The present disclosure relates to a commercial transmission modular clutch-main housing.
This section provides background information related to the present disclosure which is not necessarily prior art.
Transmissions serve a critical function in translating power provided by a prime mover to a final load. The transmission serves to provide speed ratio changing between the prime mover output (e.g. a rotating shaft) and a load driving input (e.g. a rotating shaft coupled to wheels, a pump, or other device responsive to the driving shaft). The ability to provide selectable speed ratios allows the transmission to amplify torque, keep the prime mover and load speeds within ranges desired for those devices, and to selectively disconnect the prime mover from the load at certain operating conditions.
Transmissions are subjected to a number of conflicting constraints and operating requirements. For example, the transmission must be able to provide the desired range of torque multiplication while still handling the input torque requirements of the system. Additionally, from the view of the overall system, the transmission represents an overhead device—the space occupied by the transmission, the weight, and interface requirements of the transmission are all overhead aspects to the designer of the system. Transmission systems are highly complex, and they take a long time to design, integrate, and test; accordingly, the transmission is also often required to meet the expectations of the system integrator relative to previous or historical transmissions. For example, a reduction of the space occupied by a transmission may be desirable in the long run, but for a given system design it may be more desirable that an occupied space be identical to a previous generation transmission, or as close as possible.
Previously known transmission systems suffer from one or more drawbacks within a system as described following. To manage noise, robustness, and structural integrity concerns, previously known high output transmission systems use steel for the housing of the transmission. Additionally, thrust loads through the transmission, noise generated by gears, and installation issues such as complex gear timing issues, require a robust and potentially overdesigned system in the housing, bearings, and/or installation procedures. Accordingly, there remains a need for improvements in the design of high output transmissions, particularly truck transmissions.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A transmission housing includes a one-piece main housing including a generally annular wall structure cast from aluminum and including a plurality of axially extending raised ribs extending from a first axial end of the wall structure to a second axial end of the wall structure, a plurality of angularly extending raised ribs extending between at least some of the adjacent ones of the plurality of axially extending raised ribs. According to another aspect, the generally annular wall structure includes a plurality of wave structures extending axially along the wall structure.
According to a further aspect of the present disclosure, an intermediate plate is mounted to a main housing and includes base plate and a pair of axially spaced reverse idler bosses for supporting a reverse idler shaft and a reverse idler gear. The pair of axially spaced reverse idler bosses are integrally formed as one piece with the intermediate plate.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
With reference to
As shown in
With further reference to
The example transmission 20 includes a splitter section 33A, a main box section 33B and a range gear section 33C to provide multiple gear ratios. The splitter section 33A includes a first splitter gear 34, a second splitter gear 36 and a third splitter gear 38 each selectively coupled to the extension shaft 24. The inclusion of the splitter gears 34, 36, 38 allow for additional distinct gear ratios provided by the extension shaft 24.
The main box section 33B of the example transmission 20 further includes a number of main box gears 40, 42, 44 selectively coupled to the main shaft portion 26.
The range gear section 33C of the example transmission 20 further includes a planetary gear assembly 46 that couples the range shaft portion 28 to the output shaft assembly 30 through at least two selectable gear ratios between the range shaft portion 28 and the output shaft assembly 30.
The example transmission 20 further includes at least one countershaft 48a, 48b, the countershafts 48a, 48b having three aligning gears 50, 52, 54 within the splitter section 33A and drivingly engaged with the respective first, second and third splitter gears 34, 36, 38 on the extension shaft 24. The countershafts 48a, 48b further includes three aligning gears 56, 58, 60 within the main box section 33B and drivingly engaged with the respective first, second and third main box gears 40, 42, 44 selectively coupled to the main shaft portion 26. With the three gears in the splitter section 33A, the three gears in the main box section 33B and the two gear ratios provided by the range gear section 33C, the transmission 20 provides a 3×3×2 transmission that is operable to provide 18 practical and functional gear ratios. The number and selection of gears depends upon the desired number of gear ratios from the transmission.
The transmission includes a pair of reverse idler gears 62 (best shown in
With reference to
With reference to
In order to further strengthen the annular wall structure 100 a plurality of axially extending raised ribs 116 can extend longitudinally from the front end 102 to the rear end 106 of the main housing 12. The axially extending raised ribs 116 provide part structure, reduce frequencies of the large panels of the main housing 100, and support material flow throughout the structure during casting of the main housing 100. In addition, a plurality of angularly extending raised ribs 118 extend diagonally between adjacent ones of the plurality of axially extending raised ribs 116. By “diagonally,” it is meant that the plurality of angularly extending raised ribs 118 extend at an acute (non-perpendicular) angle from the axially extending raised ribs 116. The angularly extending raised ribs 118 provide part structure by connecting the longitudinal ribs 116 and further aid in material flow during casting of the main housing 100 thereby reducing turbulence and mitigating porosity.
As shown in
With reference to
The design of the aluminum main housing 12 provides for a reduced weight housing with the required strength and noise reduction. The aluminum main housing 12 is also economically castable.
With reference to
As shown in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/863261, filed on Jun. 19, 2019. The entire disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62863261 | Jun 2019 | US |