The present application relates generally to variable speed drives. The application relates more specifically to a common mode & differential mode filter for a variable speed drive incorporating an active converter.
A variable speed drive (VSD) for heating, ventilation, air-conditioning and refrigeration (HVAC&R) applications typically includes a rectifier or converter, a DC link, and an inverter. VSDs that incorporate active converter technology to provide power factor correction and reduced input current harmonics also generate a significantly higher level of common mode RMS and peak to peak voltage to the motor stator windings as compared to conventional VSDs. This common mode voltage can cause motor and compressor bearing fluting, and these common mode voltages which result in currents flowing through the machine bearings may cause premature bearing failures in the motor and/or compressor.
Proper operation of the active converter control methodology, using the synchronous d-q reference frame requires knowledge of the instantaneous phase angle of the input line-to-line voltage. If the reference frame angle is incorrect or unknown, then the input power factor and the harmonic distortion of the input current to the Variable Speed Drive (VSD) with active converter cannot be controlled properly. If the VSD is required to ride-through an extended loss of the input line-to-line voltage and re-synchronize to the input mains when the power is restored, a means to retain the expected d-q reference frame angle during the loss of mains is needed. In addition, a means to quickly lock back onto the input mains line-to-line voltage and generate the actual phase angle of the line-to-line voltage is required. What is needed is a system and/or method that satisfy one or more of these needs or provides other advantageous features. While the present invention is directed specifically to VSDs that incorporate an Active Converter type AC to DC converter topology, the invention is also effective for VSDs utilizing conventional AC to DC rectifier converters.
Other features and advantages will be made apparent from the present specification. The teachings disclosed extend to those embodiments that fall within the scope of the claims, regardless of whether they accomplish one or more of the aforementioned needs.
The present invention is directed to a circuit for application on three-phase Pulse Width Modulated (PWM) Variable Speed Drives (VSDs), and preferably for application on PWM VSDs having Active Converter topologies.
In one embodiment, a variable speed drive system is configured to receive an input AC power at a fixed AC input voltage magnitude and frequency and provide an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter stage connected to an AC power source providing the input AC voltage. The converter stage is configured to convert the input AC voltage to a boosted DC voltage. A DC link is connected to the converter stage, the DC link configured to filter and store the boosted DC voltage from the converter stage. An inverter stage is connected to the DC link, the inverter stage configured to convert the boosted DC voltage from the DC link into the output AC power having the variable voltage and the variable frequency. Finally, an input filter is connected to the VSD at the input to the converter stage for filtering a common mode component and a differential mode component induced by conducted electromagnetic interference or radio frequency interference present at the AC power source.
Another embodiment relates to an input filter for filtering common mode and differential mode currents. The input filter includes a three-phase inductor having three windings. Each winding of the three-phase inductor includes a center tap dividing each winding into a pair of inductor sections. A three-phase input capacitor bank of three capacitors is connected in a wye configuration to the three center taps at one end, and to a common point at the opposite end. The three-phase input capacitor bank is configured to substantially provide a short circuit for frequencies above a predetermined fundamental frequency for shunting frequencies above a predetermined fundamental frequency through the three phase capacitor bank, while passing the predetermined fundamental frequency to the mains.
A further embodiment relates to an output filter for filtering common mode and differential mode currents associated with a variable speed drive. The output filter includes a first output capacitor bank of three capacitors. Each capacitor of the first output capacitor bank is connected in a wye configuration to an output phase of the inverter stage. The three capacitors of the first output capacitor bank are each connected in common at a common capacitor connection at an end opposite the output phase connection. The common capacitor connection is also connected to earth.
Still another embodiment, is directed to a chiller system. The chiller system includes a refrigerant circuit comprising compressor, a condenser, and an evaporator connected in a closed refrigerant loop. A motor is connected to the compressor to power the compressor. A variable speed drive is connected to the motor. The variable speed drive is configured to receive an input AC power at a fixed AC input voltage magnitude and frequency and provide an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter stage connected to an AC power source providing the input AC voltage. The converter stage is configured to convert the input AC voltage to a boosted DC voltage. A DC link is connected to the converter stage, with the DC link configured to filter and store the boosted DC voltage from the converter stage. An inverter stage is connected to the DC link, with the inverter stage configured to convert the boosted DC voltage from the DC link into the output AC power having the variable voltage and the variable frequency. Finally, an input filter for filtering common mode and differential mode currents is connected to the variable speed drive at an input to the converter stage. The input filter includes a three-phase inductor having three windings, wherein each winding of the three-phase inductor has a center tap dividing each winding into a pair of inductor sections, and a three-phase input capacitor bank having three capacitors connected in a wye configuration to the three center taps at one end, and to a common point at the opposite end. The three-phase input capacitor bank is configured to substantially provide a short circuit for frequencies above a predetermined fundamental frequency for shunting frequencies above a predetermined fundamental frequency through the three phase capacitor bank, while passing the predetermined fundamental frequency to the converter stage.
One advantage is to reduce the common mode and differential mode currents associated with conducted electromagnetic interference and radio frequency interference present at the AC power source as a result of the operation of the VSD.
A second advantage is to reduce the common mode voltage stress presented to the motor stator in both RMS and peak terms, thereby alleviating issues associated with premature machine bearing failure and premature insulation to earth ground failure.
Another advantage is to reduce the differential mode voltage stress presented to the motor stator in both RMS and peak terms, thereby alleviating issues associated with premature machine turn-to-turn stator winding failure.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the following description or illustrated in the figures. It should also be understood that the phraseology and terminology employed herein is for the purpose of description only and should not be regarded as limiting.
The VSD 104 receives AC power having a particular fixed line voltage and fixed line frequency from the AC power source 102 and provides AC power to the motor(s) 106 at a desired voltage and desired frequency, both of which can be varied to satisfy particular requirements. Preferably, the VSD 104 can provide AC power to the motor(s) 106 having higher voltages and frequencies and lower voltages and frequencies than the rated voltage and frequency of the motor(s) 106. In another embodiment, the VSD 104 may again provide higher and lower frequencies but only the same or lower voltages than the rated voltage and frequency of the motor(s) 106. The motor(s) 106 is preferably an induction motor, but can include any type of motor that is capable of being operated at variable speeds. The induction motor can have any suitable pole arrangement including two poles, four poles or six poles.
With regard to
For each motor 106 to be powered by the VSD 104, there is a corresponding inverter 206 in the output stage of the VSD 104. The number of motors 106 that can be powered by the VSD 104 is dependent upon the number of inverters 206 that are incorporated into the VSD 104. In one embodiment, there can be either 2 or 3 inverters 206 incorporated in the VSD 104 that are connected in parallel to the DC link 204 and used for powering a corresponding motor 106. While the VSD 104 can have between 2 and 3 inverters 206, it is to be understood that more than 3 inverters 206 can be used so long as the DC link 204 can provide and maintain the appropriate DC voltage to each of the inverters 206.
Compressor 302 compresses a refrigerant vapor and delivers the vapor to the condenser 304 through a discharge line. The compressor 302 can be any suitable type of compressor, e.g., screw compressor, centrifugal compressor, reciprocating compressor, scroll compressor, etc. The refrigerant vapor delivered by the compressor 302 to the condenser 304 enters into a heat exchange relationship with a fluid, e.g., air or water, and undergoes a phase change to a refrigerant liquid as a result of the heat exchange relationship with the fluid. The condensed liquid refrigerant from condenser 304 flows through an expansion device (not shown) to the evaporator 306.
The evaporator 306 can include connections for a supply line and a return line of a cooling load. A secondary liquid, e.g., water, ethylene, calcium chloride brine or sodium chloride brine, travels into the evaporator 306 via return line and exits the evaporator 306 via supply line. The liquid refrigerant in the evaporator 306 enters into a heat exchange relationship with the secondary liquid to lower the temperature of the secondary liquid. The refrigerant liquid in the evaporator 306 undergoes a phase change to a refrigerant vapor as a result of the heat exchange relationship with the secondary liquid. The vapor refrigerant in the evaporator 306 exits the evaporator 306 and returns to the compressor 302 by a suction line to complete the cycle. It is to be understood that any suitable configuration of condenser 304 and evaporator 306 can be used in the system 300, provided that the appropriate phase change of the refrigerant in the condenser 304 and evaporator 306 is obtained.
The HVAC, refrigeration or liquid chiller system 300 can include many other features that are not shown in
Referring next to
Line-side inductors 26 provide impedance at a predetermined switching frequency of the VSD 104 between the wye-connected capacitors 20 and the AC power source 102. The impedance of the line-side inductors 26 is designed to allow the wye-connected capacitors 20 to be more effective than a system with no significant impedance between the input AC mains 102 and the VSD 104. Inductors 26 also provide high-frequency impedance in the reverse direction, to restrict the flow of high-frequency current from the converter 202 to the AC power source 102. Thus the inductors 26 restrict or limit high frequency emissions from reflecting back to the AC power source 102.
Inductors 28 provide impedance between the capacitors 20 and the input to the VSD 104. Inductors 28 provide high impedance between the AC power source 102 and the active converter 202 portion of the VSD 104. Alternately, if the VSD 104 is a conventional VSD with a passive rectifier converter, the impedance of inductor 28 isolates the VSD 104 from the input AC mains 102 and reduces high frequency emissions conducted to the mains 102 from the VSD 104.
The wye-connected capacitor bank 20 provides low impedance between phase conductors A, B & C for at least one switching frequency of the VSD 104, and provides low impedance for differential mode current flow. The wye-connected capacitor bank 20 also provides a low impedance path for flow of at least one switching frequency to an earth ground connection 22, assuming that an earth ground connection is provided, for reducing common mode current flow.
Referring next to
Referring to
Referring next to
The inverter output terminals 34 feed a second filter arrangement that includes a three phase inductor 36 connected in series with the output terminals 38, which are connected to the system load, e.g., a motor 106. A second three-phase capacitor bank 42 is wye-connected to the output power phases, L1, L2 and L3, between the load side of the three phase inductor 36, providing a low impedance path for the differential mode current to flow among the capacitor bank 42. The combination of the second three-phase capacitor bank wye-connected at the load side of the three phase inductor 36 provides an L-C differential mode output filter. By combining the common mode filter capacitor bank 30, with the L-C differential mode inductor 36 and capacitor bank 42, both of the destructive conditions, i.e., common mode and differential mode currents, are prevented from reaching a load that is powered by the VSD 104.
While the exemplary embodiments illustrated in the figures and described herein are presently preferred, it should be understood that these embodiments are offered by way of example only. Accordingly, the present application is not limited to a particular embodiment, but extends to various modifications that nevertheless fall within the scope of the appended claims. The order or sequence of any processes or method steps may be varied or re-sequenced according to alternative embodiments.
It is important to note that the construction and arrangement of the common mode and differential mode filter for variable speed drives, as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present application. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present application.
This patent application claims the benefit of U.S. Provisional Patent Application No. 60/885,932, filed Jan. 22, 2007, for which priority is claimed.
Number | Name | Date | Kind |
---|---|---|---|
3593103 | Chandler et al. | Jul 1971 | A |
3859542 | Kennedy | Jan 1975 | A |
4308491 | Joyner, Jr. et al. | Dec 1981 | A |
4587474 | Espelage et al. | May 1986 | A |
4758771 | Saito et al. | Jul 1988 | A |
4973915 | Batey | Nov 1990 | A |
5081368 | West | Jan 1992 | A |
5123080 | Gillett et al. | Jun 1992 | A |
5127085 | Becker et al. | Jun 1992 | A |
5298848 | Ueda et al. | Mar 1994 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5592058 | Archer et al. | Jan 1997 | A |
5646458 | Bowyer et al. | Jul 1997 | A |
5747955 | Rotunda et al. | May 1998 | A |
5796234 | Vrionis | Aug 1998 | A |
5869946 | Carobolante | Feb 1999 | A |
5936855 | Salmon | Aug 1999 | A |
5949664 | Bernet et al. | Sep 1999 | A |
5969966 | Sawa et al. | Oct 1999 | A |
5982646 | Lyons et al. | Nov 1999 | A |
6005362 | Enjeti et al. | Dec 1999 | A |
6072302 | Underwood et al. | Jun 2000 | A |
6118676 | Divan et al. | Sep 2000 | A |
6160722 | Thommes et al. | Dec 2000 | A |
6239513 | Dean et al. | May 2001 | B1 |
6276148 | Shaw | Aug 2001 | B1 |
6301130 | Aiello et al. | Oct 2001 | B1 |
6313600 | Hammond et al. | Nov 2001 | B1 |
6348775 | Edelson et al. | Feb 2002 | B1 |
6487096 | Gilbreth et al. | Nov 2002 | B1 |
6559562 | Rostron | May 2003 | B1 |
6686718 | Jadric et al. | Feb 2004 | B2 |
6768284 | Lee et al. | Jul 2004 | B2 |
6801019 | Haydock et al. | Oct 2004 | B2 |
7081734 | Jadric et al. | Jul 2006 | B1 |
7116076 | Sippola et al. | Oct 2006 | B2 |
7402983 | Jacobson et al. | Jul 2008 | B2 |
7629836 | Kull et al. | Dec 2009 | B2 |
7659797 | Tucker | Feb 2010 | B2 |
7667988 | Haeberle et al. | Feb 2010 | B2 |
20020195973 | Hu et al. | Dec 2002 | A1 |
20030015873 | Khalizadeh et al. | Jan 2003 | A1 |
20030052544 | Yamamoto et al. | Mar 2003 | A1 |
20050057210 | Ueda et al. | Mar 2005 | A1 |
20050068001 | Skaug et al. | Mar 2005 | A1 |
20070063668 | Schnetzke et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
102004052700 | May 2006 | DE |
102005005688 | Aug 2006 | DE |
0272776 | Jun 1988 | EP |
0283954 | Sep 1988 | EP |
0422221 | Nov 1989 | EP |
1300937 | Apr 2003 | EP |
0313366 | Aug 2008 | EP |
06105563 | Sep 1992 | JP |
05068376 | Mar 1993 | JP |
2002176767 | Jun 2002 | JP |
04026374 | Sep 2006 | JP |
9314559 | Jul 1993 | WO |
9732168 | Sep 1997 | WO |
0062396 | Oct 2000 | WO |
03094334 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080174255 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60885932 | Jan 2007 | US |