Commercialization of a Benchtop Radiosynthesizer for the Production of PET Probes

Information

  • Research Project
  • 8741986
  • ApplicationId
    8741986
  • Core Project Number
    R44MH097271
  • Full Project Number
    5R44MH097271-03
  • Serial Number
    097271
  • FOA Number
    PA-11-133
  • Sub Project Id
  • Project Start Date
    9/25/2013 - 10 years ago
  • Project End Date
    7/31/2016 - 7 years ago
  • Program Officer Name
    GRABB, MARGARET C.
  • Budget Start Date
    8/1/2014 - 9 years ago
  • Budget End Date
    7/31/2015 - 8 years ago
  • Fiscal Year
    2014
  • Support Year
    03
  • Suffix
  • Award Notice Date
    8/2/2014 - 9 years ago
Organizations

Commercialization of a Benchtop Radiosynthesizer for the Production of PET Probes

DESCRIPTION (provided by applicant): Positron Emission Tomography (PET) is a molecular imaging modality that utilizes radiolabeled molecules (probes) to target and measure biological processes. Basic scientists can use the same probes to examine cells and mice as they do in patients to visualize and characterize the biology of disease, monitor its progression, and evaluate therapeutic efficacy. Although over 3,000 PET probes have been developed to help answer a variety of biological questions, including many specific to understanding the structure and function of the human brain, only the glucose analog [18F]FDG is routinely used for molecular imaging diagnostics in patient care today. This limitation exists because of the centralized approach to PET probe production necessitated by the high cost of infrastructure, specialized equipment, and skilled personnel required for synthesis. Overcoming these hindrances to PET probe development, optimization, and routine production is necessary to facilitate the entry of numerous other promising PET probes into clinical research and trials, and to select those with value as companion biomarkers. A decentralized approach to PET probe development is required to give scientists the freedom to determine what probes they want to use to best solve the problems of their interest. This goal can be achieved by building a benchtop, PC-controlled, microfluidic chip-based commercial device for the on-demand production of PET probes. Phase I of this project answered basic commercial feasibility questions about the underlying Electro- Wetting-On-Dielectric (EWOD) microfluidic chip technology. Phase II seeks to leverage previous research to address technological challenges inherent in creating a commercial microscale chip-based radiosynthesizer so the synthesis of diverse PET probes for clinical brain imaging can be performed in a simple and convenient manner at a low cost. Key objectives include development of an approach for large-scale manufacturing of low- cost, cGMP-compliant EWOD chips; design of an automated post-synthesis system, including HPLC fraction collection, formulation, and aliquoting of product for downstream quality control; development of a clinical version of the software platform and electronic control system; and development of proof-of-concept cGMP kits for the synthesis of a variety of probes for brain imaging. As an eventual product, a library of chips will be developed based on customer needs for different probes. Shifting to a point-of-research/point-of-care model is a transformational solution that removes the limitations imposed by the centralized model on probe production, cost, and diversity. By empowering scientists and clinicians to control the development and use of PET probes, they are able to focus on processes that they believe are most important.

IC Name
NATIONAL INSTITUTE OF MENTAL HEALTH
  • Activity
    R44
  • Administering IC
    MH
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    590265
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    242
  • Ed Inst. Type
  • Funding ICs
    NIMH:590265\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    SOFIE BIOSCIENCES, LLC
  • Organization Department
  • Organization DUNS
    828467584
  • Organization City
    CULVER CITY
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    902306604
  • Organization District
    UNITED STATES