumulative total of each product in the shopping list for the least expensive price among preferred retailers 190-194, or among retailer outlets within the preferred geographical shopping area 202. Allowing consumer 62 to define a budget and monitor the total price for the products within the shopping list, allows consumers to track and monitor the amount of money being spent on products and to search for alternative products for expensive items in order to assist the consumer in staying within the budget.
As discussed, consumer 62 can also add product attributes to the shopping list by browsing or searching for specific products.
Webpage 400 also includes a number of categories or filters 412 for narrowing the scope of the search. The filters can include any unique quality or characteristic between different products or brands. In the present example, the filters 412 include brand, shown in block 414. Consumer 62 can choose to filter the search results according to particular brands, e.g., Brand D, E, or F, by selecting the corresponding check-box 416. Consumer 62 may have the option of selecting more than one option or filter, in order to include multiple brands in the search results. In the present example, consumer 62 has selected to filter by Brand F, thereby limiting the search results to products manufactured by Brand F.
The filters 412 also include product type, shown in block 418, to allow consumer 62 to limit the search results to a particular product type, e.g., organic, natural, or sugar free. Consumer 62 can choose to filter by one of the product types listed by selecting the corresponding check-box 420. Alternatively, consumer 62 can select the more options link 422 to view additional types of filters related to product type. Consumer 62 may have the option of selecting more than one product type to include multiple product types in the search results.
The filters 412 also include product size, shown in block 424, to allow consumer 62 to limit the search results to a particular size, e.g., 0.5 ounces, 1 ounce, 10 ounces, 12 ounces, or 32 ounces. Consumer 62 can choose to filter by one of the product sizes by selecting the corresponding check-box 426. Alternatively, consumer 62 can select the more options link 428 to view additional types of filters related to product size. Consumer 62 may have the option of selecting more than one product size to include multiple product sizes in the search results.
Consumer 62 can also apply additional filters 412, as shown in block 430, by adding additional types of filters, e.g., baby foods, or product flavors, by clicking on one of the other filter category buttons 432. Consumer 62 can also explore additional filter types by selecting more options link 434.
After selecting the check-box 416 corresponding to Brand F, personal assistant engine 74 dynamically and automatically updates the search results for the search phrase “jelly” shown in webpage 400, which are limited to jelly products manufactured under the brand Brand F, as shown in
Personal assistant engine 74 also displays, in block 446, the potential savings for consumer 62 on Brand F Grape Jelly. The potential savings is the dollar amount that the consumer will save by purchasing the least expensive option among all of the potential retailers instead of the most expensive option. In other words, the potential savings is the price of the most expensive option, minus the price of the least expensive option. Personal assistant engine 74 may also indicate the potential savings as a percentage discount off the most expensive option. In the present example, personal assistant engine 74 indicates that consumer 62 can save up to $3.50 by purchasing the least expensive option among all potential retailers as opposed to the most expensive option. Furthermore, personal assistant engine 74 indicates that a savings of $3.50 is 38.5% off the most expensive price of $9.09.
Personal assistant engine 74 also displays, in block 448, the number of item options available, and the number of stores among the potential retailers where the product can be purchased. In the present example, personal assistant engine 74 indicates that the number of item options is one, because the search result includes a specific product—Brand F Grape Jelly. In some circumstances, the number of item options may be greater than one, e.g., when the search term is very general, or where there are variations among similar products for attributes like size or packaging that are not significant enough to distinguish the product from similar products.
Consumer 62 can increase or decrease the number of products indicated in product number box 450, by selecting the plus or minus symbol on toggle button 452 to add the corresponding number of products to the shopping list. If consumer 62 would like to increase the number of items from one to two, consumer 62 can select the plus symbol on toggle button 452. Similarly, if consumer 62 would like to then decrease the number of items from two to one, consumer 62 can select the minus symbol on toggle button 452. Alternatively, consumer 62 can select the number of items using a sliding scale, or by entering the number of products in a text box.
After determining whether to purchase the product displayed in block 440, and after determining the number of products consumer 62 would like to add to List C, consumer 62 can add the product attributes to List C by selecting add button 454. Alternatively, consumer 62 can select show product variations button 456 to browse product variations. Product variations include products that are similar to, but different from, the product shown in block 440, such as similar products from competitors, or products from the same brand but with a different flavor, scent, size, or color.
The search results for the search phrase “jelly” also include Brand F Squeezable Strawberry Jelly, shown in block 460. The product name or description for Brand F Squeezable Strawberry Jelly is also indicated in block 462. The product name or description can include any descriptive words or phrases to identify the source or type of product. The price range for Brand F Squeezable Strawberry Jelly is indicated in block 464. The price range includes an indication of the lowest price and the highest price for the product among retailers within the geographical area indicated by the consumer or among the list of preferred retailers indicated by the consumer. In the present example, personal assistant engine 74 indicates that the price for Brand F Squeezable Strawberry Jelly among retailers searched by personal assistant engine 74 ranges from $4.34 to $8.37.
Personal assistant engine 74 also displays, in block 466, the potential savings for consumer 62 on Brand F Squeezable Strawberry Jelly. The potential savings is the dollar amount that the consumer will save by purchasing the least expensive option among all of the potential retailers instead of the most expensive option. In other words, the potential savings is the price of the most expensive option, minus the price of the least expensive option. Personal assistant engine 74 may also indicate the potential savings as a percentage discount off the most expensive option. In the present example, personal assistant engine 74 indicates that consumer 62 can save up to $4.03 by purchasing the least expensive option among all potential retailers as opposed to the most expensive option. Furthermore, personal assistant engine 74 indicates that a savings off $4.03 is 48.15% off the most expensive price of $8.37.
Personal assistant engine 74 also displays, in block 468, the number of item options available, and the number of stores among the potential retailers where Brand F Squeezable Strawberry Jelly can be purchased. In the present example, personal assistant engine 74 indicates that the number of item options is one, because the search engine results include a specific product—Brand F Squeezable Strawberry Jelly. In some circumstances, the number of item options may be greater than one, e.g., when the search term is very general, or where there are variations among similar products for attributes like size or packaging that are not significant enough to distinguish the product from similar products.
Consumer 62 can increase or decrease the number of products indicated in product number box 470, by selecting the plus or minus symbol on toggle button 472 to add the corresponding number of products to the shopping list. If consumer 62 would like to increase the number of items from one to two, for example, consumer 62 can select the plus symbol on toggle button 472. Similarly, if consumer 62 would like to then decrease the number of items from two to one, consumer 62 can select the minus symbol on toggle button 472. Alternatively, consumer 62 can select the number of items using a sliding scale, or by entering the number of products in a text box. After determining whether to add the product displayed in box 460 to the shopping list, and after determining the number of products to add to List C, consumer 62 can add the product attributes to List C by selecting add button 474.
Alternatively, consumer 62 can consider whether to add product variations to the shopping list. For example, personal assistant engine 74 displays, in block 476, Brand F Squeezable Grape Jelly, which is an alternative product similar to the product shown in block 470, Brand F Squeezable Strawberry Jelly. Personal assistant engine 74 also displays, in block 478, the price of Brand F Squeezable Grape Jelly, indicated as $4.34. Personal assistant engine 74 may display the lowest price for the product variation that is available among the retailers in the geographical area defined by consumer 62. Alternatively, personal assistant engine 74 may display the price at the closest store, or the lowest price among the preferred stores indicated by consumer 62. Consumer 62 can increase or decrease the number of products indicated in product number box 480 using toggle button 482. After deciding whether to add the product displayed in block 476 to the shopping list, consumer 62 can click add button 484 to add the product to List C.
Personal assistant engine 74 also displays, in block 490, Brand F Squeezable Strawberry Jelly Twin Pack, which is an alternative product or product variation similar to the product shown in block 470, Brand F Squeezable Strawberry Jelly. Personal assistant engine 74 also displays, in block 492, the price of Brand F Squeezable Strawberry Jelly Twin Pack, indicated as $10.19. Personal assistant engine 74 may display the lowest price for the product variation that is available among the retailers in the geographical area defined by consumer 62. Alternatively, personal assistant engine 74 may display the price at the closest store, or the lowest price among the preferred stores indicated by consumer 62. Consumer 62 can increase or decrease the number of products indicated in product number box 494 using toggle button 496. After deciding whether to add the product displayed in block 490 to the shopping list, consumer 62 can click add button 498 to add the product to List C.
Personal assistant engine 74 also displays, in block 500, Brand F Mixed-Berry Jelly, which is an alternative product or product variation similar to the product shown in block 470, Brand F Squeezable Strawberry Jelly. Personal assistant engine 74 also displays, in block 502, the price of Brand F Mixed-Berry Jelly, indicated as $5.19. Personal assistant engine 74 may display the lowest price for the product variation that is available among the retailers in the geographical area defined by consumer 62. Alternatively, personal assistant engine 74 may display the price at the closest store, or the lowest price among preferred stores indicated by consumer 62. Consumer 62 can increase or decrease the number of products indicated in product number box 504 using toggle button 506. After deciding whether to add the product displayed in block 500 to the shopping list, consumer 62 can click add button 508 to add the product to List C. Consumer 62 can also hide each of the product variations shown in blocks 476, 490, and 500 using hide product variations button 510.
The search results for the search phrase “jelly” also include Brand F Grape Jelly 0.5 Ounce Cups Pack of 100, shown in Block 520. The product name or description for Brand F Grape Jelly 0.5 Ounce Cups Pack of 100 is also indicated in block 522. The product name or description can include any descriptive words or phrases to identify the source or type of product. The price range for Brand F Grape Jelly 0.5 Ounce Cups Pack of 100 is indicated in block 524. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the geographical area indicated by the consumer, or among the list of preferred retailers indicated by the consumer. In the present example, personal assistant engine 74 indicates that the price for Brand F Grape Jelly 0.5 Ounce Cups Pack of 100 among retailers searched by personal assistant engine 74 ranges from $8.49 to $9.29.
Personal assistant engine 74 also displays, in block 526, the potential savings for customer 62 on Brand F Grape Jelly 0.5 Ounce Cups Pack of 100. The potential savings is the dollar amount that the consumer will save by purchasing the least expensive option among all of the potential retailers instead of the most expensive option. In other words, the potential savings is the price of the most expensive option, minus the price of the least expensive option. Personal assistant engine 74 may also indicate the potential savings as a percentage discount off the most expensive option. In the present example, personal assistant engine 74 indicates that consumer 62 can save up to $0.80 by purchasing the least expensive option among all potential retailers as opposed to the most expensive option. Furthermore, personal assistant engine 74 indicates that a savings of $0.80 is 8.61% off the most expensive price of $9.29.
Personal assistant engine 74 also displays, in block 528, the number of item options available, and the number of stores among the potential retailers where the product can be purchased. In the present example, personal assistant engine 74 indicates that the number of item options is two, because the search results include a specific product—Brand F Grape Jelly 0.5 Ounce Cups Pack of 100—but, there are similar options for the same product, e.g., a pack of 200, or 50, instead of 100. In some circumstances, the number of item options may be greater than one, e.g., when the search term is very general, or where there are variations among similar products for attributes like size or packaging that are not significant enough to distinguish the product from similar products.
Consumer 62 can increase or decrease the number of products indicated in product number box 530 by selecting the plus or minus symbol on toggle button 532 to add the corresponding number of products to the shopping list. For example, if consumer 62 would like to increase the number of items from one to two, consumer 62 can select the plus symbol on toggle button 532. Similarly, if consumer 62 would like to then decrease the number of items from two to one, consumer 62 can select the minus symbol on toggle button 532. Alternatively, consumer 62 can select the number of items using a sliding scale, or by entering the number of products in a text box.
After determining whether to purchase the product displayed in block 520, and after determining the number of products consumer 62 would like to add to List C, consumer 62 can add the product attributes to List C by selecting add button 534. Alternatively, consumer 62 can select show product variations button 536 to browse product variations. Product variations include products that are similar to, but different from the product shown in block 520, such as similar products from competitors, or products from the same brand but with a different flavor, scent, size, or color.
Consumer 62 can add any number of the products displayed for the search results for the search phrase “jelly” to the shopping list for List C. If consumer 62 chooses to add a product attribute to the list, the product attribute will be incorporated into shopping list 378 as a new shopping list item. Alternatively, consumer 62 can further refine the search results by selecting or de-selecting the filters 412. As consumer 62 chooses to apply or not apply filters 412 to the search results, personal assistant engine 74 will dynamically change the search results shown in block 410 for the search phrase.
Consumer 62 can modify or edit the target budget for the shopping trip by editing the budget in text box 396. As shown in block 398, personal assistant engine 74 automatically and dynamically updates the total price for the products within List C after products are added to the shopping list. After consumer 62 adds Brand F Grape Jelly to List C, the total price for the products in List C increases from $26.27 to $31.86, based on the least expensive price of Brand F Grape Jelly at all of the potential retailers defined by consumer 62. In another embodiment, the total price for products in List C, as shown in block 398, is based on the most convenient set of retailers, or the set of preferred retailers defined by consumer 62.
Consumer 62 may also choose not to add any of the products shown in the search results in webpage 400. Consumer 62 can change the search term by entering a new search term in text box 360 of webpage 328, shown in
After browsing for products, searching for products, or adding product attributes to the shopping list, as shown in
As shown in
As each product attribute is added to the shopping list, personal assistant engine 74 recommends a specific product corresponding to each item in the shopping list.
Shopping list 378 also includes the product attribute “cereal” in block 382, and additional product attributes “Brand B” and “Gluten-Free.” Thus, consumer 62 indicates to personal assistant engine 74 a desire to purchase cereal from Brand B that is gluten-free. Similarly, shopping list 378 includes the product attribute “tomatoes” in block 384. In the case of “tomatoes,” however, consumer 62 has not added any additional product attributes.
Shopping list 378 further includes the product attribute “cucumbers” in block 386, and the additional product attribute “retailer 194.” Thus, consumer 62 indicates to personal assistant engine 74 a desire to purchase cucumbers from retailer 194. A consumer may wish to narrow the recommendation for specific products to specific retailers. For example, in the present example, consumer 62 prefers to purchase cucumbers from retailer 194 because consumer 62 believes retailer 194 tends to stock higher-quality and fresher produce than other competing retailers.
Shopping list 378 further includes the product attribute “butter” in block 388, and the additional product attribute “salted.” Thus, consumer indicates to personal assistant engine 74 a desire to purchase salted butter.
Finally, shopping list 378 includes the product attribute “Brand F Grape Jelly” in block 540. In the case of the product attribute in block 540, consumer 62 added the product attribute to the shopping list by searching for “jelly” and applying the filter for “Brand F” to the search results before adding “Brand F Grape Jelly” to the shopping list, illustrating the ability to incorporate product attributes during the searching or browsing process.
As consumer 62 adds each of the product attributes shown in blocks 380-388 and 540 to shopping list 378 for List C, personal assistant engine 74 proceeds to generate a shopping list of recommended products based on the product attributes of shopping list 378, as shown in block 551. In another embodiment, personal assistant engine 74 generates the list of recommended products after consumer 62 selects plan shopping trip button 366 in
Recommended products are specific products or services that are manufactured and sold, and may have an associated product stock-keeping unit (SKU) number to identify the actual unique product that can be purchased. Thus, personal assistant engine 74 converts each of the product attributes defined by consumer 62 into recommendations for specific products that can be purchased at various retailers. Personal assistant engine 74 determines recommended products by searching the product information within central database 76 for products that are the most relevant to the product attributes defined by consumer 62. Personal assistant engine 74 may also take into account weighted preferences for certain product attributes as defined by consumer 62. Personal assistant engine 74 may also take into account previous purchasing history of consumer 62, to recommend products that consumer 62 has purchased in the past and enjoyed or not enjoyed. Personal assistant engine 74 may further take into account product reviews submitted by other consumers regarding specific products. Personal assistant engine 74 also considers coupons, deals, promotional offers, and the overall price for the variety of product options relevant to the product attributes defined by consumer 62 in shopping list 378. Before recommending a specific product at a specific retailer, personal assistant engine 74 may also check the product availability among the local or online retailers. Personal assistant engine 74 then generates the shopping list of recommended products 552, with each recommended product corresponding to each product attribute based on a determination of the ideal balance between product quality, product relevance, convenience for the consumer, and price.
In preparation for a typical shopping trip, a consumer will make a list of products that the consumer wishes to purchase. Unfortunately for the consumer, however, not all retailers carry the exact same products, at the exact same price, and of the same quality. Thus, invariably when a consumer begins the shopping process at a specific retailer, the consumer will have to substitute products on the shopping list with alternative products. For example, in a common scenario a consumer visits a retailer intending to purchase a specific product from a specific brand, only to find out that the retailer does not carry the right size or the expiration date of the products on the shelf are too soon. Thus, the consumer chooses to purchase an alternative product from a different brand. In another scenario, a consumer may not have a particular product in mind, but only general product attributes. For example, the consumer may wish to purchase 2% milk, but has no brand preference. During the shopping trip, the consumer must browse among the many choices of milk products and select a product that fits the product attribute. The consumer may waste time making a decision, or may end up purchasing an inferior product for a higher price than is necessary. Thus, with any shopping trip, there is an interplay between which retailers the consumer will patronize, which products the consumer will purchase, and what price the consumer will pay for individual products. By automatically generating a list of recommended products based on the product attributes within a consumer's shopping list, personal assistant engine 74 assists consumer 62 with juggling the various shopping decisions to obtain the highest quality product, at the lowest price, at the most convenient retailer.
For example, in the present example, consumer 62 defined a product attribute for “vanilla yogurt” shown in block 380, and personal assistant engine 74 provides a recommended product for 32 Ounce Brand A Vanilla Yogurt, shown in block 554, which corresponds to a specific product that can be purchased at the preferred retailers defined by consumer 62. Similarly, consumer 62 defined a product attribute for “cereal” shown in block 382, and personal assistant engine 74 provides a recommended product for 20 Ounce Brand B Rice Puff Cereal shown in block 556. In block 384, consumer 62 defined a product attribute for “tomatoes” and personal assistant engine 74 provides a product recommendation for a one-half dozen package of pre-packed Roma Tomatoes, shown in block 558. In block 386, consumer 62 defined a product attribute for “cucumbers” and personal assistant engine 74 provides a product recommendation for a one-half dozen package of pre-packed Large Cucumbers shown in block 560. In block 388, consumer 62 defined a product attribute for “butter” and personal assistant engine 74 provides a product recommendation for a 16 Ounce package of Brand C Salted Butter shown in block 562. In block 540, consumer 62 defined a product attribute for Brand F Grape Jelly and personal assistant engine 74 provides a product recommendation for an 18 ounce package of Brand F Grape Jelly shown in block 564.
Each of the product recommendations is generated automatically or dynamically by personal assistant engine 74 after consumer 62 adds the product attributes to the shopping list, or after consumer 62 selects plan shopping trip button 366 shown in
Personal assistant engine 74 also displays, within product list column 582, instruction text 592, which explains to consumer 62 that after selecting a shopping option 586, 588, or 590, consumer 62 can print or email the product list and trip, or can send the shopping list and trip to a mobile device or mobile computer system. Consumer 62 can print the product list and trip by clicking print button 594 to print the shopping list on a printer in electronic communication with computer 114. Consumer 62 can also email the product list and trip by clicking email button 596. If consumer 62 clicks email button 596, personal assistant engine 74 sends an email message with the product list and trip to the email address associated with the account of consumer 62. Alternatively, personal assistant engine 74 may display a separate webpage with options to enter a new email address, and personal assistant engine 74 will send an email message with the product list and trip to the new email address. Consumer 62 can also send the product list and trip to a mobile device or mobile computer system by clicking send to mobile button 598. If consumer 62 clicks send to mobile button 598, personal assistant engine 74 will initiate sending the product list and trip to a mobile device associated with the account or profile of consumer 62 using Short Message Service (SMS) texting, or other data transfer protocol. Consumer 62 may also view the product list and trip using a graphical interface on a software application or web browser installed on a mobile device.
Personal assistant engine 74 also shows, within shopping list options column 582, block 551 from
Personal assistant engine 74 shows, in shopping option 586, the most frugal or least expensive shopping trip option based on the preferred retailers 190-194 or preferred geographical shopping area 202 defined by consumer 62. In order to determine the most frugal shopping trip, personal assistant engine 74 compares the prices of each of the products within the shopping list List C at each of the preferred retailers 190-194 or at each of the retailers within the preferred geographical shopping area 202. For each of the items within the shopping list, personal assistant engine 74 selects the least expensive product from all of the potential retailers.
For example, personal assistant engine 74 displays shopping trip 600 within shopping option 586. Shopping trip 600 includes purchasing 32 Ounce Brand A Vanilla Yogurt at retailer 190 for $5.60 as shown in block 602, purchasing 20 Ounce Brand B Rice Puff Cereal at retailer 192 for $4.49 as shown in block 604, purchasing a one-half dozen package of pre-packed Roma Tomatoes at retailer 190 for $1.90 as shown in block 606, purchasing a one-half dozen package of pre-packed Large Cucumbers at retailer 194 for $5.69 as shown in block 608, purchasing a 16 Ounce package of Brand C Salted Butter at retailer 192 for $9.84 as shown in block 610, and purchasing an 18 ounce package of Brand F Grape Jelly at retailer 192 for $4.34 as shown in block 612.
In some circumstances, consumer 62 may wish to consider alternative options for items presented in the shopping trip. Consumer 62 can select the corresponding switch item button 613 for each item in List C, and as will be discussed, personal assistant engine 74 will present alternative options for the products that are similar to the specific product on the shopping list. For example, consumer 62 may wish to switch from a brand name product to a cheaper store brand or generic brand. Consumer 62 can select individual switch item buttons 613 for each individual product in List C to review alternative options presented by personal assistant engine 74. Alternatively, personal assistant engine 74 may present an option to switch a group of products to alternative items, such as switching all brand name products to generic products.
Additionally, personal assistant engine 74 displays the potential savings if consumer 62 chooses the most frugal shopping trip within shopping option 586. In the present example, personal assistant engine 74 indicates in block 614, that consumer 62 will save $4.37 by choosing the most frugal shopping trip, shopping trip 600. Personal assistant engine 74 also displays the total price for the products for the shopping trip. In the present example, personal assistant engine 74 indicates in block 616 that consumer 62 will spend a total of $31.86 by choosing the most frugal shopping trip, shopping trip 600.
In store drop-down menu 618, personal assistant engine 74 lists each of the retailers for shopping trip 600. In the present example, the most frugal shopping trip with shopping trip 600 requires consumer 62 visit preferred retailers 190-194. Store drop-down menu 618 may also include the address, cross streets, or other information about the retailers listed in store drop-down menu 618. Consumer 62 can select drop-down button 620 to view additional retailers or to add additional retailers to or remove retailers from the list of retailers for shopping trip 600.
Returning to
If consumer 62 chooses the closest shopping trip by selecting radio button 654, as indicated by personal assistant engine 74 in block 656, consumer 62 will save $1.97 over the most expensive shopping trip option. As indicated in block 656, consumer 62 will spend a total of $34.26 to purchase the items within List C by choosing the closest shopping trip.
Personal assistant engine 74 determines the closest shopping trip by comparing prices at the retail locations relative to the home address associated with the profile or user account of consumer 62. Rather than selecting products at each location based solely on price, however, personal assistant engine 74 favors a close proximity to the home address of consumer 62. Personal assistant engine 74 will select products to satisfy the shopping list of List C by selecting products at the closest retail store. If the closest retail store does not carry a particular product, personal assistant engine 74 will select a product at the next closest retail store within the preferred geographical shopping area 202 or among the preferred retailers 190-194 until each item is fulfilled.
In the present case, personal assistant engine 74 indicates that the retailer for the closest shopping trip includes preferred retailer 194 in store drop-down menu 658. Store drop-down menu 658 may also indicate the address, cross streets, or other information about the retailers listed in store drop down menu 658. Consumer 62 can also select drop-down button 660 to open a separate pop-up window or webpage, similar to
Personal assistant engine 74 displays shopping trip 664 within shopping option 588, which is the closest shopping trip for List C based on the location of consumer 62. Shopping trip 664 includes purchasing vanilla yogurt at retailer 194 for $5.69 as shown in block 666, purchasing cereal at retailer 194 for $4.49 as shown in block 668, purchasing tomatoes at retailer 194 for $2.00 as shown in block 670, purchasing cucumbers at retailer 194 for $5.69 as shown in block 672, purchasing butter at retailer 194 for $9.99 as shown in block 674, and purchasing Brand F Grape Jelly at retailer 194 for $6.40 as shown in block 676.
Occasionally, a specific item will be out of stock or not carried by a particular retailer. Alternatively, consumer 62 may wish to consider alternative options for the products within the shopping trip. As shown in block 676, Brand F Grape Jelly is unavailable at any of the retailers for shopping trip 664 (e.g., preferred retailer 194). Consumer 62 can select the corresponding switch item button 678 to select a different item similar to Brand F Grape Jelly, which is not available at preferred retailer 194.
In the present example, the filters 684 include brand, shown in block 684. Consumer 62 can choose to filter the similar items according to particular brands, e.g., Brand G, H, or I, by selecting the corresponding check-box 686. Consumer 62 may have the option of selecting more than one option or filter, in order to include multiple brands in the search results. In the present example, consumer 62 has selected to filter by Brands G and I, thereby limiting the search results to products manufactured by Brand G and Brand I.
The filters 682 also include product type shown in block 688, to allow consumer 62 to limit the similar products to a particular type of product, e.g., organic, natural, or sugar-free. Product types can include any general description or grouping of specific products according to common characteristics. Consumer 62 can choose to filter by one of the product types listed by selecting the corresponding check-box 690. Alternatively, consumer 62 can select the more options button 692 to view additional types of filters related to product type. Consumer 62 may have the option of selecting more than one product type to include multiple product types among the similar products.
The filters 682 also include product size, shown in block 694, to allow consumer 62 to limit the similar products to a particular size, e.g., 0.5 ounces, 1 ounce, or 10 ounces. Consumer 62 can choose to filter by one of the product sizes by selecting the corresponding check-box 696. Alternatively, consumer 62 can select the more options button 698 to view additional types of filters related to product size. Consumer 62 may have the option of selecting more than one product size to include multiple product sizes among the similar products.
Consumer 62 can also apply additional filters 682, as shown in block 700, by adding additional types of filters, e.g., baby foods, or product flavors, by clicking on one of the other filter category buttons 702. Consumer 62 can also explore additional filter types by selecting more options button 704.
Personal assistant engine 74 displays, in block 710, similar products to Brand F Grape Jelly, which is unavailable at preferred retailer 174. Similar products include products that have similar attributes or characteristics to the product being replaced, but are slightly different. For example, a similar product may have a different manufacturer, flavor, smell, color, packaging, size, or other attribute that is different from an attribute of the product being replaced.
In the present example, because consumer 62 has chosen to filter the similar products to only include products manufactured by Brands G and I, the similar products shown in block 710 only include products manufactured by Brands G and I. The similar products shown in block 710 include Brand G Grape Jelly, shown in block 712. The product name or description for Brand G Grape Jelly is also indicated in block 714. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand G Grape Jelly is indicated in block 716. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by the consumer, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand G Grape Jelly among retailers searched by personal assistant engine 74 ranges from $5.59 to $9.09. Consumer 62 can substitute Brand G Grape Jelly for Brand F Grape Jelly by selecting substitute button 718.
The similar products shown in block 710 also include Brand G Strawberry Jelly, shown in block 720. The product name or description for Brand G Strawberry Jelly is also indicated in block 722. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand G Strawberry Jelly is indicated in block 724. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by consumer 62, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand G Strawberry Jelly among retailers searched by personal assistant engine 74 ranges from $5.70 to $8.37. Consumer 62 can substitute Brand G Strawberry Jelly for Brand F Grape Jelly by selecting substitute button 726.
The similar products shown in block 710 also include Brand G Squeezable Grape Jelly, shown in block 730. The product name or description for Brand G Squeezable Grape Jelly is also indicated in block 732. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand G Squeezable Grape Jelly is indicated in block 734. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by consumer 62, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand G Squeezable Grape Jelly among retailers searched by personal assistant engine 74 ranges from $6.10 to $7.00. Consumer 62 can substitute Brand G Squeezable Grape Jelly for Brand F Grape Jelly by selecting substitute button 736.
The similar products shown in block 710 also include Brand I Grape Jelly, shown in block 740. The product name or description for Brand I Grape Jelly is also indicated in block 742. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand I Grape Jelly is indicated in block 744. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by consumer 62, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand I Grape Jelly among retailers searched by personal assistant engine 74 ranges from $5.59 to $9.09. Consumer 62 can substitute Brand I Grape Jelly for Brand F Grape Jelly by selecting substitute button 746.
The similar products shown in block 710 also include Brand I Strawberry Jelly, shown in block 750. The product name or description for Brand I Strawberry Jelly is also indicated in block 752. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand I Strawberry Jelly is indicated in block 754. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by consumer 62, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand I Strawberry Jelly among retailers searched by personal assistant engine 74 ranges from $5.70 to $8.37. Consumer 62 can substitute Brand I Strawberry Jelly for Brand F Grape Jelly by selecting substitute button 746.
The similar products shown in block 710 also include Brand I Squeezable Grape Jelly, shown in block 760. The product name or description for Brand I Squeezable Grape Jelly is also indicated in block 762. The product name or description can include any descriptive words, phrases, or images to identify the source or type of product. The price range for Brand I Squeezable Grape Jelly is indicated in block 764. The price range for each product includes an indication of the lowest price and the highest price for the product among retailers within the preferred geographical area 202 indicated by consumer 62, or among the list of preferred retailers 190-194 indicated by consumer 62. In the present example, personal assistant engine 74 indicates that the price for Brand I Squeezable Grape Jelly among retailers searched by personal assistant engine 74 ranges from $6.10 to $7.00. Consumer 62 can substitute Brand I Squeezable Grape Jelly for Brand F Grape Jelly by selecting substitute button 766.
Consumer 62 can browse additional similar products by navigating through additional pages of similar products using page navigation buttons 770. Consumer 62 can also cancel substituting a product by selecting cancel button 772. Pop-up window 680 may also include the ability for consumer 62 to search for similar products by entering keyword search terms into a text box.
Returning to
In store drop-down menu 784, personal assistant engine 74 lists each of the retailers for shopping option 590. In the present example, the most expensive shopping trip requires consumer 62 to visit preferred retailers 190 and 194. Store drop-down menu 784 may also include the address, cross streets, or other information about the retailers listed in store drop-down menu 784. Consumer 62 can select drop-down button 786 to view additional retailers or to add additional retailers to or remove retailers from the list of retailers for shopping option 590.
Personal assistant engine 74 displays shopping trip 790 within shopping option 590. Shopping trip 790 is the most expensive shopping trip option among the current options. Shopping trip 790 includes purchasing vanilla yogurt at retailer 194 for $5.69 as shown in block 792, purchasing cereal at retailer 194 for $4.49 as shown in block 794, purchasing tomatoes at retailer 194 for $2.00 as shown in block 796, purchasing cucumbers at retailer 194 for $5.69 as shown in block 798, purchasing butter at retailer 194 for $9.99 as shown in block 800, and purchasing Brand F Grape Jelly at retailer 190 for $8.37 as shown in block 802. Consumer 62 can also switch items to a similar item by selecting the corresponding switch item button 804 for each item in List C.
Personal assistant engine 74 also displays, within webpage 580, add option button 810 for adding and exploring additional shopping trip options. Consumer 62 can add as many shopping trip options as desired by selecting add option button 810. Consumer 62 may wish to evaluate additional shopping trip options, for example, if consumer 62 plans to run an errand outside the preferred geographical shopping area 202 and would like to purchase the items within List C while running the errand. For example, consumer 62 may plan on picking up a friend at the airport, and wishes to see if stores near or on the way to the airport offer better prices than the retailers within the preferred geographical shopping area 202 or among preferred retailers 190-194.
As indicated by personal assistant engine 74 in block 828, consumer 62 will save $4.29 by choosing the most expensive shopping trip. As indicated in block 830, consumer 62 will spend a total of $31.94 to purchase the items within List C by choosing shopping trip option 820 and only shopping at preferred retailer 192.
Personal assistant engine 74 displays shopping trip 840 within shopping trip option 820. Shopping trip 840 includes shopping at only preferred retailer 192. Shopping trip 840 includes purchasing vanilla yogurt at retailer 192 for $5.63 as shown in block 842, purchasing cereal at retailer 192 for $4.49 as shown in block 844, purchasing tomatoes at retailer 192 for $1.95 as shown in block 846, purchasing cucumbers at retailer 192 for $5.69 as shown in block 848, purchasing butter at retailer 192 for $9.84 as shown in block 850, and purchasing Brand F Grape Jelly at retailer 192 for $4.34 as shown in block 852. Consumer 62 can also switch items to a similar item by selecting the corresponding switch item button 854.
Consumer 62 can continue to add additional shopping trip options by selecting add option button 810 in
By providing an interface for a consumer to create a shopping list of product attributes (i.e., needs or desires), providing a list of specific recommended products that fulfill the product attributes at the highest quality and lowest price, and providing shopping trip options based on the product recommendations, as shown in
As discussed, in addition to allowing consumer 62 to manually search for, browse, or define product attributes to add to a shopping list, personal assistant engine 74 can generate an ideal or optimized shopping list for consumer 62 based on user-defined preferences for product attributes and characteristics. Consumer 62 can select view optimized shopping list button 368 in
In pop-up window 880, the attributes for brand include brand A, brand B, and brand C. A brand option is provided for each type of dairy product or for the selected type of dairy product. Consumer 62 can select one or more attributes under brand by clicking on boxes 886. A checkmark appears in the box 886 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 888 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. Alternatively, block 888 includes a sliding scale to select a relative value for the weighting factor. In the present pop-up window 880, consumer selects brand A with a weighting factor of 0.6 and brand C with a weighting factor of 0.3 for the selected milk attribute. Consumer 62 considers either brand A or brand C to be acceptable, but brand A is preferred over brand C as indicated by the relative weighting factors. The weighting factors associated with different brands allows consumer 62 to assign preference levels to acceptable brand substitutes.
The attributes for size include 1 gallon, 1 quart, 12 ounces, and 6 ounces. A size option is provided for each type of dairy product or for the selected type of dairy product. Consumer 62 can select one or more attributes under size by clicking on boxes 890. A checkmark appears in the box 890 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 892 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 880, consumer selects 1 gallon with a weighting factor of 0.7 for the selected milk attribute.
The attributes for health include whole, 2%, low-fat, and non-fat. A health option is provided for each type of dairy product or for the selected type of dairy product. Consumer 62 can select one or more attributes under health by clicking on boxes 894. A checkmark appears in the box 894 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 896 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 880, consumer selects 2% with a weighting factor of 0.5 and non-fat with a weighting factor of 0.4 for the selected milk attribute. Consumer 62 considers either 2% milk or non-fat milk to be acceptable, but 2% milk is preferred over non-fat as indicated by the relative weighting factors. The weighting factors associated with different health attributes allows consumer 62 to assign preference levels to acceptable health attribute substitutes.
The attributes for freshness include 1 day old, 2 days old, 3 days old, 1 week to expiration, or 2 weeks to expiration. A freshness option is provided for each type of dairy product or for the selected type of dairy product. Consumer 62 can select one or more attributes under freshness by clicking on boxes 898. A checkmark appears in the box 898 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 900 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 880, consumer selects 2 weeks to expiration with a weighting factor of 0.8 for the selected milk attribute.
The attributes for cost include less than $1.00, $1.01-2.00, $2.01-3.00, $3.01-4.00, or $4.01-5.00. Consumer 62 can select one or more attributes under cost by clicking on boxes 902. A checkmark appears in box 902 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 904 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 880, consumer selects $1.01-2.00 with a weighting factor of 0.7 and $2.01-3.00 with a weighting factor of 0.4 for the selected milk attribute. Consumer 62 is willing to pay either $1.01-2.00 or $2.01-3.00, but would prefer to pay $1.01-2.00 as indicated by the relative weighting factors.
Once the consumer-defined attributes and weighting factors for milk are selected, consumer 62 clicks on save button 906 to record the configuration in central database 76. The consumer-defined attributes and weighting factors for milk can be modified with modify button 908 or deleted with delete button 910 in pop-up window 880.
Consumer 62 can add, delete, or modify additional types of dairy products, such as cottage cheese, Swiss cheese, yogurt, and sour cream, in a similar manner as described for milk in
Once the attributes and weighting factors for all dairy products are defined by consumer preference, consumer 62 returns to
The attributes for size include 1 ounce, 12 ounce, 25 ounce, and 3 pound. Consumer 62 can select one or more attributes under size by clicking on boxes 926. A checkmark appears in the box 926 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 928 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 920, consumer selects 25 ounce size with a weighting factor of 0.8.
The attributes for health include calories, fiber, vitamins and minerals, sugar content, and fat content. Health attributes can be given in numeric ranges. Consumer 62 can select one or more attributes under health by clicking on boxes 930. A checkmark appears in box 930 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 932 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 920, consumer selects fiber with a weighting factor of 0.6 and sugar content with a weighting factor of 0.8. Consumer 62 considers fiber and sugar content with numeric ranges to be important nutritional attributes according to the relative weighting factors.
The attributes for ingredients include whole grain, rice, granola, dried fruit, and nuts. Consumer 62 can select one or more attributes under ingredients by clicking on boxes 934. A checkmark appears in the box 934 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 936 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 920, consumer selects whole grain with a weighting factor of 0.5.
The attributes for preparation include served hot, served cold, ready-to-eat, and instant. Consumer 62 can select one or more attributes under preparation by clicking on boxes 938. A checkmark appears in box 938 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 940 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 920, consumer selects served cold with a weighting factor of 0.7 and ready-to-eat with a weighting factor of 0.8.
The attributes for cost include less than $1.00, $1.01-2.00, $2.01-3.00, $3.01-4.00, or $4.01-5.00. Consumer 62 can select one or more attributes under cost by clicking on boxes 942. A checkmark appears in box 942 selected by consumer 62. Consumer 62 can enter a weighting value or indicator in block 1084 corresponding to the importance of the selected attribute. The weighting factor can be a numeric value, e.g., 0.0-0.9. In the present pop-up window 920, consumer selects $2.01-3.00 with a weighting factor of 0.6 and $3.01-4.00 with a weighting factor of 0.2. Consumer 62 is willing to pay either $2.01-3.00 or $3.01-4.00, but would prefer to pay $2.01-3.00 as indicated by the relative weighting factors.
Once the consumer-defined attributes and weighting factors for grocery items are selected, consumer 62 clicks on save button 946 to record the configuration in central database 76. The consumer-defined attributes and weighting factors for grocery items can be modified with modify button 948 or deleted with delete button 950 in pop-up window 920.
Consumer 62 can add, delete, or modify other grocery items in a similar manner as described in
Consumer 62 makes selections of attributes and weighting factors for fresh fruits and vegetables by selecting weigh category button 337, meat and seafood by selecting weigh category button 441, bakery goods by selecting weigh category button 349, personal care by selecting weigh category button 353, and kitchen and cleaning by selecting weigh category 357, in a similar manner as described in
In another embodiment, consumer 62 can record product attributes and weighting factors by mobile application. When patronizing a retailer, consumer 62 can record a product of interest or need by scanning the UPC on the shelf or product itself with cell phone 116. The UPC is transmitted to consumer service provider 72 and decoded. The product attributes are retrieved from central database 76, transmitted back to consumer 62, and displayed on cell phone 116. For example, if consumer 62 scans a particular ground coffee, the UPC identifies it as brand A, French roast flavor, and 1 pound size for the ground coffee, as shown in
Many cell phones 116 contain a global position system (GPS) device to identify the exact location of consumer 62 while in the premises of a retailer. Knowledge of the present location of consumer 62 provides a number of advantages. For example, consumer service provider 72 can give directions to consumer 62 of the shelf location of each product on the optimized shopping list 145. With RF ID tag attached to products, cell phone 116 can display directional information such as text or arrows to guide consumer 62 to the product location. Many retailers also offer in-store locator systems in communication with cell phone 116 to assist with finding specific products.
In
The consumer can also identify a specific preferred retailer as an attribute with an assigned preference level based on convenience and personal experience. The consumer may assign value to shopping with a specific retailer because of specific products offered by that store, familiarity with the store layout, good consumer service experiences, or location that is convenient on the way home from work, picking up the children from school, or routine weekend errand route.
Given the consumer-generated initial list of product attributes, as discussed with reference to
For example, assume consumer 62 wants to purchase dairy products and has provided shopping list 958 with preference levels for weighted product attributes for milk and other dairy products that are important to his or her purchasing decision. Central database 76 contains dairy product descriptions, dairy product attributes, and pricing for each retailer 190-194. Personal assistant engine 74 reviews the attributes of dairy products offered by each retailer 190-194, as stored in central database 76. The more specific the consumer-defined attributes, the narrower the search field but more likely the consumer will get the preferred product. The less specific the consumer-defined attributes, the wider the search field and more likely the consumer will get the most choices and best pricing.
The product attributes of each dairy product for retailers 190-194 in central database 76 are compared to the consumer-defined weighted product attributes in shopping list 958 by personal assistant engine 74. For example, the available dairy products from retailer 190 are retrieved and compared to the weighted attributes of consumer 62. Likewise, the available dairy products from retailer 192 are retrieved and compared to the weighted attributes of consumer 62, and the available dairy products from retailer 194 are retrieved and compared to the weighted attributes of consumer 62. Consumer 62 wants milk under brand A with weighting level of 0.6 or milk under brand C with a weighting level of 0.3. Those retailers with brand A of milk or brand C of milk receive credit or points weighted by the preference level for meeting the consumer's attribute. Otherwise, the retailers receive no credit or points, or less credit or points, because the product attribute does not align or is less aligned with the consumer weighted attribute. Consumer 62 wants 1 gallon size with a preference level of 0.7. Those retailers with 1 gallon size milk receive credit or points weighted by the preference level for meeting the consumer's attribute. Otherwise, the retailers receive no credit or points, or less credit or points, because the product attribute does not align or is less aligned with the consumer weighted attribute. Consumer 62 wants 2% milk with a preference level of 0.5 or non-fat milk with a preference level of 0.4. Those retailers with 2% milk or non-fat milk receive credit or points weighted by the preference level for meeting the consumer's attribute. Otherwise, the retailers receive no credit or points, or less credit or points, because the product attribute does not align or is less aligned with the consumer weighted attribute. Consumer 62 wants 2 weeks to expiration for milk with a preference level of 0.8. Those retailers with fresh milk (at least 2 weeks to expiration) receive credit or points weighted by the preference level for meeting the consumer's attribute. Those retailers with milk set to expire in less than 2 weeks receive less credit or points because the product attribute does not align or is less aligned with the consumer weighted attribute. Consumer 62 wants milk at a price $1.01-2.00 with a preference level of 0.7, or milk at a price $2.01-3.00 with a preference level of 0.4. Those retailers with the lower net price (regular price minus discount for consumer 62) receive the most credit or points weighted by the preference level for being the closest to meeting the consumer's attribute. Those retailers with higher net prices receive less credit or points because the product attribute does not align or is less aligned with the consumer weighted attribute.
Consumer value CV can also be determined by equation (1) as follows:
CV=CVbΠa(Ma) (1)
where: CVb is a baseline product value of the product category, and
The “Final Price” column shows the final price (FP) offered to the consumer, i.e., regular price less the default discount from retailer 190 ($2.90−0.40=2.50). The “Net Value” column is the net value or normalized value (NV) of the DP1 product to consumer 62. In one embodiment, the net value is the consumer value normalized by the final price, i.e., NV=CV/FP. Alternatively, the net value is determined by NV=(CV−FP)/CV. Using the first normalizing definition, NV=2.60/2.50=1.04. The consumer value CV is greater than the final price FP offered by retailer 190, including the default discount. The net value NV to consumer 62 is greater than one (CV greater than FP) so the DP1 product is a possible choice for the consumer. Using the second normalizing definition, NV=(2.60−2.50)/2.60=+0.04. The net value NV to consumer 62 is positive so the DP1 product may be a good choice for the consumer. Consumer 62 is likely to buy the DP1 product because the product attributes align or match reasonably well with the consumer weighted attributes, taking into account the discounted offer. A net value NV greater than one or positive indicates that retailer 190 may receive a positive purchasing decision from consumer 62 because the consumer value CV greater than the final price FP. Personal assistant engine 74 may recommend the DP2 product to consumer 62 in optimized shopping list 144.
Dairy product DP2 (milk) from retailer 192 is shown with DP2 product attributes, e.g., brand B, 1 gallon, non-fat, 1 week to expiration in freshness, and pricing of $2.90 (regular price of $2.90 with no discounted offer from retailer 192). The DP2 product gets no or minimal attributes points AP6 for brand B, attributes points AP7 for 1 gallon size, attribute points AP8 for non-fat, no or minimal attribute points AP9 for 1 week to expiration in freshness, and attributes points AP10 for the $2.90 price. The consumer value is AP7*0.7+AP8*0.4+AP10*0.4. Assume that the DP2 product gets CV of $2.00 USD. The final price FP is the regular price less the default discount from retailer 192 ($2.90). Using the first normalizing definition, NV=2.00/2.90=0.69. The net value NV to consumer 62 is less than one so the DP2 product will not be a good choice for the consumer. Using the second normalizing definition, NV=(2.00−2.90)/2.00=−0.45. The net value NV to consumer 62 is negative so the DP2 product will not be a good choice for the consumer. Consumer 62 is likely not to buy the DP2 product because the product attributes do not align or match well with the consumer weighted attributes, taking into account the discounted offer. A net value NV less than one or negative indicates that retailer 190 would likely not receive a positive purchasing decision from consumer 62. Personal assistant engine 74 should not recommend the DP2 product to consumer 62 in optimized shopping list 144.
Dairy product DP3 (milk) from retailer 194 is shown with DP3 product attributes, e.g., brand C, 1 gallon size, 2%, 2 weeks to expiration in freshness, and pricing of $1.99 (regular price of $2.75 less 0.76 discounted offer from retailer 194). The DP3 product gets attributes points AP11 for brand C, attributes points AP12 for 1 gallon size, attributes points AP13 for 2%, attributes points AP14 for 2 weeks to expiration in freshness, and attributes points AP15 for the $1.99 price. The consumer value is AP11*0.3+AP12*0.7+AP13*0.5+AP14*0.8+AP15*0.7. Assume that the DP3 product gets CV of $2.40 USD. The final price FP is the regular price less the default discount ($2.75−0.76=1.99). Using the first normalizing definition, NV=2.40/1.99=1.21. The net value NV to consumer 62 is greater than one (CV greater than FP) so the DP3 product is a possible choice for consumer 62. Using the second normalizing definition, NV=(2.40−1.99)/2.40=+0.17. The net value NV to consumer 62 is positive so the DP3 product is a possible choice for the consumer. In fact, based on the default discounted offers from retailers 190-194, the net value of the DP3 product (NV=1.21) or (NV=+0.17) is the highest net value NV, i.e., higher than the net value of the DP1 product (NV=1.04) or (NV=+0.04) and higher than the net value of the DP2 product (NV=0.69) or (NV=−0.45). The DP3 product is placed on optimized shopping list 144. The DP3 product is the optimal choice for consumer 62 in that if the consumer needs to purchase milk, then DP3 is the product most closely aligned with the consumer weighted attributes, i.e., highest net value NV, and would likely receive a positive purchasing decision from consumer 62.
Assume consumer 62 has additionally defined consumer weighted attributes for breakfast cereal products, canned soup brands, bakery goods, and frozen vegetables, similar to the process shown in
In the present example, the BC2 product from retailer 192 (NV=1.15), the CS3 product from retailer 194 (NV=1.12), the BG1 product from retailer 190 (NV=1.38), the FP2 product from retailer 192 (NV=1.04), and the FV1 product from retailer 190 (NV=1.06) are determined to be the best value product brand for consumer 62 and are placed on optimized shopping list 144. The other products from retailers 190-194 had a net value less than one or a net value greater than one but less than that of the winning retailer.
Consumer 62 can view the optimized shopping list 144 by clicking on the view optimized shopping list button 368 in
Webpage 970 also displays in block 974 a “save up to” price of $5.17 as retail price less discounts, total retail price of $24.80, and total price after discounts of $19.63 for all 10 items. The “save up to” value can be based on actual pricing of the retailer or an average or highest local, regional, or national regular pricing. For example, the “save up to” value can be the highest price from any retailer in a region over the past year. A list of the retailers to be patronized (190-194) is also shown in block 974, based on the products contained in the optimized shopping list 144. Webpage 970 also provides options to show the consumer weighted product attributes in a pop-up window, similar to
Webpage 970 can present alternate or additional versions of optimized shopping list 144. For example, personal assistant engine 74 can generate a shopping list 982, as shown on webpage 984 of
In another embodiment, personal assistant engine 74 can generate an optimized shopping list, similar to
In another embodiment, multiple brands and/or retailers for a single product can be placed on optimized shopping list 144. Personal assistant engine 74 can place, for example the top two or top three net value brands and/or retailers on optimized shopping list 144, and allow the consumer to make the final selection and purchasing decision. In the above example, the DP3 product (NV=1.21) could be placed in first position on optimized shopping list 144 and the DP1 product (NV=1.04) would be in second position on the optimized shopping list.
Another optimized shopping list 144 is generated for consumer 64 by repeating the above process using the preference levels for the weighted product attributes as defined by consumer 64. The optimized shopping list 144 for consumer 64 gives the consumer the ability to evaluate one or more recommended products, each with a discount for consumer 64 to make a positive purchasing decision. The recommended products are objectively and analytically selected from a myriad of possible products from competing retailers according to the consumer weighted attributes. Consumers 62-64 will develop confidence in making a good decision to purchase a particular product from a particular retailer.
Personal assistant engine 74 can provide a virtual shopping experience for consumer 62. Retailers 190-194 each have a physical layout of the premise with aisles, shelves, end caps, walls, floor displays, dairy cases, wine and spirit cases, frozen cases, meat counters, deli counters, bakery area, fresh produce area, prepared foods counters, and check-out displays. While the specific location of each food area within any given store may differ between retailers, each retailer offers similar products arranged in a logical layout, e.g., dairy products are stocked in the same general area, frozen foods are stocked in the same general area, and so on.
In the business transactions between consumers 62-64 and retailers 190-194, consumer service provider 72 plays an important role in terms of increasing sales for the retailer, while providing the consumer with the most value for the money, i.e., creating a win-win scenario. More specifically, consumer service provider 72 operates as an intermediary between special offers and discounts made available by the retailer and distribution of those offers to the consumers.
To explain part of the role of consumer service provider 72, first consider demand curve 1000 of price versus unit sales, as shown in
Now consider demand curve 1002 in
Under the consumer targeted marketing approach, each individual consumer receives a price point with an individualized discounted offer, i.e., PP1, PP2, or PP3, from the retailer for the purchase of product P. The individualized discounted offer is set according to the individual consumer price threshold that will trigger a positive purchasing decision for product P. The task is to determine an optimal pricing threshold for product P associated with each individual consumer and then make that discounted offer available for the individual consumer in order to trigger a positive purchasing decision. In other words, the individualized discounted offer involves consumer C1 being offered price PP1, consumer C2 being offered price PP2, and consumer C3 being offered price PP3 for product P. Each consumer C1-C3 should make the decision to purchase product P, albeit, each with a separate price point set by an individualized discounted offer. Consumer service provider 72 makes possible the individual consumer targeted marketing with the consumer-specific, personalized “one-to-one” offers as a more effective approach for retailers to maximize revenue as compared to the same discounted price for every consumer under mass marketing. Consumer service provider 72 becomes the preferred source of retail information for the consumer, i.e., an aggregator of retailers capable of providing one-stop shopping for many purchasing options. The individualized discounted offers enable market segmentation to the “one-to-one” level with each individual consumer receiving personalized pricing for a specific product.
With respect to pricing, each retailer has two price components: regular price and discounted offers from the regular price that are variable over time and specific to each consumer. The net price to consumer 62 is the regular price less the individualized discounted offer for that consumer. To determine optimal individualized discount needed to achieve a positive consumer purchasing decision for product P from consumer 62, personal assistant engine 74 considers the individualized discounts from each retailer 190-194. In one embodiment, the individualized discount can be a default discount determined by the retailer or personal assistant engine 74 on behalf of the retailer. The default discount is defined to provide a reasonable profit for the retailer as well as reasonable likelihood of attaining the first position on optimized shopping list 144, i.e., the default discounted offer is selected to be competitive with respect to other retailers.
Personal assistant engine 74 generates for each specific consumer an individualized discounted offer 145 for each product on optimized shopping list 144, as shown in
The optimal discounted offer tipping point (Prrip) for consumer 62 to make a positive purchasing decision between two products can be determined according to PTIP=CVK−CVK*(CVI−PI)/CVI, where CVK is the consumer value of product K, CVI is the consumer value of product I, and PI is the price of product I.
The optimized individualized discounted offer is in part a competitive process between retailers. Since the consumer needs to purchase the product from someone, the price tipping point for consumers may involve a comparison of the best available price from competing retailers. In a variation of the previous example, the optimal individualized discounted offer needed to achieve a positive consumer purchasing decision for the product from consumer 62 involves a repetitive process beginning with the regular price less the default discount and then incrementally increasing the individualized discounted offer until the winning retailer is determined. Continuing from the example of
If retailer 190 reaches first position over retailer 194 on optimized shopping list 144, then retailer 194 may authorize personal assistant engine 74 to increase its individualized discounted offer to consumer 62 as necessary to regain first position. Personal assistant engine 74 increases the discounted offer from retailer 194 by as little as one cent, or fraction of one cent, and recalculates the net value NV to consumer 62. If retailer 194 remains in second position, the discounted offer is incremented again and the net value NV is recalculated. The incremental increases in the individualized discounted offer from retailer 194 continue until retailer 194 regains first position over retailer 190 on optimized shopping list 144, or until retailer 194 reaches its maximum retailer acceptable discount. Retailer 194 will not exceed its maximum retailer acceptable discount as to do so would result in no profit or a loss on the transaction.
If retailer 194 regains first position over retailer 190 on optimized shopping list 144, then retailer 190 may authorize personal assistant engine 74 to increase its individualized discounted offer to consumer 62 as necessary to regain first position. Retailers 190 and 194 continue jockeying for first position until retailer 190 or 194 reaches its maximum retailer acceptable discount or otherwise withdraws from the competition. In the end, one retailer will be able to make a discounted offer to consumer 62 that achieves first position on optimized shopping list 144 without exceeding its maximum retailer acceptable discount and will remain as winner of the first position. While driving the individualized discount toward the maximum retailer acceptable discount may lead to a winner of the first position among competing retailers, it generally does not result in an individualized discounted offer that is the least discount that the retailer must offer to receive a positive purchasing decision from the consumer.
In another example, the optimal individualized discount needed to achieve a positive consumer purchasing decision for the product from consumer 62 involves a repetitive process beginning with the regular price and then incrementally increasing the individualized discounted offer until the optimal individualized discount is determined. The net value NV is determined for the DP1-DP3 products based on the final price FP equal to the regular price for the respective products. The occurrence of a net value NV less than one or negative for particular retailers is not dispositive as the individualized discounted offers have not yet been considered. Personal assistant engine 74 may run the net value calculations based on the regular price to determine the retailer with the highest net value NV for consumer 62. The highest net value retailer based on the regular price is tentatively in first position, although the discounted offer optimization process is just beginning. Personal assistant engine 74 makes a first individualized discounted offer on behalf of each retailer 190-194 and calculates the net value NV for consumer 62, as described above, for each of the DP1-DP3 products. The initial individualized discounted offer can be the default discount for the retailer, or a smaller incremental discount as little as one cent or fraction of one cent. Based on the initial individualized discounted offer, one retailer is determined to provide the highest net value NV for consumer 62. The individualized discounted offer optimization may stop there and the winning retailer will be in first position on optimized shopping list 144. Alternatively, retailers 190-194 authorize personal assistant engine 74 to increment their respective individualized discounted offer to consumer 62. The retailers that did not attain the coveted first position on optimized shopping list 144 after the initial individualized discount may want to continue bidding for that spot. Those retailers that choose to can incrementally increase their respective individualized discounted offer and personal assistant engine 74 recalculates the net value NV to consumer 62, as described above. Based on the revised individualized discounted offer, one retailer is determined to provide the highest net value NV for consumer 62 and will assume or retain first position on optimized shopping list 144.
If the competition among retailers for best net value continues, the retailers will likely drive each other toward the maximum retailer acceptable discount, which minimizes profit for the retailers. That is, the retailers will continue increasing the individualized discounted offer as they compete for first position until further discounts cannot practically be made. To avoid the eventuality of retailers continually increasing the individualized discounted offer, personal assistant engine 74 can set a limit on the number of incremental passes. If a competition among retailers arises, personal assistant engine 74 may limit the number of iterations to, for example two or three passes, and let the highest net value retailer after the maximum allowable passes be finally placed in first position on optimized shopping list 144. Retailers 190-194 will make their best offers within the allowable number of iterations and live with the result. Otherwise, without some failsafe in the computer-driven reality of personal assistant engine 74, where the controlling factor is which competing retailer gets to be in first position on optimized shopping list 144, the individualized discounted offer optimization will necessarily drive down the final price toward the maximum retailer acceptable discount. That is, the individualized discounted offer from the winning retailer will not be the smallest discount that would achieve a positive purchasing decision from consumer 62, but rather the final individualized discounted offer would be that which was necessary to place the winning retailer in first position on optimized shopping list 144 over the other competing retailers. Retailers 190-194 and consumer service provider 72 would needlessly lose profit.
In another consideration of optimizing the individualized discounted offer, blindly continuing to increase the individualized discounted offers does not necessarily collectively benefit the retailers. If retailer 190 continues to increase the individually discounted offer in competition with retailer 194, but retailer 190 never reaches or even comes close to first position, the reason can be that the product attributes of retailer 190 are not as well aligned with the consumer weighted attributes as are the product attributes of retailer 194. The net value NV is in part a function of the alignment of the product attributes and the consumer weighted attributes. Retailer 190 will never gain first position over the competing retailer 194 because the product attributes of retailer 194 are better positioned for the purchasing decision by consumer 62. While retailer 190 may not care that he or she is hopelessly driving down the profit for retailer 194 in bidding for first position of the subject product, retailer 190 will care when the alignment roles are reversed for another product on the shopping list of consumer 62 or on another consumer's shopping list. In the role reversal for another product, retailer 194 will be hopelessly driving down the profit of retailer 190. In addition, while blindly increasing the individualized discounted offer may achieve first position for the retailer on optimized shopping list 144, it may fail to set the final price at a profit optimizing level. That is, the individualized discounted offer from the winning retailer may not be the smallest discount that would achieve a positive purchasing decision from consumer 62, but rather the final individualized discounted offer would be that which was necessary to place the winning retailer in first position on optimized shopping list 144 over other competing retailers. Consumer 62 may benefit from the blind competition, but the retailers are needlessly reducing each other's profitability. Accordingly, if after a predetermined number of iterations, and retailer 190 is not making progress in taking over first position from retailer 194, further incremental individualized discounted offers from retailer 190 are suspended. Retailer 194 can assume the foregone conclusion of first position on optimized shopping list 144 while still retaining as much profit as possible in view of the competitive process.
In yet another example, the optimal individualized discount needed to achieve a positive consumer purchasing decision for the product from consumer 62 involves a repetitive process beginning with the regular price less the maximum retailer acceptable discount and then incrementally decreasing the individualized discounted offer, i.e., raising the final price FP for the product, until the optimal individualized discount is determined. In such a case, assume personal assistant engine 74 begins with the regular price less the maximum retailer acceptable discount for each retailer 190-194. The net value NV is determined for the DP1-DP3 products, as described above, based on the final price FP equal to the regular price less the maximum retailer acceptable discount for the respective products. The highest net value retailer based on the regular price less the maximum retailer acceptable discount is tentatively in first position.
Retailers 190-194 do not necessarily want to offer every consumer 62-64 the maximum retailer acceptable discount as that would minimize profit for the retailer. Personal assistant engine 74 must determine the price tipping point for consumer 62 to make a positive purchasing decision, i.e., the lowest individualized discounted price that would entice the consumer to purchase one product. Any product with a net value less than one or negative net value given the maximum retailer acceptable discount is eliminated because there is no practical discount, i.e., a discount that still yields a profit for the retailer, that the retailer could offer which would entice consumer 62 to purchase the product. As for the other products, personal assistant engine 74 incrementally modifies the individualized discounted offer to a value less than the maximum retailer acceptable discount, i.e., raises the final price FP (regular price minus the individualized discount) to consumer 62. The modified individualized discounted offer can be a lesser incremental discount, e.g., the default discount or as little as one cent or fraction of one cent less than the maximum retailer acceptable discount. Personal assistant engine 74 recalculates the net value NV for consumer 62, as described above, for each of the remaining DP1-DP3 products (except for eliminated products) at the modified final price point. Based on the modified individualized discounted offer, one retailer is determined to provide the highest net value NV greater than one or positive for consumer 62. The highest net value retailer based on the regular price less the modified individualized discounted offer moves into or retains first position.
Retailers 190-194 authorize personal assistant engine 74 to continue to increment their respective individualized discounted offer to a lesser value and higher final price FP to consumer 62 in moving toward the optimal individualized discount. Personal assistant engine 74 recalculates and tracks the net value of the DP1-DP3 products to consumer 62 during each bidding round of modifying the individualized discounted offers. As the final price FP increases with the lesser discounted offers, the net value for the DP1-DP3 products will one-by-one become less than one or negative using the first and second normalizing definitions, respectively. In other words, at some point in the bidding rounds, the net value of one of the DP1-DP3 products will become less than one or negative. The net value of another DP1-DP3 product will become less than one or negative in the same bidding round or at a later bidding round. The last standing DP1-DP3 product with a net value greater than one or positive, i.e., with the other products having been eliminated or otherwise have dropped out of the competition, is the winning retailer. The last standing DP1-DP3 product with the least individualized discounted offer still yields a net value greater than one or positive value is the price tipping point for consumer 62 to make a positive purchasing decision for one product, i.e., the least individualized discounted offer that would entice the consumer to purchase one product. The winning retailer with the highest net value using the least individualized discounted offer is selected as the best value for consumer 62 and is placed in first position on optimized shopping list 144.
Alternatively, using the maximum retailer acceptable discount as the starting point, personal assistant engine 74 can set a predetermined number of iterations, for example, two or three passes, before declaring the winning retailer, or one or more retailers may stop further bidding if progress is not being made in moving the retailer into first position. Personal assistant engine 74 can also determine when the relative positions of the retailers in the field are not changing and declare the bidding over. The DP1-DP3 product with the highest net value greater than one or positive value is the optimal price tipping point for consumer 62 to make a positive purchasing decision for the product. The winning retailer is placed in first position on optimized shopping list 144.
In each of the above examples of determining net value for consumer 62, multiple brands and/or retailers for a single product can be placed on optimized shopping list 144. Personal assistant engine 74 can place, for example, the top two or top three net value brands and/or retailers on optimized shopping list 144, and allow the consumer to make the final selection and purchasing decision.
The consumer patronizes retailers 190-194, either in person or online, with optimized shopping list 144 and individualized discounted offers 145 from personal assistant engine 74 in hand and makes purchasing decisions based on the recommendations on the optimized shopping list. Based on optimized shopping list 144, consumer 62 patronizes the DP3 product from retailer 194, BC2 product from retailer 192, CS3 product from retailer 194, BG1 product from retailer 190, FP2 product from retailer 192, and FV1 product from retailer 190. The optimized shopping list 144 gives consumer 62 the ability to evaluate one or more recommended products, each with an individualized discount customized for consumer 62 to make a positive purchasing decision. The consumers can rely on personal assistant engine 74 as having produced a comprehensive, reliable, and objective shopping list in view of the consumer's profile and weighted product preferences, as well as retailer product information, that will yield the optimal purchasing decision to the benefit of the consumer. The individualized discounted price should be set to trigger the purchasing decision. Personal assistant engine 74 helps consumers quantify and develop confidence in making a good decision to purchase a particular product from a particular retailer at the individualized “one-to-one” discounted offer 145. While the consumer makes the decision to place the product in the basket for purchase, he or she comes to rely upon or at least consider the recommendations from consumer service provider 72, i.e., optimized shopping list 144 and individualized discounted offers 145 contributes to the tipping point for consumers to make the purchasing decision. The consumer model generated by personal assistant engine 74 thus in part controls many of the purchasing decisions and other aspects of commercial transactions within commerce system 60.
Retailers 190-194 will want to show up as the recommended source for as many products as possible on optimized shopping list 144. Primarily, a particular retailer will be the optimized product source when the combination of the individualized discounted price and product attributes offered by the retailer aligns with, or provides maximum net value for the consumer in accordance with, the consumer's profile and shopping list with weighted preferences. Retailers 190-194 can enhance their relative position and provide support for consumer service provider 72 by making T-LOG data 46 available to consumer service provider 72. One way to get a high score when comparing retailer product attributes to the consumer-defined weighted product attributes is to ensure that personal assistant engine 74 has access to the most accurate and up-to-date retailer product attributes via central database 76. Even though a given retailer may have a product with desirable attributes, personal assistant engine 74 cannot record a high score if it does not have complete information about the retailer's products. By giving consumer service provider 72 direct access to T-LOG data 46, the retailer makes the product information readily available to personal assistant engine 74 which will hopefully increase its score and provide more occurrences of the retailer being the recommended source on optimized shopping list 144. While the use of webcrawlers in
The optimized shopping list 144 with individualized discounts can be transferred from consumer computers 164-166 to cell phone 116. Consumers 62-64 patronize retailers 190-194, each with optimized shopping list 144 from personal assistant engine 74 in hand and make purchasing decisions based on the recommendations on the optimized shopping list. The individualized discounted prices are conveyed to retailers 190-194 by electronic communication from cell phone 116 to the retailer's check-out register. The discounted pricing can also be conveyed from consumer computer 164-166 directly to retailers 190-194 and redeemed with a retailer loyalty card assigned to the consumer. Retailers 190-194 will have a record of the discounted offers and the loyalty card will match the consumer to the discounted offers on file. In any case, consumers 62-64 each receive an individualized discounted offer as set by personal assistant engine 74.
Personal assistant engine 74 can plan the shopping trip for consumer 62 to patronize one or more retailer identified on optimized shopping list 144. The shopping trip may involve multiple stops during one excursion away from home, or the shopping trip can occur over multiple excursions from home over multiple days. In another embodiment, multiple variations of the shopping trip are presented for consumer 62 to select the option best suited to the activities of the day. After reviewing optimized shopping list 144 on webpage 970 in
Under the trip plan A option, consumer 62 can expect a total cost of $124.88 with $19.10 in savings. The total costs include the prices of the items on optimized shopping list 144, actual fuel cost, estimated automobile operating cost per mile, childcare while shopping, value of time, and convenience value. Consumer 62 should expect no items to be unavailable. The length of trip plan A is 19 miles with associated cost of $15.97. Consumer 62 will patronize retailers 190, 192, and 194 as indicated by the checked boxes 1012. Other retailers 1014, 1016, and 1018 are noted as being on the trip path or in the vicinity of retailers 190-194. Retailers 1014-1018 can include specialty outlets such as a gas station, pharmacy, auto wash, or cleaners. Consumer 62 can click on one or more boxes 1020 to add retailers 1014-1018 to trip plan A. In another embodiment, consumer 62 can identify other necessary stops separate and apart from retailers 190-194. For example, consumer 62 may need to stop and pick up children from school. Personal assistant engine 74 takes the consumer-defined necessary stops into account for the trip plan. A map of trip plan A is presented in block 1022 with print button 1024 to print directions, route, agenda, and stops. Personal assistant engine 74 plans the route for trip plan A with knowledge of construction delays, road closures, and community events.
Under the trip plan B option, consumer 62 can expect a total cost of $119.31 with $22.45 in savings. Consumer 62 should expect 2 items to be unavailable. The length of trip plan B is 8 miles with associated cost of $9.75. Consumer 62 will patronize retailers 190 and 194 as indicated by the checked boxes 1012. The optimized shopping list 144 is modified for all items to be purchased at retailers 190 and 194. Other retailers 1014, 1016, and 1018 are noted as being on the trip path or in the vicinity of retailers 190 and 192. Consumer 62 can click on one or more boxes 1020 to add retailers 1014-1018 to trip plan B. In another embodiment, consumer 62 can identify other necessary stops separate and apart from retailers 190 and 194. For example, consumer 62 may need to stop and pick up children from school. Personal assistant engine 74 takes the consumer-defined necessary stops into account for the trip plan. A map of trip plan B is presented in block 1026 with print button 1028 to print directions, route, agenda, and stops. Personal assistant engine 74 plans the route for trip plan B with knowledge of construction delays, road closures, and community events.
Under the trip plan C option, consumer 62 can expect a total cost of $126.57 with $17.82 in savings. Consumer 62 should expect no items to be unavailable. The length of trip plan B is 3 miles with associated cost of $2.58. Consumer 62 will patronize retailer 190 as indicated by the checked box 1012. The optimized shopping list 144 is modified for all items to be purchased at retailer 190. Other retailers 1014, 1016, and 1018 are noted as being on the trip path or in the vicinity of retailer 190. Consumer 62 can click on one or more boxes 1020 to add retailers 1014-1018 to trip plan C. In another embodiment, consumer 62 can identify other necessary stops separate and apart from retailer 190. For example, consumer 62 may need to stop and pick up children from school. Personal assistant engine 74 takes the consumer-defined necessary stops into account for the trip plan. A map of trip plan C is presented in block 1030 with print button 1032 to print directions, route, agenda, and stops. Personal assistant engine 74 plans the route for trip plan C with knowledge of construction delays, road closures, and community events. Consumer 62 can choose any one of trip plan A-C based on total cost, convenience, and product availability.
Consumer 62 chooses the preferred trip plan and prints the directions, route, agenda, and stops. Consumer 62 can also download the trip plan into cell phone 116 or GPS navigation tool. By following the trip plan, consumer 62 can efficiently conduct the shopping excursion while saving time and money.
Personal assistant engine 74 can generate an optimized shopping list based on the preference of consumer 62 to patronize a limited number of retailers 190-194. Shopping is a time consuming and expense driven activity with associated costs to consumer 62. The associated costs, such as gas, childcare while shopping, time, aggravation with crowds, inconvenience of traveling to multiple retailers, and potential that the product might be out-of-stock at the retailer having the lower price, can be a significant component in the purchasing decision. Consumer 62 may be unwilling to drive additional distance to another retailer and deal with the long check-out lines just to save a relatively small amount on one product, assuming the other retailer even has the product in stock.
In other cases, retailer 190 may want to incentivize consumer 62 to conduct most if not all their shopping at the retailer's store, i.e. retailers want to encourage one-stop shopping to their store. Retailer 190 may utilize a loss leader marketing approach by selling certain products at below-cost pricing with the expectation of making up the lost profit on other products purchased by consumer 62 at regular or higher margin.
Personal assistant engine 74 generates one or more optimized shopping lists with all of the products on the list directed exclusively to one retailer. The optimized shopping list represents an aggregation of the consumer's purchasing needs directed toward one retailer or a limited number of retailers. If the optimized shopping list is generated at the request of consumer 62, then personal assistant engine 74 generates a first optimized shopping list 1040 with all products on the list directed to retailer 190 in
To entice consumer 62 to accept its optimized shopping list, retailers 190-194 may each make further discounts of the individualized offers, even greater than the maximum discount. Retailers 190-194 may offer certain products at a loss, i.e. no margin or less than cost, but will make up the difference based on other products on the shopping list having a higher margin under a loss leader approach. Retailers 190-194 determine the amount of the discounts based on the total value of the shopping list. The optimized shopping list 1046 represents a bundle or aggregation of products that consumer 62 is likely to purchase. Retailers 190-194 can offer more discounts on a $300 shopping list than a $100 shopping list. Retailers 190-194 can also offer more discounts on a shopping list containing higher margin products. Accordingly, the discounts offered by retailers 190-194 on optimized shopping lists 1040-1044 are tiered based on number of products in the shopping list, total amount or value of the shopping list, and margin of individual products on the shopping list. Retailers 190-194 gauge the discounts for the aggregate products on the optimized shopping list to yield an overall profit. In another embodiment, consumer 62 proposes the discounted offer for products on the optimized shopping list. Consumer 62 will patronize a particular retailer to purchase all products on the optimized shopping list for the consumer-proposed discounted offers. Each optimized shopping list 1040-1044 will have the retailer, location, products, individualized pricing, aggregate savings, and total cost for all of the products on the shopping list. The total savings can be presented as a “save up to” value based on actual pricing of the retailer or an average or highest local, regional, or national regular pricing. For example, the “save up to” value can be the highest price from any retailer in a region over the past year.
Consumer 62 evaluates the three optimized shopping lists 1040-1044 directed toward retailers 190-194, respectively, and selects one optimized shopping list and associated retailer to patronize based on retailer preference, convenience of location, time of day, time commitments, other errands close to the retailer, aggregate savings, and total cost for all of the products on the shopping list. Retailer 190 is located two miles away from consumer 62 with a total cost of $280.00 for all of the products on the shopping list. Retailer 192 is located ten miles away from consumer 62 with a total cost of $275.00 for all of the products on the shopping list. Retailer 194 is located five miles away from consumer 62 with a total cost of $300.00 for all of the products on the shopping list. In one example, consumer 62 selects retailer 190 with emphasis on the shortest travel distance (two miles), even though the total cost for all of the products on the shopping list from retailer 190 is $5.00 more than retailer 192. The extra eight miles to travel to retailer 192 is not worth the $5.00 in savings. In another example, consumer 62 selects retailer 192 with emphasis on the total cost for all of the products on the shopping list and knowledge that the consumer needs to travel in the general direction of the retailer for other commitments. As long as consumer 62 is going that direction anyway, he or she might as well take advantage of the additional $5.00 in savings from retailer 192. In another example, consumer 62 selects retailer 194 with emphasis on retailer preference. Retailer 194 is farther away than retailer 190 and more expensive than either retailer 190 or retailer 192, but consumer 62 prefers to shop at retailer 194 and the lower cost of retailers 190 and 192 is insufficient to overcome the retailer preference. On the other hand, consumer 62 may have selected retailer 190 or 192 if the relative savings are greater or the total cost for all of the products on the shopping list is substantially less. In each case, consumer 62 makes personal judgments based on retailer preference, convenience of location, time of day, time commitments, other errands close to the retailer, aggregate savings, and total cost for all of the products on the shopping list.
Consumer 62 can request an optimized shopping list limited to a predetermined number of retailers, for example, two retailers. Personal assistant engine 74 generates the optimized shopping list for the predetermined number of retailers that provides the best overall value for consumer 62. In one embodiment, the products on the optimized shopping list are divided between the two retailers based on the lowest cost to consumer 62.
Consumer 62 patronizes the selected retailer(s) and purchases the products on the optimized shopping list. In some cases, the selected retailer may not carry a product or be out-of-stock on the optimized shopping list. The retailer can compensate with additional discounts or substitute products. If consumer 62 authorizes more than one retailer, then the optimized shopping list directs the consumer to the alternate retailer for the needed product. The receipt for the optimized shopping list provided to consumer 62 after check-out confirms the aggregate savings. Consumer 62 benefits by the convenience of one-stop shopping and discounts from the aggregated shopping list. The selected retailer benefits by increasing sales while maintaining an acceptable profit.
If the optimized shopping list is generated at the request of retailer 190, then personal assistant engine 74 generates one optimized shopping list 1046 with all products on the list directed to retailer 190, see
To entice consumer 62 to accept its optimized shopping list 1046, retailer 190 may make further discounts of the individualized offers, even greater than the maximum discount. Retailer 190 may offer certain products at a loss, i.e. no margin or less than cost, but will make up the difference based on other products on the shopping list under a loss leader approach. Retailer 190 determines the amount of the discounts based on the total value of the shopping list. The optimized shopping list 1046 represents a bundle or aggregation of products that consumer 62 is likely to purchase. Retailer 190 can offer more discounts on a $300 shopping list than a $100 shopping list. Retailer 190 can also offer more discounts on a shopping list containing higher margin products. Accordingly, the discounts offered by retailer 190 on optimized shopping list 1046 are tiered based on number of products in the shopping list, total amount or value of the shopping list, and margin of individual products on the shopping list. The optimized shopping list 1046 will have the retailer, location, products, individualized pricing, aggregate savings, and total cost for all of the products on the shopping list. The total savings can be presented as a “save up to” value based on actual pricing of the retailer or an average or highest local, regional, or national regular pricing. For example, the “save up to” value can be the highest price from any retailer in a region over the past year.
Consumer 62 evaluates optimized shopping list 1046 directed toward retailer 190 and makes a decision to patronize the retailer based on retailer preference, convenience of location, time of day, time commitments, other errands close to the retailer, and total cost for all of the products on the shopping list. Consumer 62 patronizes retailer 190 and purchases the products on optimized shopping list 1046. In some cases, retailer 190 may not offer a product or be out-of-stock on optimized shopping list 1046. Retailer 190 can compensate with additional discounts or substitute products. Retailer 190 can direct consumer 62 to another retailer known to have the needed product in stock. The receipt for optimized shopping list 1046 provided to consumer 62 after check-out can confirm the savings. Consumer 62 benefits by the convenience of one-stop shopping and discounts from the aggregated shopping list. Retailer 190 benefits by increasing sales while maintaining an acceptable profit.
The optimized shopping lists 1040-1046 are based on the assumption that consumer 62 will purchase all of the products from the single retailer or from the limited number of retailers. In some cases, consumer 62 may not in fact purchase all of the products on the optimized shopping lists 1040-1046 from the single retailer or from the limited number of retailers. Consumer 62 may change his or her mind at the time of purchase for a variety of reasons, e.g. product no longer needed or product out-of-stock. Retailers 190-194 can factor some percentage of products that are not purchased into determining the discounts that still result in an overall profit for the shopping list. For example, retailers 190-194 assume that consumer 62 will actually purchase 95% of the total value of the optimized shopping list. The discounts are determined based on the profit margin for consumer 62 purchasing 95% of the aggregated products value on the optimized shopping list. Retailers 190-194 can track individual consumer purchases and determine which consumers routinely purchase the value of all products and which consumers routinely purchase significantly less than the value of all products on the optimized shopping list. Those consumers who regularly purchase the value of all products, or close to the value of all products, on the optimized shopping list are given greater discounts. Those consumers who regularly purchase significantly less than the value of all products on the optimized shopping list are given lesser discounts. In another embodiment, the discounted offers can be allocated at the point of sale to correspond to the value of the products purchased. That is, consumer 62 gets the full discounted offers if all or substantially all products on the optimized shopping list are in fact purchased. The discounted offers will be less if consumer 62 fails to purchase all or substantially all products on the optimized shopping list. The proposed discounted offers from the single retailer are honored if and only if consumer 62 in fact purchases all or substantially all products on the optimized shopping list. The discounted offers can also be cleared and settled after the point of sale with knowledge of the actual purchases. In any case, the retailer gauges the discounts for the aggregate products on the optimized shopping list to yield an overall profit.
The consumers can rely on personal assistant engine 74 as having produced a comprehensive, reliable, and objective shopping list in view of the consumer's profile and preference level for each weighted product attribute, as well as retailer product information and the individualized discounted offer, that will yield the optimal purchasing decision for the benefit of the consumer. Personal assistant engine 74 helps consumers 62-64 quantify and evaluate, from a myriad of potential products on the market from competing retailers, a smaller, optimized list objectively and analytically selected to meet their needs while providing the best net value. Consumers 62-64 will develop confidence in making a good decision to purchase a particular product from a particular retailer. While the consumer makes the decision to place the product in the basket for purchase, he or she comes to rely upon or at least consider the recommendations from personal assistant engine 74, i.e., optimized shopping list 144 with the embedded individualized discount contributes to the tipping point for consumers to make the purchasing decision. The consumer model generated by personal assistant engine 74 thus in part controls many of the purchasing decisions and other aspects of commercial transactions within commerce system 60.
The purchasing decisions actually made by consumers 62-64 while patronizing retailers 190-194 can be reported back to personal assistant engine 74 and retailers 190-194. Upon completing the check-out process, the consumer is provided with an electronic receipt of the purchases made. The electronic receipt is stored in cell phone 116, downloaded to personal assistant engine 74, and stored in central database 76 for comparison to optimized shopping list 144. The product information in central database 76 can be updated from the electronic receipt. That is, the actual prices for the products on optimized shopping list 144 as charged by the retailer can be confirmed and updated as indicated. The actual purchasing decisions made when patronizing retailers 190-194 may or may not coincide with the preference levels or weighted attributes assigned by the consumer when constructing the original shopping list. For example, in choosing the canned soup, consumer 62 may have decided at the time of making the purchasing decision that one product attribute, e.g., product ingredients, was more important than another product attribute, e.g., brand. Consumer 62 made the decision to deviate from optimized shopping list 144, based on product ingredients, to choose a different product from the one recommended on the optimized shopping list. Personal assistant engine 74 can prompt consumer 62 for an explanation of the deviation from optimized shopping list 144, i.e., what product attribute became the overriding factor at the moment of making the purchasing decision. Personal assistant engine 74 learns from the actual purchasing decisions made by consumer 62 and can update the preference levels of the consumer weighted product attributes. The preference level for product ingredients can be increased and/or the preference level for brand can be decreased. The revised preference levels for the consumer weighted product attributes will improve the accuracy of subsequent optimized shopping lists. The pricing and other product information uploaded from cell phone 116 after consumer check-out to personal assistant engine 74 can also be used to modify the product information, e.g., pricing, in central database 76.
Consumers 62-64 can also utilize personal assistant engine 74 without a product of interest necessarily being on optimized shopping list 144. While patronizing retailer's store with or without optimized shopping list 144, the consumer can take a photo of the barcode of any product of interest using cell phone 116. The photo is transmitted to personal assistant engine 74. Personal assistant engine 74 reviews the consumer weighted attributes for that product and determines the individualized discounted offer available from the retailer for that consumer. If there is no consumer weighted attributes on file for the product of interest, then personal assistant engine 74 can offer a default individualized discount determined by the personal assistant engine and/or the retailer. The individualized discount is transmitted back to the consumer and displayed on cell phone 116. The consumer can make the purchasing decision at that moment with knowledge of the available individualized discounted offer. With the benefits of personal assistant engine 74, consumers 62-64 need no longer pay the stated regular shelf price for virtually any product. Consumers 62-64 can receive an individualized discounted offer for any product at any time.
As another feature of consumer service provider 72, retailers 190-194 can allocate marketing funds to the consumer service provider for distribution as individualized discounts to consumers 62-64. The marketing funds can also originate with manufacturers 32, distributors 36, or other member of commerce system 30, see
Consumer service provider 72 may use a business model which involves no cost to the consumers for use of personal assistant engine 74 but rather relies upon a shared percentage of the incremental revenue or profit (used herein interchangeably) earned by choosing the least individualized discounted offer that will result in a positive purchasing decision by the consumer. Retailers 190-194 may share 0-100% of the incremental revenue or profit associated with the various individualized discounts that can be offered to the consumer as compensation to consumer service provider 72. The sharing percentage to consumer service provider 72 will be greater than zero because 0% gives little or no motivation for consumer service provider 72 to recommend the retailer's product. Likewise, the sharing percentage will be less than 100% because that level of sharing would leave no portion for retailers 190-194. In one embodiment, the sharing percentage to consumer service provider 72 is 30-50% of the incremental revenue or profit from the least individualized discounted offer that will result in a positive purchasing decision by the consumer.
Retailers 190-194 need a way to evaluate the effectiveness of a promotional campaign, such as the individualized discounted offers described above. If retailers 190-194 are expending resources into the promotional campaign, then the retailers would likely want to know that the promotional campaign is successful, i.e., yielding more revenue and profit as a direct result of implementing the promotional campaign than would have been realized otherwise.
Consumer service provider 72 makes an individualized discounted offer 1050 available to each of consumers 62 and 64 for product P1 with authorization and funding from retailers 190-194. Personal assistant engine 74 will determine the least individualized discounted offer 1050 that will result in a positive purchasing decision for product P1 by the consumer. That is, personal assistant engine 74 must find the consumer purchase tipping point in terms of the individualized discounted offer. Consumers 62 and 64 each get an individualized discounted offer 1050 for product P1, which may be the same or may be different depending on the shopping list and weighted product attributes as determined for each consumer.
In the present example, consumer service provider 72 transmits an individualized discounted offer 1050 of $1.25 to consumer 62 for product P1. In block 1052, consumer 62 patronizes retailer 190-194 and purchases product P1 using individualized discounted offer 1050. The purchase of product P1 by consumer 62 is recorded in T-LOG data 20. In block 1054, an evaluation is made of the purchase of product P1 using individualized discounted offer 1050, as well as other objective metrics described below, to determine the incremental revenue or profit to retailer 190-194.
When distributing individualized discounted offers 1050 to consumers 62-64, personal assistant engine 74 can measure incremental profitability associated with the various individualized discounts for product P1 that can be offered to the consumer. Assume that the maximum retailer acceptable discounted offer for product P1 is set to a predetermined value of $2.00. Based on its business plan and profit margin, retailers 190-194 cannot profitably sell product P1 with any greater discount. The retailer authorizes personal assistant engine 74 to offer the consumer an individualized discounted offer 1050 no greater than the $2.00 maximum discount for product P1. If consumer 62 or 64 purchases product P1 with individualized discounted offer 1050 less than the maximum discount, then an incremental revenue or profit is realized because the consumer purchased product P1 for a higher price (regular price−individualized discounted offer) than would have been earned with the maximum discount (regular price−maximum retailer acceptable discount). The difference between the maximum discounted offer authorized by retailers 190-194 and the amount of the individualized discounted offer 1050 made to consumers 62 and 64 is the incremental profit. Consumer service provider 72 is paid a performance based fee 1056 from the incremental revenue or profit, e.g., a share or percentage of the incremental revenue or profit for product P1.
For example, if the retailer has authorized a maximum discounted offer of $2.00 and consumer 62 is offered an individualized discounted offer of $1.25, then the incremental profit is $0.75 for product P1. That is, the retailer was willing to offer a maximum discount of $2.00, but consumer service provider 72 had determined that consumer 62 would likely purchase product P1 for $1.25 discount. The regular price, individualized discounted offer 1050, and actual purchase of product P1 is recorded in T-LOG data 20, as described in
In another transaction, consumer service provider 72 determines that consumer 64 would likely purchase product P1 for a $0.50 discount. Consumer service provider 72 transmits an individualized discounted offer of $0.50 to consumer 64 for product P1. In block 1052, consumer 64 patronizes retailer 190-194 and purchases product P1 using the individualized discounted offer 1050. The purchase of product P1 by consumer 64 is recorded in T-LOG data 20. In evaluation block 1054, T-LOG data 20 shows that consumer 64 did indeed purchase product P1 with the individualized discounted offer of $0.50. The retailer realized $1.50 more profit than would have been earned if consumer 64 had received the maximum retailer acceptable discount of $2.00. The incremental profit for the transaction involving the sale of product P1 to consumer 64 is $1.50. Based on a sharing percentage of 30% in block 1056, consumer service provider 72 receives a performance based fee of $1.50*0.30=$0.45 for the purchase of product P1 by consumer 64.
Retailers 190-194 can monitor the incremental revenue or profit in block 1054 and provide assurances to their management that the marketing budget is being well spent via individualized discounted offers 1050. T-LOG data 20 shows that the consumer purchased the product with an individualized discounted offer 1050 that is less than the maximum retailer acceptable discount. The promotional campaign achieved its goal in that the consumer actually redeemed the discounted offer. The retailer made a sale and received more profit than would have been realized with the maximum retailer acceptable discount. Retailers 190-194 benefit because they pay consumer service provider 72 only if an incremental profit is realized. If the consumer does not redeem the discounted offer, then there is no incremental profit. The retailer does not have to pay consumer service provider 72 for generating a non-redeemed discounted offer. In addition, retailers 190-194 receive the remainder of the incremental profit after distributing a share to consumer service provider 72. If the incremental profit is small, then the portion paid to consumer service provider 72 is proportionately small. If the incremental profit is large, then both retailers 190-194 and consumer service provider 72 benefit by their relative proportions of the incremental revenue or profit. The retailer can rely on effective utilization of the marketing budget because the compensation to consumer service provider 72 is based on objective, positive results. The performance based pricing, promotion, and personalized offer management is effective and useful for consumers 62 and 64, retailers 190-194, and consumer service provider 72.
The discounted offers made to consumers 62 and 64 can be other than individualized discounted offers 1050. Consumer service provider 72 can make a discounted offer that is less than the maximum discounted offer authorized by retailers 190-194 to a targeted segment of the consumer populace. For example, one or more retailers 190-194 may make a promotional offer for product P1 with maximum discount of $2.00. Consumer service provider 72 transmits a discounted offer of $1.25 to all consumers who have identified product P1 as being a frequently used product from optimized shopping list 144 or by considering each line item of the consumer's shopping list from webpage 328 and pop-up windows 880 and 920. Alternatively, consumer service provider 72 transmits a discounted offer of $1.25 to a group of consumers within a geographic region or with similar consumer demographics based on consumer profiles, see
A promotion identifier or code is attached to the discounted offer sent to the targeted consumer segment. When the consumers in the targeted segment redeem the discounted offer, the identifier relating the purchase of product P1 to the promotion is stored with T-LOG data 20 for the transaction. The identifier in T-LOG data 20 enables retailers 190-194 to associate the purchase of product P1 with the promotion. In the present case, the identifier in T-LOG data 20 shows that consumer 62 did indeed purchase product P1 with the discounted offer of $1.25. The retailer realized $0.75 more profit than would have been earned if consumer 62 had received a maximum retailer acceptable discount of $2.00. The incremental profit for the transaction involving the sale of product P1 to consumer 62 is $0.75. Based on a sharing percentage of 50%, consumer service provider 72 receives a performance based fee of $0.75*0.50=$0.375 for the purchase of product P1 by consumer 62.
The incremental profit can be based on the aggregate products purchased from the optimized shopping list 144. The total of the individualized discounted offers for the aggregated products (regular prices−individualized discounted offers) is greater than the maximum discount (regular prices−maximum retailer acceptable discounts). The total of the difference between the maximum discounted offers authorized by retailers 190-194 and the amount of the individualized discounted offers made to consumers 62 and 64 is the aggregate incremental profit. Consumer service provider 72 is paid a performance based fee from the aggregate incremental revenue or profit, e.g., a shared percentage times the incremental revenue or profit for the aggregated products.
The sharing percentage, incremental revenue or profit, or performance based fee (sharing percentage times incremental profit) can be used as a basis for prioritizing the products from retailers 190-194 on optimized shopping list 144. The retailer that is positioned to achieve the highest incremental revenue or profit or that is offering consumer service provider 72 the highest sharing percentage can be placed in first position on optimized shopping list 144. Consumer service provider 72 can allow retailers 190-194 to set sharing percentage because the retailers will compete for making the best individualized discounted offer which benefits the consumer, as well as offering the highest sharing percentage which benefits consumer service provider 72. The retailer is still assured of making a profit on the allocated marketing funds because the fee paid to consumer service provider 72 is a percentage (less than 100%) of the incremental profit. The retailer gets the remainder of the incremental profit in the form of increased revenue. The retailer only pays a percentage of the measurable incremental revenue or profit and is assured of a positive net return on investment from its marketing budget.
In one embodiment, consumers 1062-1066 of control group 1060 are selected to have motivational tendencies similar to consumers 1070-1074 of offer group 1068. For example, consumer 922 is selected for control group 1060 because he or she purchases similar products with similar weighted attributes as consumer 1070, based on respective shopping lists. Likewise, consumers 1064 and 1066 purchase similar products with similar weighted attributes as consumers 1072 and 1074.
A consumer assigned to control group 1060 for one promotional product or group of promotional products can be assigned to offer group 1068 for a different promotional product or different group of promotional products.
In another embodiment, the members of control group 1060 are selected as consumers having higher probability of purchasing product P1 with the control discounted offer, while the members of offer group 1068 are selected as consumers having lower probability of purchasing product P1 with the individualized discounted offer. Alternatively, the members of control group 1060 are selected as consumers having lower probability of purchasing product P1 with the control discounted offer, while the members of offer group 1068 are selected as consumers having higher probability of purchasing product P1 with the individualized discounted offer. In any case, control group 1060 typically has fewer members than offer group 1068 because retailers 190-194 still want to get discounted offers out to a majority of the potential consumers. For example, 5-20% of the pool of target customers is assigned to control group 1060 and the remaining 80-95% of the pool of target customers is assigned to offer group 1068.
In another embodiment, retailers selected a product or group of products associated with a particular promotional campaign to be evaluated. The products selected for individualized discounted offers overlap the buying habits of control group 1060 and offer group 1068 in time, geographic region, and demographics of the consumers. The members of control group 1060 and offer group 1068 are randomly selected as consumers having a high probability of purchasing the promoted product(s). The consumers of control group 1060 receive the control discounted offer, and the consumers of offer group 1068 receive individualized discounted offers.
Returning to
In block 1084, an evaluation is made of purchases of product P1 by consumers 1070-1074 of offer group 1068 to determine the incremental revenue or profit to retailers 190-194. The actual purchase of product P1 using the individualized discounted offer 1080 is recorded in T-LOG data 20, as described in
For example, if the retailer has authorized a maximum discounted offer of $1.00 for product P1 and consumer 1070 is offered an individualized discounted offer of $0.55, then the incremental profit is $0.45. That is, the retailer was willing to offer a maximum discount of $1.00, but consumer service provider 72 had determined that consumer 1070 would likely purchase product P1 for a $0.55 discount. T-LOG data 20 shows that consumer 1070 did indeed purchase product P1 with the individualized discounted offer of $0.55. The retailer realized $0.45 more profit than would have been earned if consumer 1070 had received the maximum retailer acceptable discount of $1.00. The incremental profit for the transaction involving the sale of product P1 to consumer 1070 is $0.45.
The evaluation metric further shows a comparison between the products purchased by consumers 1062-1066 of control group 1060 and the products purchased by consumers 1070-1074 of offer group 1068. If consumer 1070 purchased product P1 with individualized discounted offer 1080 and consumer 1062, having no discounted offer, patronized the retailer but did not purchase product P1, then a statistical correlation can be determined that the individualized discounted offer 1080 was a controlling factor in the purchasing decision. That is, two or more consumers having similar purchasing trends and similar weighted attributes associated with product P1, or similar probability of purchasing the product during the promotional period, would likely purchase the product with the proper motivation. The size of control group 1060 and offer group 1068 is sufficiently large and length of the promotional period is sufficiently long to discount the possibility that consumer 1062 did not patronize the retailer during the promotional period or, if the consumer did patronize the retailer, that product P1 was not needed during the instant trip. Since consumer 1070 did purchase product P1 with individualized discounted offer 1080 and consumer 1062 did not purchase product P1 with no discounted offer, the individualized discounted offer is deemed as the controlling factor given the other statistical similarities between the consumers.
On the other hand, if consumer 1070 purchased product P1 with individualized discounted offer 1080 and consumer 1062, having no discounted offer, also purchased the product P1, then a statistical correlation can be determined that the individualized discounted offer 1080 was not a controlling factor in the purchasing decision. The actions of control group 1060 provide a statistical correlation as to the motivation of offer group 1068 in purchasing product P1 with individualized discount 1080. Since consumer 1062 in control group 1060 made the decision to purchase product P1 without a discounted offer, then motivation behind the purchase by a similarly situated consumer in offer group 1068 is likely attributed to factors other than the individualized discounted offer. The evaluation of purchasing decisions made by control group 1060 and offer group 1068 gives a statistical weight of the correlation between the individualized discounted offer 1080 and the motivation behind offer group 1068 in purchasing product P1.
Retailers 190-194 can monitor the incremental profit in block 1084, as well as the statistical correlation between the incremental profit and the individualized offers. T-LOG data 20 shows that the consumers purchased product P1 with an individualized discounted offer 1080 that is less than the maximum retailer acceptable discount. Consumer service provider 72 is paid a performance based fee 1086 from the incremental revenue or profit, e.g., a percentage of the incremental revenue or profit. If the evaluation demonstrates that the purchasing decisions made by consumers 1070-1074 in offer group 1068 is primarily attributed to the individualized discounted offer 1080, i.e., because consumers 1062-1066 of control group 1060 did not purchase the product when no discounted offer was made, then consumer service provider 72 receives a full share of the incremental profit. The incremental profit can be statistically correlated to the individualized discounted offer 1080 as being the primary motivational influence in the purchasing decision.
If the evaluation demonstrates to some degree that the purchasing decisions made by consumers 1070-1074 in offer group 1068 can be attributed to factors other than the individualized discounted offer 1080, i.e., because one or more consumers 1062-1066 of control group 1060 also purchased the product with no discounted offer, then consumer service provider 72 receives a reduced share or no share of the incremental profit. The incremental profit cannot be statistically correlated to the individualized discounted offer 1080 as being the primary motivational factor to the purchasing decision by offer group 1068.
In the example of
The discounted offers made to consumers 1070-1074 of offer group 1068 can be other than individualized discounted offers 1080. Consumer service provider 72 can make a discounted offer that is less than the maximum discounted offer authorized by retailers 190-194 to a specific segment of the consumer populace. For example, one or more retailers 190-194 may make a promotional offer for product P1 with maximum retailer acceptable discount of $2.00. Consumer service provider 72 transmits a discounted offer of $1.25 to all consumers 1070-1074 of offer group 1068 who have identified product P1 as being a frequently used product from optimized shopping list 144 or by considering each line item of the consumer's shopping list from webpage 328 and pop-up windows 880 and 920. Alternatively, consumer service provider 72 transmits a discounted offer of $1.25 to a group of consumers within a geographic region or with similar consumer demographics based on consumer profiles, see
The incremental profit or revenue for the promoted product is determined in equations (2)-(4), given the metrics of control group 1060 and offer group 1068.
In one embodiment, πox=ux (dMAX−dx) and πcy=uy(dMAX), uX and uy are unit sales, dMAX is the maximum discounted offer, and dX is the individualized discounted offer or discounted offer with identifier. Alternatively, πox=ux(regular price−dX−cost) and πcy=uy (regular price−cost).
Retailers 190-194 can monitor the incremental profit in block 1084, as well as the statistical correlation between the incremental profit and the individualized offers, and provide assurances to their management that the marketing budget is being well spent via individualized discounted offer 1080. T-LOG data 20 shows that the consumers purchased product P1 with an individualized discounted offer 1080 that is less than the maximum retailer acceptable discount. The promotional campaign achieved its goal in that the consumers actually redeemed the discounted offer. The retailer made a sale and received more profit than would have been realized with the maximum retailer acceptable discount. Retailers 190-194 benefit because they pay consumer service provider 72 only if an incremental profit is realized. If the consumer does not redeem the discounted offer, then there is no incremental profit. The retailer does not have to pay consumer service provider 72 for generating a non-redeemed discounted offer. In addition, retailers 190-194 receive the remainder of the incremental profit after distributing a share to consumer service provider 72. If the incremental profit is small, then the portion paid to consumer service provider 72 is proportionately small. If the incremental profit is shown to be statistically uncorrelated to the individualized discounted offers, then the portion paid to consumer service provider 72 is even less or zero. If the incremental profit is large and statistically correlated to the individualized discounted offers, then both retailers 190-194 and consumer service provider 72 benefit by their relative proportions of the incremental profit. The retailer can rely on effective utilization of the marketing budget as the compensation to consumer service provider 72 is based on objective, positive results with a statistical correlation between the discounted offer and the purchasing decisions of the offer group based on the purchasing decisions of the control group with the control discounted offer. The performance based pricing, promotion, and personalized offer management is effective and useful for consumers 62 and 64, retailers 190-194, and consumer service provider 72.
The incremental profit can relate to products other than the product associated with the individualized discounted offer or general (same discount for all consumers) discounted offer. Assume product P1 and product P2 are competing products, i.e., the consumer will choose between product P1 or product P2, but not purchase both. If the discounted offer is directed to product P1, and the increase in sales of product P1 results in a decrease in sales of product P2, i.e., promotional cannibalization, then incremental profit is determined by the difference in increased revenue from sales product P1 at the discounted offer and the decrease in revenue for sales of product P2 at its regular price. In another example, if a first general discounted offer is directed to product P1 and a second general discounted offer is directed at product P2, and the change in sales of product P1 results in an increase or decrease in sales of product P2, then incremental profit is determined by the difference in revenue change from sales product P1 at the first general discounted offer and the change in revenue for sales of product P2 at the second general discounted offer.
In another embodiment, control group 1060 is made up of consumers who have made previous purchase transactions without a discounted offer. The historical sales data is contained within T-LOG data 20. By using historical sales from general consumers as control group 1060, the size of the control group can be greatly expanded which increases its statistical relevance. The evaluation of incremental profit in block 1084 and performance based fee 1086 proceeds as described above.
In another embodiment, consumers 1062-1066 of control group 1060 receive the maximum discounted offer for product P1. The evaluation of incremental profit in block 1084 and performance based fee 1086 proceeds as described above. The incremental profit or revenue for the promoted product can be determined in accordance with equation (5) based on control group 1060 receiving the maximum discounted offer. The incremental profit or revenue for multiple promoted products P can be determined in accordance with equation (6).
Δπ=Σx=0nux(dMAX−dx) (5)
where: Δπ is incremental profit or revenue
Δπ=Σx=0nux,p(dMAX−dx,p) (6)
where: Δπ is incremental profit or revenue
The sharing percentage between retailers 190-194 and consumer service provider 72 can be set to a value that maximizes the revenue to the consumer service provider. The revenue or fee earned by consumer service provider 72 is the product of the incremental revenue or profit and sharing percentage. The retailer that is able to achieve the highest incremental revenue or profit and further is offering the highest sharing percentage is likely to be placed in first position on optimized shopping list 144. Consumer service provider 72 can allow retailers 190-194 to set sharing percentage because the retailers will compete for making the best individualized discounted offer which benefits the consumer, as well as offering the highest sharing percentage which benefits consumer service provider 72. The retailer is still assured of making a profit on the allocated marketing funds because the fee paid to consumer service provider 72 is a percentage (less than 100%) of the incremental profit. The retailer gets the remainder of the incremental profit in the form of increased revenue. The retailer only pays a percentage of the measurable incremental revenue or profit and is assured of a positive net return on investment from its marketing budget.
In summary, the consumer service provider in part controls the movement of goods between members of the commerce system. The personal assistant engine offers consumers economic and financial modeling and planning, as well as comparative shopping services, to aid the consumer in making purchase decisions by optimizing the shopping list according to consumer-weighted preferences for product attributes. The optimized shopping list requires access to retailer product information. The consumer service provider uses a variety of techniques to gather product information from retailer websites and in-store product checks made by the consumer. The optimized shopping list helps the consumer to make the purchasing decision based on comprehensive, reliable, and objective retailer product information, as well as an individualized discounted offer. The optimized shopping list can be all products needed by the consumer aggregated for one retailer. The individualized discount can be based on an aggregate value of the optimized shopping list. The consumer makes purchases within the commerce system based on the optimized shopping list and product information compiled by the consumer service provider. By following the recommendations from the consumer service provider, the consumer can receive the most value for the money. The consumer service provider becomes the preferred source of retail information for the consumer, i.e., an aggregator of retailers capable of providing one-stop shopping.
The consumer service provider is compensated based on a sharing percentage of an incremental profit. The incremental profit is determined from the maximum retailer discount less the individualized discounted offer. The incremental profit can be based on an aggregation of the products on the optimized shopping list.
By providing the consumer an optimized shopping list to make purchasing decisions based on comprehensive, reliable, and objective retailer product information, as well as an individualized discounted offer, the members of the commerce system cooperate in controlling the flow of goods. In addition, by evaluating the effectiveness of the marketing program and sharing the incremental profit between retailers and consumer service provider, the members of the commerce system receive a fair distribution of compensation based on actions taken and relative value provided by each member. Retailers benefit by selling more products with a higher profit margin. Consumers receive the best value for the dollar for needed products. Consumer service provider enables an efficient and effective connection between the retailers and consumers. The consumer service provider is evaluated and compensated based on the value brought to enabling and completing transactions between members of the commerce system.
In particular, enabling the consumer to make purchasing decisions based on the optimized shopping list, as well as fair distribution of the profit between members of the commerce system, e.g., between the retailers and consumer service provider, operates to control activities within the commerce system. The optimized shopping list and distribution of the incremental profit in part control the business interactions of retailers, consumers, and consumer service provider. Retailers offer products for sale. Consumers make decisions to purchase the products. The optimized shopping list and distribution of the incremental profit from the shopping list influences how consumer service provider connects the retailers and consumers to control activities within the commerce system.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
The present application is a continuation of U.S. patent application Ser. No. 13/564,681, filed Aug. 1, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/282,351, filed Oct. 26, 2011, which is a continuation-in-part of U.S. application Ser. No. 13/171,262, filed Jun. 28, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/806,951, filed Aug. 24, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/804,272, filed Jul. 15, 2010. Additionally, U.S. patent application Ser. No. 13/171,262 is also a continuation-in-part of U.S. patent application Ser. No. 13/079,561, filed Apr. 4, 2011. U.S. patent application Ser. No. 13/564,681 is further a continuation-in-part of U.S. patent application Ser. No. 13/272,916, filed Oct. 13, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 13/049,800, filed Mar. 16, 2011. U.S. patent application Ser. No. 13/564,681 is further a continuation-in-part of U.S. patent application Ser. No. 13/079,561, filed Apr. 4, 2011. All of the above-listed applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13564681 | Aug 2012 | US |
Child | 15844416 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13282351 | Oct 2011 | US |
Child | 13564681 | US | |
Parent | 13171262 | Jun 2011 | US |
Child | 13282351 | US | |
Parent | 12806951 | Aug 2010 | US |
Child | 13171262 | US | |
Parent | 12804272 | Jul 2010 | US |
Child | 12806951 | US | |
Parent | 13079561 | Apr 2011 | US |
Child | 13171262 | US | |
Parent | 13272916 | Oct 2011 | US |
Child | 13564681 | US | |
Parent | 13049800 | Mar 2011 | US |
Child | 13272916 | US | |
Parent | 13079561 | Apr 2011 | US |
Child | 13564681 | US |