The present disclosure generally relates to a commissioning strategy for providing optimum stability performance and control of dynamic active motions of a marine vessel. More specifically, the present disclosure is directed to a software-based commissioning strategy to automatically determine the appropriate feedback gains for a dynamic active control system integrated within a new marine vessel by deploying water engagement devices and measuring the resulting list, roll angle, roll rate and yaw rate changes associated with such deployment.
The following terms and related definitions are used in the marine stabilization industry. “Trim Control” means the control of the average angle about the lateral or pitch axis of a marine vessel, averaged over one second or more. “List Control” or “Roll Control” means the control of the average angle about the longitudinal or roll axis of a marine vessel, averaged over one second or more. “Yaw Control” means the control of the average angle about the yaw axis of a marine vessel, averaged over one second or more.
A “Water Engagement Device” or “WED” means a mechanical or electromechanical device configured to generate a variable amount of lift in a marine vessel by selective engagement of the device with or into the water flow under or adjacent to a transom surface of the marine vessel when the marine vessel is underway in a certain (or forward) direction or by changing the angle of attack of the device relative to the water flow during operation of a marine vessel in a forward direction. A WED delta position is defined as the difference between port and starboard WED deployments. “Deployment” means selective engagement of the WED with or into the water flow or a change in the WED angle of attack. A “Roll Moment” in a marine vessel is the result of a force applied to the vessel that causes the vessel to rotate about its longitudinal or roll axis. A “Pitch Moment” in a marine vessel is the result of a force applied to the vessel that causes the vessel to rotate about its lateral or pitch axis. A “Yaw Moment” in a marine vessel is the result of a force applied to the vessel that causes the vessel to rotate about its vertical or yaw axis. For instance, (1) a Roll Moment can be generated if the port and starboard WEDs are deployed asymmetrically in a marine vessel that may cause the vessel to roll; (2) a Yaw Moment can be generated when port and starboard WEDs are deployed asymmetrically which may cause a heading change; and (3) a Pitch Moment can be generated if the port and starboard WEDs are deployed symmetrically or if a single WED is deployed about the center of the marine vessel which may cause the vessel to pitch.
Conventional marine stabilization techniques for when a vessel is underway in a forward direction include proportional deployment of WEDs to generate a continuous lift at the transom of the vessel for trim control while allowing adjustment of the angles (e.g., along the roll, pitch yaw axis) of the marine vessel. A few examples of commercially available WEDs—not to be considered exhaustive by any means—are interceptors, trim tabs, and fins and other similar devices that can engage the water flow in similar fashion and provide similar functionality.
Marine stabilization technologies are key to experiencing the joy of cruising over waters without the attendant random environmentally induced disturbances of the boat. These disturbances—for example, a sudden unexpected roll—can be annoying and disruptive to boaters. In the existing prior art systems, WEDs are designed and configured to control list and trim—to get the marine vessel to an average angle in the roll and pitch axis. Smaller marine vessels used in the recreational market generally have manually actuated WEDs, while larger vessels operating in the commercial space use automatic actuated systems to stabilize the motion. However, such prior art systems do not user specific customization of marine stability control systems for complete vessel stabilization.
There are no currently available prior art recreational or commercial user-specific customizable stability/dynamic active control systems for marine vessels that combine the fast deployment of water engagement devices with engine trim adjustments and engine steering angle adjustment. More specifically, prior art systems lack the combination of fast deployment of WEDs with adjustment of the engine steering angle of the marine vessel to counter changes in drag due to asymmetric deployment, gyroscopic stabilization, yaw moment and/or adjustment of the engine trim for dynamic control in the pitch axis.
In view of the foregoing problems and issues in the relevant field of marine stabilization, there is clearly a market need for an improved stability control system of a marine vessel—a dynamic active control system—configured to simultaneously control accelerations, rates and angles in the roll, pitch and yaw axes of the marine vessel. As discussed above, one of the largest challenges associated with any stability or dynamic active control system is the adaptation or customization of the system for different types of marine vessels (and different types of hulls). Further, in that context, there is clearly a need within the industry for a commissioning strategy for customization and implementation of new stability/dynamic active control systems in different marine vessels. As further disclosed below, to adapt a stability control or dynamic active control system to a new hull type (of a marine vessel), any software-based strategy will need to determine at least (a) the relationship between asymmetric deployment of the water engagement devices and the resulting roll and yaw motion of the marine vessel and (b) the relationship between symmetric deployment of the water engagement devices and the resulting pitch motion of the marine vessel. Prior art and conventional marine stabilization systems do not provide such automatic means of characterizing these functional relationships as will be disclosed herein.
The present disclosure is directed to a software-based commissioning strategy used during review of a newly installed a stability/dynamic active control system for a new marine vessel. The commissioning strategy is directed to automatically capture, store, interpret and analyze data regarding the relationship between the deployment of water engagement devices and parameters associated with the various vessel motions. The system as part of the commissioning strategy is configured to provide feedback gains from the data derived from the relationship between deployment and parameters related to vessel motions and provide customization option to an operator of the new marine vessel. The commissioning strategy disclosed herein provides significant technological advantages from conventional marine stability control systems while overcoming the disadvantages of any prior art systems, as further discussed below.
The present disclosure is directed to a software-based commissioning strategy for customization of a new marine vessel having a newly installed stability/dynamic active control system. The commissioning strategy will be implemented by using a proprietary customer-facing software embedded within a software module of a newly installed dynamic active control system for a new marine vessel (and a new hull type). The commissioning strategy is configured to measure the relationship between deployment of the water engagement devices (differential or symmetrical) and the resulting motions of the marine vessel in order to determine the optimum overall gain (e.g., roll overall gain, pitch overall gain, yaw rate gain) based on that transfer function relationship between the deployment and the marine vessel motion, as further described below. A water engagement device is not necessarily limited to any particular device such as an interceptor, trim tab and/or a fin but can include other similar devices that can engage the water flow in a similar fashion and provide similar functionality during operation of the marine vessel.
In an aspect of the present disclosure, a commissioning method for a new marine vessel comprises the steps of (1) installing a dynamic active control system having an user-interface connected to a software module having an embedded microprocessor, wherein the software module is communicatively and operatively connected to at least one pair of water engagement devices, (2) prompting a user to activate the system to asymmetrically deploy the at least one pair of water engagement devices; (3) processing a first set of data related to the roll motion of the vessel generated from the asymmetrical deployment of the at least one pair of water engagement devices, wherein the first set of data includes parameters of the functional relationship between the asymmetrical deployment of the at least one pair of water engagement devices and the roll motion the marine vessel; (4) analyzing the processed first set of data to automatically generate a vessel-specific Roll Overall Gain parameter derived from the first set of data; (5) processing a second set of data related to the yaw motion of the vessel generated from the asymmetrical deployment of the at least one pair of water engagement devices, wherein the second set of data includes parameters of the functional relationship between the asymmetrical deployment of the at least one pair of water engagement devices and the yaw motion of the marine vessel; (6) analyzing the processed second set of data to generate a vessel-specific Yaw Rate Gain parameter derived the second set of data; and (7) storing the vessel-specific Roll Overall Gain parameter and the vessel-specific Yaw Rate Gain parameter within the dynamic active control system of the marine vessel.
In another aspect of the present disclosure, a commissioning method for a new marine vessel comprises the steps of (1) installing a dynamic active control system having an user-interface connected to a software module having an embedded microprocessor, wherein the software module is communicatively and operatively connected to at least one pair of water engagement devices; (2) prompting a user to activate and instruct the system to symmetrically deploy the at least one pair of water engagement devices; (3) processing data related to the roll motion of the vessel generated from the symmetrical deployment of the at least one pair of water engagement devices, wherein the data includes parameters of the functional relationship between the symmetrical deployment of the at least one pair of water engagement devices and the pitch axis motion of the marine vessel; (4) analyzing the processed data to generate a vessel-specific Pitch Overall Gain parameter derived from the data; and (5) storing the vessel-specific Pitch Overall Gain parameter within the dynamic active control system of the marine vessel.
In other aspects of the present disclosure, a software-controlled commissioning strategy is configured to automatically determine the appropriate feedback gains for the marine vessel by controlling the deployment of the water engagement devices while simultaneously measuring and capturing the data generated from the resulting list angle, roll angle, roll rate and yaw rate changes associated with the deployment. The commissioning strategy is further configured for auto-calibrating the following functional parameters of the new marine vessel: (1) Speed-Based Bias Adjustments (SBBAs), (2) Roll Overall Gain (ROG), (3) Pitch Overall Gain (POG) and (4) Yaw Rate Gain (YRG) of the marine vessel.
Certain embodiments are shown in the drawings. However, it is understood that the present disclosure is not limited to the arrangements and instrumentality shown in the attached drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present disclosure and, together with the description, serve to explain the principles of the embodiments:
For the purposes of promoting and understanding the principles disclosed herein, reference is now made to the preferred embodiments illustrated in the drawings, and specific language is used to describe the same. Embodiments disclosed in the present disclosure provide a novel and improved commissioning strategy for a new marine vessel.
A software-based commissioning strategy—for customization of the marine vessel—comprises the steps of tuning and scaling a new marine vessel (with a new hull type) having a newly installed stability/dynamic active control system. A stability/dynamic active control system for a marine vessel generally comprises a software module communicatively and operatively connected to a plurality of water engagement devices attached to the marine vessel. The plurality of water engagement device actuators comprises at least one pair of water engagement devices configured for both symmetrical (both in the up and down positions) and asymmetrical (differentially deployed—one in the up and one in the down position) deployment. The software module running proprietary program instructions drives the commissioning strategy via the series of short and timed tests on the system, as further explained below.
In an aspect of the present disclosure, the first step in the commissioning strategy is for the user to activate the stability/dynamic active control system in order to deploy the at least one pair of the water engagement devices asymmetrically. Once the at least one pair of the water engagement devices are deployed asymmetrically, the system is configured to measure and process a first set of data related to the roll motion and a second set of data related to the yaw motion generated from the asymmetrical deployment of the water engagement devices. The system is further configured to process the first set of data—the first set of data further comprising parameters of the functional relationship between the asymmetrical deployment of the at least one pair of water engagement devices and the roll motion the marine vessel. The system next analyzes the processed first set of data to automatically generate a vessel-specific ROG parameter derived from the first set of data. The system next processes the second set of data related to the yaw motion of the vessel generated from the asymmetrical deployment of the at least one pair of water engagement devices—the second set of data further comprising parameters of the functional relationship between the asymmetrical deployment of the at least one pair of water engagement devices and the yaw motion of the marine vessel. The system next analyzes the processed second set of data to generate a vessel-specific Yaw Rate Gain parameter derived the second set of data. Once the vessel-specific ROG and YRG are generated by the system—the vessel-specific Roll Overall Gain parameter and the vessel-specific Yaw Rate Gain parameter are stored within the dynamic active control system of the marine vessel.
In another aspect of the present disclosure, the first step in the commissioning strategy is for a user to activate and instruct the system to symmetrically deploy the at least one pair of water engagement devices. Once the at least one pair of the water engagement devices are deployed symmetrically, the system is configured to measure and process data related to the roll motion of the vessel generated from the symmetrical deployment of the at least one pair of water engagement devices—the data further comprising parameters of the functional relationship between the symmetrical deployment of the at least one pair of water engagement devices and the pitch axis motion of the marine vessel. The system as part of the commissioning strategy next analyzes the processed data to generate a vessel-specific POG parameter derived from the data. Once the vessel-specific POG is generated by the system—the vessel-specific Pitch Overall Gain parameter is stored within the dynamic active control system of the marine vessel.
In another aspect of the present disclosure, the software-driven commissioning strategy is further configured for auto-calibrating the Speed-Based Bias Adjustments (SBBAs) of the new marine vessel.
The commissioning strategy disclosed herein do not require the steps of the algorithm flows described in the
It is understood that the preceding is merely a detailed description of some examples and embodiments of the present disclosure, and that numerous changes to the disclosed embodiments may be made in accordance with the disclosure made herein without departing from the spirit or scope of the disclosure. The preceding description, therefore, is not meant to limit the scope of the disclosure, but to provide sufficient disclosure to allow one of ordinary skill in the art to practice the disclosure without undue burden. It is further understood that the scope of the present disclosure fully encompasses other embodiments that may become obvious to those skilled in the art.
Differential and differentially are defined within this document as unequal, off center and/or involving differences in angle, speed, rate, direction, direction of motion, output, force, moment, inertia, mass, balance, application of comparable things, etc. The terms Dynamic and/or Dynamic Active Control may mean the immediate action that takes place at the moment they are needed. Any use of the term “immediate,” in this application, means that the control action occurs in a manner that is responsive to the extent that it prevents or mitigates vessel motions and attitudes before they would otherwise occur in the uncontrolled situation. A person of ordinary skill in the art understands the relationship between sensed motion parameters and required response in terms of the maximum overall delay that can exist while still achieving the control objectives. “Dynamic” and/or “Dynamic Active Control” may be used in describing interactive hardware and software systems involving differing forces and may be characterized by continuous change and/or activity. Dynamic may also be used when describing the interaction between a vessel and the environment. As stated above, marine vessels may be subject to various dynamic forces generated by its propulsion system as well as the environment in which it operates. Any reference to “vessel attitude” may be defined as relative to three rotational axes including pitch attitude or rotation about the Y, transverse or sway axis, roll attitude or rotation about the X, longitudinal or surge axis, and yaw attitude or rotation about the Z, vertical or heave axis.
Various features of the example embodiments described herein may be implemented using hardware, software or a combination thereof and may be implemented in one or more computer systems or other processing systems. However, the manipulations performed in these embodiments were often referred to in terms, such as “determining,” which are commonly associated with mental operations performed by a human operator. No such capability of a human operator is necessary in any of the operations described herein. Rather, the operations may be completely implemented with machine operations. Useful machines for performing the operation of the exemplary embodiments presented herein include general purpose digital computers or similar devices. With respect to hardware, a CPU typically includes one or more components, such as one or more microprocessors for performing the arithmetic and/or logical operations required for program execution, and storage media, such as one or more disk drives or memory cards (e.g., flash memory) for program and data storage, and a random access memory for temporary data and program instruction storage. With respect to software, a CPU typically includes software resident on a storage media (e.g., a disk drive or memory card), which, when executed, directs the CPU in performing transmission and reception functions.
The software (or software running on a CPU) may run on an operating system stored on the storage media, such as UNIX or Windows (e.g., NT, XP, Vista), Linux and the like, and can adhere to various protocols such as the Ethernet, ATM, TCP/IP, CAN, LIN protocols and/or other connection or connectionless protocols. As is known in the art, CPUs can run different operating systems, and can contain different types of software, each type devoted to a different function, such as handling and managing data/information from a particular source, or transforming data/information from one format into another format. It should thus be clear that the embodiments described herein are not to be construed as being limited for use with any particular type of server computer, and that any other suitable type of device for facilitating the exchange and storage of information may be employed instead.
A CPU may be a single CPU, or may include multiple separate CPUs, wherein each is dedicated to a separate application, such as a data application, a voice application and a video application. Software embodiments of the example embodiments presented herein may be provided as a computer program product, or software, that may include an article of manufacture on a machine-accessible or non-transitory computer-readable medium (i.e., also referred to as “machine readable medium”) having instructions. The instructions on the machine-accessible or machine-readable medium may be used to program a computer system or other electronic device. The machine-readable medium may include, but is not limited to, floppy diskette, optical disk, CD-ROM, magneto-optical disk, USB thumb drive, and SD card or other type of media/machine-readable medium suitable for storing or transmitting electronic instructions. The techniques described herein are not limited to any particular software configuration. They may find applicability in any computing or processing environment. The terms “machine-accessible medium,” “machine-readable medium” and “computer-readable medium” used herein shall include any non-transitory medium that is capable of storing, encoding or transmitting a sequence of instructions for execution by the machine (e.g., a CPU or other type of processing device) and that cause the machine to perform any one of the methods described herein. It is to be noted that it is common—as a person skilled in the art can contemplate—in the art to speak of software, in one form or another (e.g., program, procedure, process, application, module, unit, logic, and so on) as taking an action or causing a result. Such expressions are merely a shorthand way of stating that the execution of the software by a processing system causes the processor to perform an action to produce a result.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. It is understood that the preceding is merely a detailed description of some examples and embodiments of the present disclosure, and that numerous changes to the disclosed embodiments may be made in accordance with the disclosure made herein without departing from the spirit or scope of the disclosure. The preceding description, therefore, is not meant to limit the scope of the disclosure, but to provide sufficient disclosure to allow one of ordinary skill in the art to practice the disclosure without undue burden.
It is further understood that the scope of the present disclosure fully encompasses other embodiments that may become obvious to those skilled in the art. Features illustrated or described as part of one embodiment can be used in another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure cover such modifications and variations as come within the scope of the appended claims and their equivalents. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present disclosure, which broader aspects are embodied in the exemplary constructions.
This Application claims the benefit of and priority to U.S. Provisional Application No. 63/234,894, filed Aug. 19, 2021, the content of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4524942 | Kueny | Jun 1985 | A |
4749926 | Ontolchik | Jun 1988 | A |
5142497 | Warrow | Aug 1992 | A |
5263432 | Davis | Nov 1993 | A |
5385110 | Bennett et al. | Jan 1995 | A |
D362841 | Roza | Oct 1995 | S |
5474012 | Yamada et al. | Dec 1995 | A |
6041730 | Oliverio et al. | Mar 2000 | A |
6268053 | Woiszwillo et al. | Jul 2001 | B1 |
6273771 | Buckley et al. | Aug 2001 | B1 |
6354237 | Gaynor et al. | Mar 2002 | B1 |
6417469 | Tamura | Jul 2002 | B1 |
6579072 | Trousil et al. | Jun 2003 | B2 |
6592412 | Geil et al. | Jul 2003 | B1 |
6651574 | Ellens et al. | Nov 2003 | B1 |
6659816 | Fuse | Dec 2003 | B2 |
6766962 | Paul et al. | Jul 2004 | B2 |
6874441 | Pigeon | Apr 2005 | B2 |
D507543 | Ishii et al. | Jul 2005 | S |
6928948 | Shannon | Aug 2005 | B1 |
7025026 | Young et al. | Apr 2006 | B2 |
7040937 | Scott et al. | May 2006 | B2 |
7059347 | Schwartzman | Jun 2006 | B2 |
7128014 | Berthiaume et al. | Oct 2006 | B2 |
7128626 | Dundra et al. | Oct 2006 | B2 |
7128627 | Ferguson | Oct 2006 | B2 |
7137347 | Wong et al. | Nov 2006 | B2 |
7140315 | Okuyama | Nov 2006 | B2 |
7156708 | Dudra | Jan 2007 | B2 |
7171982 | Dudra | Feb 2007 | B2 |
7258072 | Wong et al. | Aug 2007 | B2 |
7278367 | Gonring et al. | Oct 2007 | B1 |
7285738 | Lavigne et al. | Oct 2007 | B2 |
7311058 | Brooks et al. | Dec 2007 | B1 |
7318386 | Dudra et al. | Jan 2008 | B2 |
D562753 | Wall et al. | Feb 2008 | S |
D562754 | Wall et al. | Feb 2008 | S |
7364482 | Wong et al. | Apr 2008 | B1 |
7407420 | Fetchko et al. | Aug 2008 | B1 |
7479607 | Sack et al. | Jan 2009 | B2 |
7497183 | Dudra et al. | Mar 2009 | B2 |
7597552 | Young et al. | Oct 2009 | B2 |
7601040 | Morvillo | Oct 2009 | B2 |
7631610 | Wolske | Dec 2009 | B1 |
7641525 | Morvillo | Jan 2010 | B2 |
7717462 | Liu et al. | May 2010 | B2 |
7722418 | Ellens et al. | May 2010 | B2 |
7743721 | Barrett et al. | Jun 2010 | B2 |
7806142 | Baros et al. | Oct 2010 | B2 |
7905156 | Scott et al. | Mar 2011 | B2 |
7958837 | Fraleigh | Jun 2011 | B1 |
7975638 | Harris et al. | Jul 2011 | B1 |
8007330 | Wong et al. | Aug 2011 | B2 |
8025006 | Baros | Sep 2011 | B2 |
8028510 | Scott et al. | Oct 2011 | B2 |
8042480 | Simons | Oct 2011 | B2 |
8062010 | Paramonoff et al. | Nov 2011 | B2 |
D654880 | Iam | Feb 2012 | S |
8113892 | Gable et al. | Feb 2012 | B1 |
8141789 | Schwartzman et al. | Mar 2012 | B2 |
8145371 | Rae et al. | Mar 2012 | B2 |
8151723 | Winiski et al. | Apr 2012 | B2 |
8170734 | Kaji | May 2012 | B2 |
8182396 | Martin et al. | May 2012 | B2 |
8261682 | DeVito | Sep 2012 | B1 |
8264338 | Leon | Sep 2012 | B2 |
8347859 | Garon et al. | Jan 2013 | B2 |
8387589 | Wong et al. | Mar 2013 | B2 |
8406944 | Garon et al. | Mar 2013 | B2 |
8435088 | Morettin et al. | Mar 2013 | B2 |
8425270 | Dudra et al. | Apr 2013 | B2 |
8430702 | Davidson et al. | Apr 2013 | B2 |
8457820 | Gonring | Jun 2013 | B1 |
8516916 | Scott et al. | Aug 2013 | B2 |
8550023 | Quail | Oct 2013 | B1 |
8578838 | Davidson | Nov 2013 | B2 |
8578873 | Gasper et al. | Nov 2013 | B2 |
8583300 | Oehlgrien et al. | Nov 2013 | B2 |
8610013 | Schmidt et al. | Dec 2013 | B2 |
8612072 | Garon et al. | Dec 2013 | B2 |
D698304 | Dubois et al. | Jan 2014 | S |
D698357 | Mainville et al. | Jan 2014 | S |
8626962 | Wong et al. | Jan 2014 | B2 |
8631753 | Morvillo | Jan 2014 | B2 |
8672086 | Wong et al. | Mar 2014 | B2 |
8683300 | Stek et al. | Mar 2014 | B2 |
8751015 | Frewin et al. | Jun 2014 | B2 |
8769944 | Redfern | Jul 2014 | B2 |
8845490 | Chan et al. | Sep 2014 | B2 |
D720305 | Wenji | Dec 2014 | S |
8901443 | Baker et al. | Dec 2014 | B2 |
8930050 | Garon et al. | Jan 2015 | B2 |
8931707 | Wilnechenko et al. | Jan 2015 | B2 |
8957338 | Li | Feb 2015 | B2 |
D725050 | Tsugawa et al. | Mar 2015 | S |
D725612 | Schlegel et al. | Mar 2015 | S |
8992273 | Winiski et al. | Mar 2015 | B2 |
D727190 | Higgs | Apr 2015 | S |
8997628 | Sall et al. | Apr 2015 | B2 |
9032898 | Widmark | May 2015 | B2 |
9068855 | Guglielmo | Jun 2015 | B1 |
9104227 | Clarke et al. | Aug 2015 | B2 |
9233740 | Morvillo | Jan 2016 | B2 |
9260161 | Gasper et al. | Feb 2016 | B2 |
9278740 | Andrasko et al. | Mar 2016 | B1 |
9334022 | Gasper et al. | May 2016 | B2 |
9340257 | Ulgen | May 2016 | B2 |
D758325 | Cook et al. | Jun 2016 | S |
D758975 | Hunter et al. | Jun 2016 | S |
9377780 | Arbuckle et al. | Jun 2016 | B1 |
9423894 | Olsson et al. | Aug 2016 | B2 |
9459787 | Kulczycki et al. | Oct 2016 | B2 |
9522723 | Andrasko et al. | Dec 2016 | B1 |
9559649 | Noh et al. | Jan 2017 | B2 |
D782987 | Gassner | Apr 2017 | S |
9631753 | Wood et al. | Apr 2017 | B2 |
9745020 | Snow | Apr 2017 | B2 |
9689395 | Hartman | Jun 2017 | B2 |
9710077 | Okazaki | Jul 2017 | B2 |
9834293 | Wood et al. | Dec 2017 | B2 |
D807309 | Johnson et al. | Jan 2018 | S |
9857794 | Jarrell et al. | Jan 2018 | B1 |
9896173 | Baros et al. | Feb 2018 | B2 |
9911556 | Lee et al. | Mar 2018 | B2 |
9944377 | Davidson et al. | Apr 2018 | B2 |
9950771 | Hartman et al. | Apr 2018 | B1 |
D818973 | Tang et al. | May 2018 | S |
9978540 | Tanaka et al. | May 2018 | B2 |
9988126 | Wood | Jun 2018 | B2 |
9994291 | Scott | Jun 2018 | B2 |
10000268 | Poirier et al. | Jun 2018 | B1 |
10040522 | Hartman et al. | Aug 2018 | B1 |
10112692 | Anschuetz | Oct 2018 | B1 |
10202179 | Wong et al. | Feb 2019 | B2 |
10281928 | Behling et al. | May 2019 | B2 |
10358189 | Sheedy et al. | Jul 2019 | B2 |
10370070 | Fetchko et al. | Aug 2019 | B2 |
10386834 | Green et al. | Aug 2019 | B2 |
D858465 | Desbiens | Sep 2019 | S |
10431099 | Stewart et al. | Oct 2019 | B2 |
10457371 | Hara et al. | Oct 2019 | B2 |
D884856 | Jones et al. | May 2020 | S |
10647399 | Davidson et al. | May 2020 | B2 |
10671073 | Arbuckle et al. | Jun 2020 | B2 |
10683073 | Redfern et al. | Jun 2020 | B2 |
10683074 | Davidson et al. | Jun 2020 | B2 |
10696368 | Mizutani et al. | Jun 2020 | B2 |
10696369 | Takase et al. | Jun 2020 | B2 |
10766590 | Nanjo et al. | Sep 2020 | B2 |
10781947 | Fetchko et al. | Sep 2020 | B2 |
10829191 | Wong et al. | Nov 2020 | B2 |
10889358 | Wong et al. | Jan 2021 | B2 |
10906623 | Chan et al. | Feb 2021 | B2 |
10940927 | Chan et al. | Mar 2021 | B2 |
11000268 | Poucher et al. | May 2021 | B2 |
11040757 | Huyge et al. | Jun 2021 | B2 |
11155322 | Baros | Oct 2021 | B2 |
11319916 | Strang et al. | May 2022 | B2 |
11433981 | Chan et al. | Sep 2022 | B2 |
11465726 | Nakatani | Oct 2022 | B2 |
11467583 | Mizutani | Oct 2022 | B2 |
11530022 | Andrasko et al. | Dec 2022 | B1 |
11679853 | Wong et al. | Jun 2023 | B2 |
20030082964 | Simner | May 2003 | A1 |
20050233655 | Maselter | Oct 2005 | A1 |
20070006101 | Michaels | Jan 2007 | A1 |
20070238370 | Morvillo | Oct 2007 | A1 |
20070276563 | Kaji | Nov 2007 | A1 |
20090076671 | Mizutani | Mar 2009 | A1 |
20090165694 | Beamer | Jul 2009 | A1 |
20100094491 | Oehlgrien et al. | Apr 2010 | A1 |
20100102173 | Everett et al. | Apr 2010 | A1 |
20100198435 | Cansiani et al. | Aug 2010 | A1 |
20110000268 | Schaafsma et al. | Jan 2011 | A1 |
20110120364 | Mueller | May 2011 | A1 |
20110143608 | Chiecchi | Jun 2011 | A1 |
20110151732 | Chiecchi | Jun 2011 | A1 |
20110320072 | Morvillo | Dec 2011 | A1 |
20120103774 | Jun | May 2012 | A1 |
20120247934 | Schmidt et al. | Oct 2012 | A1 |
20130213293 | Gasper et al. | Aug 2013 | A1 |
20140043303 | Baker et al. | Feb 2014 | A1 |
20140183011 | Park et al. | Jul 2014 | A1 |
20140224166 | Morvillo | Aug 2014 | A1 |
20140348207 | Wilnechenko et al. | Nov 2014 | A1 |
20140365050 | Morvillo | Dec 2014 | A1 |
20160097393 | Hartman | Apr 2016 | A1 |
20170250037 | Tanaka et al. | Aug 2017 | A1 |
20170313386 | Snow | Nov 2017 | A1 |
20170349257 | Hara et al. | Dec 2017 | A1 |
20180201342 | Huyge et al. | Jul 2018 | A1 |
20190017900 | Converse | Jan 2019 | A1 |
20200303235 | Miyadate et al. | Sep 2020 | A1 |
20200354030 | Bowie | Nov 2020 | A1 |
20210107617 | Nakatani | Apr 2021 | A1 |
20220004125 | Mitsumata et al. | Jan 2022 | A1 |
20220334596 | Chan et al. | Oct 2022 | A1 |
20220355913 | Davidson et al. | Nov 2022 | A1 |
20230073225 | Chan et al. | Mar 2023 | A1 |
20230166823 | Wood et al. | Jun 2023 | A1 |
20230257096 | Wong et al. | Aug 2023 | A1 |
20230303235 | Wong et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
783746 | Jan 2003 | AU |
2795437 | Apr 1928 | CA |
304073 | Sep 1930 | CA |
2236483 | May 1998 | CA |
2372402 | Feb 2002 | CA |
3048271 | Jun 2019 | CA |
3048276 | Jun 2019 | CA |
3048282 | Dec 2020 | CA |
109110073 | Jan 2019 | CN |
112124548 | Dec 2020 | CN |
19837888 | Aug 1998 | DE |
0928739 | Jul 1999 | EP |
H0350087 | Mar 1991 | JP |
H0382697 | Apr 1991 | JP |
H03114996 | May 1991 | JP |
H06255577 | Sep 1994 | JP |
H09286390 | Nov 1997 | JP |
H09315384 | Dec 1997 | JP |
2001294197 | Oct 2001 | JP |
2002-284087 | Oct 2002 | JP |
2003341589 | Dec 2003 | JP |
2004224103 | Aug 2004 | JP |
2005-280550 | Oct 2005 | JP |
2005324716 | Nov 2005 | JP |
2009037287 | Apr 2009 | JP |
2012-035786 | Feb 2012 | JP |
2013035351 | Feb 2013 | JP |
2013100102 | May 2013 | JP |
2014196091 | Oct 2014 | JP |
2018030573 | Mar 2018 | JP |
10-2011-0078767 | Jul 2011 | KR |
10-2011-0139800 | Dec 2011 | KR |
10-2012-0019280 | Mar 2012 | KR |
10-1259134 | Apr 2013 | KR |
10-1297596 | Aug 2013 | KR |
10-2013-0119071 | Oct 2013 | KR |
10-1491661 | Feb 2015 | KR |
10-2017-0143039 | Dec 2017 | KR |
10-2275079 | Jul 2021 | KR |
2003068590 | Aug 2003 | WO |
2006058232 | Jun 2006 | WO |
2008100903 | Aug 2008 | WO |
2009134153 | May 2009 | WO |
2010003905 | Jan 2010 | WO |
2011099931 | Aug 2011 | WO |
2011142870 | Nov 2011 | WO |
2016036616 | Mar 2016 | WO |
2016209401 | Dec 2016 | WO |
2023092228 | Jan 2023 | WO |
Entry |
---|
US 11,198,496 B2, 12/2021, Wong et al. (withdrawn) |
International Search Report and Written Opinion, filed in PCT/US2022/038964 dated Nov. 28, 2022; 8 pgs. |
International Search Report and Written Opinion, filed in PCT/US2022/040944 dated Dec. 2, 2022; 7 pgs. |
Volvo Penta; Boat Trim System; Mar. 2017; 4 pgs. |
Australian Boat Magazine; The Intriguing Zipwake Trim; May 2015; 6 pgs. |
Interceptors/Trim Tabs/Force Producers for Ship Motion Control—Maritime Dynamics, Inc. |
International Search Report and Written Opinion, filed in PCT/US2022/038962 dated Nov. 16, 2022; 7 pgs. |
International Search Report and Written Opinion, filed in PCT/US2022/038102 dated Nov. 15, 2022; 9 pgs. |
AutoTrimPro Electric Owner Install Guide; 48 pgs. |
Trygve Lauvdal and Thor I. Fossen; Norwegian University of Science and Technology, Department of Engineering Cybernetics, n-7034 Trondheim, Norway; Nonlinear Non-Minimum Phase Rudder-Roll Damping System for Ships Using Sliding Mode Control; 6 pgs. |
Asgei J. Sorenson; Department of Marine Technology, Norwegian University of Science and Technology ; 2013 Department of Marine Technology, NTNU; Marine Control Systems, Propolsion and Motion Control of Ships and Ocean Sructures Lecture Notes; 536 pgs. |
European Patent Office Extended European Search Report mailed Aug. 26, 2022 from corresponding European Patent Application No. 19869718.7; 7 pages. |
WIPO, Canadian International Searching Authority, International Search Report mailed Dec. 13, 2019 in corresponding International Patent Application No. PCT/CA2019/051410, 3 pages. |
WIPO, Canadian International Searching Authority, Written Opinion mailed Dec. 4, 2019 in corresponding International Patent Application No. PCT/CA2019/051410, 6 pages. |
LENCO—We Make The Best Boats Better !; The World Leader In Trim Tab Systems & Hatch Lift Innovation Owner's Manual; May 21, 2019; 28 pgs. |
Number | Date | Country | |
---|---|---|---|
20230057840 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63234894 | Aug 2021 | US |