A current source circuit with common-mode differential gain boosting is provided. The current source circuit differentially provides first and second currents. The first current is produced by a first cascoded current source, and the second current is produced by a second cascoded current source. Each of the cascoded current sources comprises a current source transistor and a cascode transistor. The current source circuit has high output impedance utilizing gain-boosting techniques. A three-input differential amplifier forces a gate of the cascode transistor of each of the current source circuits to an approximately constant voltage. The three-input differential amplifier is configured to receive a bias signal. The current source circuit is arranged to servo both the gate and source of the cascode transistors in response to the bias signal.
Description
FIELD OF THE INVENTION
The present invention relates to current sources, and, in particular, to a current source with common-mode differential gain boosting.
BACKGROUND OF THE INVENTION
Current sources are configured to provide an approximately constant output current to a load over a specified range of load voltages. High output impedance is an important characteristic for a current source. When a current source has a high output impedance, changes in the load conditions result in minimal changes in the output current that is provided to the load. Another important characteristic for current sources is output compliance, the range of load voltages for which an approximately constant output current is maintained.
Current sources have numerous applications. For example, current sources can be used as active loads (e.g. for differential amplifiers). Current sources can be used to bias other circuit elements. Current sources are also used in integrators and ramp generators.
BRIEF DESCRIPTION OF THE DRAWINGS
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings.
FIG. 1
is an illustration of an example embodiment of a differential amplifier circuit; and
FIG. 2
is an illustration of an example embodiment of a current source circuit that is arranged for common-mode differential gain boosting, in accordance with aspects of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The meanings identified below are not intended to limit the terms, but merely provide S illustrative examples for the terms. The meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.” The term “connected” means a direct electrical connection between the items connected, without any intermediate devices. The term “coupled” means either a direct electrical connection between the items connected, or an indirect connection through one or more passive or active intermediary devices. The term “circuit” means either a single component or a multiplicity of components, either active and/or passive, that are coupled together to provide a desired function. The term “signal” means at least one current, voltage, charge, temperature, data, or other signal. Referring to the drawings, like numbers indicate like parts throughout the views.
Briefly stated, the invention is related to a current source circuit with common-mode differential gain boosting. The current source circuit differentially provides first and second currents. The first current is produced by a first cascoded current source, and the second current is produced by a second cascoded current source. Each of the cascoded current sources comprises a current source transistor and a cascode transistor. The current source circuit has high output impedance utilizing gainboosting techniques. A three-input differential amplifier forces a gate of the cascode transistor of each of the current source circuits to an approximately constant voltage. The three-input differential amplifier is configured to receive a bias signal. The current source circuit is arranged to servo both the gate and source of the cascode transistors in response to the bias signal.
Example Differential Amplifier
FIG. 1
is an illustration of an example embodiment of a differential amplifier circuit ( 100
) that is arranged in accordance with aspects of the present invention. Differential amplifier circuit 100
includes transistor M 1
, transistor M 2
, differential current source circuit 102
, and current source circuit 110
. Transistor M 1
has a gate that is coupled to node N 120
, a drain that is coupled to node N 124
, and a source that is coupled to node N 130
. Transistor M 2
has a gate that is coupled to node N 122
, a drain that is coupled to node N 126
, and a source that is coupled to node N 130
. Differential current source circuit 102
has a first port that is coupled to node N 124
, a second port that is coupled to node N 126
, and a third port that is coupled to node N 132
. Current source circuit 110
has a first port that is coupled to node N 130
and a second port that is coupled to node N 134
.
In operation, a first power supply signal (V DD
) is applied at node N 134
, and a second power supply signal (V SS
) is applied at node N 132
. Differential amplifier circuit 100
is arranged to provide a differential output signal across nodes N 124
and N 126
in response to a differential input signal that is received across nodes N 120
and N 122
. Differential current source circuit 102
is arranged to operate as an active load for differential amplifier circuit 100
. Differential current source circuit 102
is further configured to differentially provide current I 1
and current I 2
. Differential current source circuit 102
is further configured to provide common-mode noise rejection, and to reduce or eliminate even order distortion in circuit 100
.
Differential current source circuit 102
is arranged for differential gain boosting, as explained in greater detail below. Differential current source circuit 102
has high output impedance utilizing differential gain boosting techniques.
Example Differential Current Source
FIG. 2
is an illustration of an example embodiment of a differential current source circuit ( 102
) that is arranged for differential gain boosting, in accordance with aspects of the present invention. The example embodiment of differential current source circuit 102
that is illustrated in FIG. 2
comprises current source circuits ( 201
- 204
), a bias circuit ( 212
), level shifter circuits ( 220
, 221
), and a differential amplifier circuit ( 230
). An example embodiment of current source circuit 201
comprises transistors (M 3
, M 4
). An example embodiment of current source circuit 202
includes transistors (M 17
, M 18
). An example embodiment of differential amplifier circuit 230
comprises transistors (M 6
-M 9
, M 22
- 23
) and a current source ( 205
).
An example embodiment of level shift circuit 220
comprises a transistor (M 16
). An example embodiment of level shift circuit 221
comprises a transistor (M 5
). An example embodiment of bias circuit 212
includes current source circuits ( 206
- 208
and Iref) and transistors (M 19
-M 21
). An example embodiment of current source circuit 205
comprises a transistor (M 10
). An example embodiment of current source circuit 208
comprises a transistor (M 11
). An example embodiment of current source circuit 207
comprises a transistor (M 12
). An example embodiment of current source circuit 206
comprises a transistor (M 13
). An example embodiment of current source circuit 203
comprises a transistor (M 14
). An example embodiment of current source circuit 204
comprises a transistor (M 15
).
Transistor M 3
has a gate that is coupled to node N 242
, a source that is coupled to node N 240
, and a drain that is coupled to node N 126
. Transistor M 4
has a gate that is coupled to node N 252
a source that is coupled to node N 132
, and a drain that is coupled to node N 240
. Transistor M 5
; has a gate that is coupled to node N 246
, a source that is coupled to node N 240
, and a drain that is coupled to node N 246
. Transistor M 6
has a gate that is coupled to node N 260
, a source that is coupled to node N 134
, and a drain that is coupled to node N 248
. Transistor M 7
has a gate that is coupled to node N 260
, a source that is coupled to node N 134
, and a drain that is coupled to node N 242
.
Transistor M 8
has a gate that is coupled to node N 252
, a source that is coupled to node N 250
, and a drain that is coupled to node N 248
. Transistor M 9
has a gate that is coupled to node N 246
, a source that is coupled to node N 250
, and a drain that is coupled to node N 242
. Transistor M 10
has a gate that is coupled to node N 252
, a source that is coupled to node N 132
, and a drain that is coupled to node N 250
. Transistor M 11
has a gate that is coupled to node N 254
, a source that is coupled to node N 134
, and a drain that is coupled to node N 254
. Transistor M 12
has a gate that is coupled to node N 254
, a source that is coupled to node N 134
, and a drain that is coupled to node N 252
.
Transistor M 13
has a gate that is coupled to node N 254
, a source that is coupled to node N 134
, and a drain that is coupled to node N 244
. Transistor M 14
has a gate that is coupled to node N 254
, a source that is coupled to node N 134
, and a drain that is coupled to node N 252
. Transistor M 15
has a gate that is coupled to node N 254
, a source that is coupled to node N 134
, and a drain that is coupled to node N 246
.
Transistor M 16
has a gate that is coupled to node N 252
, a source that is coupled to node N 256
, and a drain that is coupled to node N 252
. Transistor M 17
has a gate that is coupled to node N 248
, a source that is coupled to node N 256
, and a drain that is coupled to node N 124
. Transistor M 18
has a gate that is coupled to node N 252
, a source that is coupled to node N 132
, and a drain that is coupled to node N 256
.
Transistor M 19
has a gate that is coupled to node N 244
, a source that is coupled to node N 258
, and a drain that is coupled to node N 252
. Transistor M 20
has a gate that is coupled to node N 244
, a source that is coupled to node N 132
, and a, drain that is coupled to node N 244
. Transistor M 21
has a gate that is coupled to node N 252
, a source that is coupled to node N 132
, and a drain that is coupled to node N 258
.
Transistor M 22
has a gate that is coupled to node N 260
, a source that is coupled to node N 134
, and a drain that is coupled to node N 260
. Transistor M 23
has a gate that is coupled to node N 244
, a source that is coupled to node N 250
, and a drain that is coupled to node N 260
. Current source circuit Iref is coupled between node N 132
and node N 254
.
In operation, a first power supply signal (V DD
) is applied at node N 134
, and a second power supply signal (V SS
) is applied at node N 132
. Current source circuit 201
is arranged to provide current I 1
, and current source circuit 202
is arranged to provide current I 2
. Transistors M 3
and M 17
are each arranged to operate as a cascode transistor. Differential amplifier circuit 230
is a three-input differential amplifier that is arranged to provide a differential output signal across nodes N 242
and N 248
in response to a differential input signal that is received across nodes N 246
and N 252
and a bias signal (vbias) at node N 244
.
Current source 204
is configured to provide a relatively constant current (I S1
) to level shift circuit 221
. Current 204
is further configured such that current I S1
corresponds to a relatively small fraction of current I 1
. Similarly, current source 203
is configured to provide a relatively constant current (I S2
) to level shift circuit 220
. Current source 203
is further configured such that current I S2
corresponds to a relatively small fraction of I 2
. Transistors M 5
and M 9
are configured as a first current mirror circuit, and transistors M 6
and M 8
are configured as a second current mirror circuit.
Feedback Loops
The voltage at node N 242
is forced to an approximately constant voltage according to a first negative feedback loop, as follows below. Transistor M 3
is further configured to operate as a source follower such that the voltage at node N 240
increases when the voltage at node N 242
increases. Transistor M 5
is configured to operate as a level shifter, such that the voltage at node N 246
increases when the voltage at node N 240
increases. Node N 246
corresponds to an input of differential amplifier circuit 230
, and node N 242
corresponds to an output of differential amplifier circuit 230
. Differential amplifier circuit 230
is arranged such that the voltage at node N 242
decreases when the voltage at node N 246
increases, thereby completing a first negative feedback loop.
In a similar manner, the voltage at node N 248
is forced to an approximately constant voltage according a second negative feedback loop. Because the voltage at node N 248
and the voltage at node N 242
are each forced to an approximately constant voltage, differential current source 102
has high output impedance (i.e. at nodes N 126
and N 124
).
The voltages at nodes N 246
, N 252
, N 242
, and N 248
are each servoed to a voltage that approximately corresponds to signal vbias, as follows below. Transistor M 8
and M 9
are configured as a differential pair. Transistors M 8
and M 9
are arranged such that the voltage at node N 250
increases when the commnon-mode voltage at node N 252
and the common-mode voltage at node N 246
increase. Transistor M 23
is configured such that the voltage at node N 260
increases in response to an increase in voltage at node N 250
. Transistors M 6
, M 7
, and M 22
are configured in a current mirror arrangement such that the voltage at node N 242
decreases when the voltage at node N 260
increases. The voltage at node N 246
decreases when the voltage at node N 242
decreases, as discussed previously. Similarly, the voltage at node N 252
decreases when the voltage at node N 248
decreases, as discussed previously. This completes the third negative feedback loop.
Each of the transistors M 8
, M 9
, and M 23
are configured to have the same current density. A stable operating point for the system occurs when the voltages at nodes M 252
and M 246
each correspond to the voltage at node N 244
. The voltage at node N 244
corresponds to the voltage associated with signal vbias. Transistors M 3
and MS are also configured to have the same current density. According to one example, transistors M 3
and M 15
are sized such that I1=10*I S1
, and transistor M 5
is sized at {fraction (1/10)} the size of transistor M 3
. Similarly, transistors M 16
and M 17
are configured to have the same current density. A stable operating point of the system occurs when the voltage at nodes N 246
, N 252
, N 242
, and N 248
each correspond to the voltage associated with signal vbias.
Level shift circuit 221
is arranged in a feedback loop to servo the voltage at node N 240
to a predetermined voltage. Similarly, level shift circuit 220
is arranged in a feedback loop to servo the voltage at node N 256
to approximately the predetermined voltage. Transistor M 5
is configured to receive a voltage at node N 246
, level shift the voltage, and provide the level-shifted voltage at node N 240
. Similarly, transistor M 16
is arranged to receive the voltage at node N 252
, level shift the voltage, and provide the level-shifted voltage at node N 256
.
The voltage at node N 240
and the voltage at node N 256
are each servoed to a voltage that corresponds to the difference between the voltage associated with signal vbias and the V GS
(gate-to-source voltage) of transistor MS (or M 1
6
). According to one example, the voltage associated with signal vbias corresponds to the sum of the V GS
of transistor MS and the V DSSAT
(saturation drain-to-source voltage) of transistor M 4
. For this example, the voltage at node N 240
and the voltage at node N 256
are each servoed to a voltage corresponding to the V DSSAT
of transistor M 4
. Transistor M 4
is matched to transistor M 18
. The output compliance of differential current source 102
is extended by servoing each of the voltage at node N 240
and the voltage at node N 256
to the V DSSAT
of transistor M 4
. In one example, the output compliance of differential current source circuit 102
is extended such that the load voltage may be as low as the sum of V DSSAT
of transistor M 4
(or M 18
) and V DSSAT
of transistor M 3
(or M 17
) from V SS
.
Bias Circuit
Bias circuit 212
is configured provide signal vbias at node 244
. According to one example, bias circuit 212
is configured to provide signal vbias such that vbias has an associated voltage that approximately corresponds to the sum of V GS
of transistor M 5
and V DSSAT
of transistor M 4
. Alternatively, bias circuit 212
may be configured to track another voltage. For example, bias circuit 212
may be configured to track V DD
.
One example embodiment of bias circuit 212
is configured to operate as follows below. Transistor M 12
is configured to produce current I 3
, and transistor M 13
is configured to produce current I 4
. Transistors M 12
and M 13
are matched, so that I 3
=I 4
. Transistor M 20
is sized to provide signal vbias such that the voltage associated with signal vbias corresponds to approximately the sum of V GS
and V DSSAT
. For example, the size of transistor M 20
may be ¼ the size of M 21
. In another example, another size (e.g. ⅕) may be used for transistor M 20
. Because the size of transistor M 20
is less or equal to ¼ the size of transistor M 21
, and the current received by transistor M 20
(I 4
) is equal to the current received by transistor M 21
(I 3
), the minimum voltage associated with signal vbias is approximately the sum of V GS
and V DSSAT
.
Alternative Examples
Many alternative embodiments are within the scope of the present invention. One of more of the current source circuits ( 201
- 208
) may be replaced with alternative embodiments of a current source circuit. For example, one or more of the current sources 203
- 208
may include a cascode transistor. Additionally, cascode transistors may be included with one or more of the transistors in differential amplifier circuit 230
.
Differential current source circuit 102
may be used as an active load for a differential amplifier circuit, as illustrated in FIG. 1
. Alternatively, differential current source circuit 102
may be used in other applications.
According to one example, the first and second current mirrors are comprised of n-type transistors. For this example, the dominant pole for each of the associated transistors may be approximately three times greater for the same device size when the first and second current mirror comprise n-type transistors rather than p-type transistors. Alternatively, other types of transistors may be used.
Nodes N 248
and N 242
are associated with the dominant pole of differential current source circuit 102
. The stability of each of the negative feedback loops in differential current source circuit 102
may be improved by increasing the capacitance at nodes N 248
and N 242
.
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Claims
1. A current source circuit with differential gain boosting, comprising:a first current source circuit that is coupled to a first output node, a first sense node, and a second sense node, wherein the first current source circuit is arranged to respond to a first feedback signal from the second sense node; a second current source circuit that is coupled to a second output node, a third sense node, and a fourth sense node, wherein the second current source circuit is arranged to respond to a second feedback signal from the fourth sense node; a first level shift circuit that is coupled between the first sense node and a fifth sense node; a second level shift circuit that is coupled between the third sense node and a sixth sense node; and a differential amplifier circuit having a first amplifier input, a second amplifier input, a bias input, a first amplifier output, and a second amplifier output, wherein the first amplifier input is coupled to the fifth sense node, the second amplifier input is coupled to the sixth sense node, the bias input is coupled to a reference node, the first amplifier output is coupled to the second sense node, and the second amplifier output is coupled to the fourth sense node.
2. The current source circuit of claim 1, wherein the first current source circuit comprises a first transistor and a second transistor that are configured in a cascode arrangement, and the second current source circuit comprises a third transistor and a fourth transistor that are configured in a cascode arrangement.
3. The current source circuit of claim 1, wherein:the first level shift circuit comprises a fifth transistor having a fifth gate, a fifth drain, and a fifth source, wherein the fifth gate is coupled to the fifth sense node, the fifth source is coupled to the first sense node, and the fifth drain is coupled to the fifth sense node; and the second level shift circuit comprises a sixth transistor having a sixth gate, a sixth drain, and a sixth source, wherein the sixth gate is coupled to the sixth sense node, the sixth source is coupled to the third sense node, and the sixth drain is coupled to the sixth sense node.
4. The current source circuit of claim 1, further comprising:a bias circuit having a bias output, wherein the bias output is coupled to the reference node; a third current source circuit that is coupled to the fifth sense node; and a fourth current source circuit that is coupled to the sixth sense node.
5. The current source circuit of claim 4, wherein:the third current source comprises a seventh transistor having a seventh gate, a seventh drain, and a seventh source, wherein the seventh drain is coupled to the fifth sense node, and wherein the seventh transistor is sized to produce a current that is a fraction of a current that is produced by the first current source; and the fourth current source comprises a eighth transistor having a eighth gate, a eighth drain, and a eighth source, wherein the eighth gate is coupled to the seventh gate, the eighth source is coupled to the seventh source, and the eighth drain is coupled to the sixth sense node, and wherein the eighth transistor is sized to produce a current that is a fraction of a current that is produced by the second current source.
6. The current source circuit of claim 4, wherein:the first current source circuit comprises a first transistor and a second transistor, wherein the first transistor has a first gate, a first drain and a first source, the second transistor has a second gate, a second drain, and a second source, and wherein the first gate is coupled to the second sense node, the first source is coupled to the first sense node, the first drain is coupled to the first output node, and the second drain is coupled to the first sense node; and the second current source circuit comprises a third transistor and a fourth transistor, wherein the third transistor has a third gate, a third drain and a third source, the third gate is coupled to the fourth sense node, the third source is coupled to the third sense node, the third drain is coupled to the second output node, and the fourth drain is coupled to the third sense node; the first level shift circuit comprises a fifth transistor having a fifth gate, a fifth drain, and a fifth source, wherein the fifth gate is coupled to the fifth sense node, the fifth source is coupled to the first sense node, and the fifth drain is coupled to the fifth sense node; the second level shift circuit comprises a sixth transistor having a sixth gate, a sixth drain, and a sixth source, wherein the sixth gate is coupled to the sixth sense node, the sixth source is coupled to the third sense node, and the sixth drain is coupled to the sixth sense node; and wherein the bias circuit is configured to provide a bias signal to the bias input, wherein a bias voltage is associated with the bias signal, the bias voltage corresponds to a sum of a saturation drain to source voltage of the second transistor and a gate to source voltage of the fifth transistor, the gate to source voltage of the fifth transistor is approximately equal to the gate to source voltage of the sixth transistor, and wherein the saturation drain to source voltage of the first transistor is equal to a saturation drain to source voltage of the third transistor.
7. The current source circuit of claim 6, wherein:the third current source comprises a seventh transistor having a seventh gate, a seventh drain, and a seventh source, wherein the seventh drain is coupled to the fifth sense node, and wherein the seventh transistor is sized to produce a current that is a fraction of a current that is produced by the first current source; the fourth current source comprises a eighth transistor having a eighth gate, a eighth drain, and a eighth source, wherein the eighth gate is coupled to the seventh gate, the eighth source is coupled to the seventh source, and the eighth drain is coupled to the sixth sense node, and wherein the eighth transistor is sized to produce a current that is a fraction of a current that is produced by the second current source; and wherein the bias circuit comprises: a ninth transistor having a ninth gate, a ninth drain, and a ninth source, wherein the ninth gate is coupled to the reference node, and wherein the ninth drain is coupled to the reference node, a tenth transistor having a tenth gate, a tenth drain, and a tenth source, wherein the tenth gate is coupled to the reference node, and wherein the tenth transistor is sized at least four times larger than the ninth transistor, a eleventh transistor having a eleventh gate, a eleventh drain, and a eleventh source, wherein the eleventh drain is coupled to the tenth source, the eleventh gate is coupled to the tenth drain, the second gate, and the fourth gate, the eleventh source is coupled to the second source and the fourth source, a twelfth transistor having a twelfth gate, a twelfth drain, and a twelfth source, wherein the twelfth source is coupled to the eighth source, the twelfth gate is coupled to the eighth gate, and the twelfth drain is coupled to the twelfth gate, wherein the twelfth transistor is sized significantly larger than the eighth transistor, a reference current source that is coupled between the eleventh source and the twelfth drain, a thirteenth transistor having a thirteenth gate, a thirteenth drain, and a thirteenth source, wherein the thirteenth source is coupled to the eighth source, the thirteenth gate is coupled to the eighth gate, and the thirteenth drain is coupled to the tenth drain, wherein the thirteenth transistor is approximately the same size as the twelfth transistor, and a fourteenth transistor having a fourteenth gate, a fourteenth drain, and a fourteenth source, wherein the fourteenth source is coupled to the eighth source, the fourteenth gate is coupled to the eighth gate, and the fourteenth drain is coupled to the reference node, wherein the fourteenth transistor is approximately the same size as the thirteenth transistor.
8. The current source circuit of claim 7, wherein the first, second, third, fourth, tenth, eleventh, twelfth, thirteenth, and fourteenth transistors are all approximately the same size as each other, the first transistor is approximately ten times larger than the fifth transistor, and the fifth, sixth, seventh, and eighth transistor are all approximately the same size as each other.
9. The current source circuit of claim 7, wherein the differential amplifier circuit comprises:a fifteenth transistor having a fifteenth gate, a fifteenth drain, and a fifteenth source, wherein the fifteenth source is coupled to the seventh source, and wherein the fifteenth drain is coupled to the second sense node; a sixteenth transistor having a sixteenth gate, a sixteenth drain, and a sixteenth source, wherein the sixteenth gate is coupled to the fifteenth gate, the sixteenth source is coupled to the fifteenth source, and wherein the sixteenth drain is coupled to the fourth sense node; a seventeenth transistor having a seventeenth gate, a seventeenth drain, and a seventeenth source, wherein the seventeenth drain is coupled to the second sense node, and the seventeenth gate is coupled to the fifth sense node; a eighteenth transistor having a eighteenth gate, a eighteenth drain, and a eighteenth source, wherein the eighteenth drain is coupled to the fourth sense node, the eighteenth source is coupled to the seventeenth source, and the eighteenth gate is coupled to the sixth sense node; a nineteenth transistor having a nineteenth gate, a nineteenth drain, and a nineteenth source, wherein the nineteenth drain is coupled to the seventeenth source, the nineteenth gate is coupled to the second and fourth gates, and the nineteenth source is coupled to the second and fourth sources; a twentieth transistor having a twentieth gate, a twentieth drain, and a twentieth source, wherein the twentieth gate is coupled to the fifteenth gate, the twentieth source is coupled to the seventh source, and the twentieth drain is coupled to the twentieth gate; and a twenty-first transistor having a twenty-first gate, a twenty-first drain, and a twenty-first source, wherein the twenty-first gate is coupled to the reference node, the twenty-first drain is coupled to the twentieth drain, and the twenty-first source is coupled to the nineteenth drain.
10. The current source circuit of claim 9, wherein the first, fifth, and seventh transistors are sized such that the first and fifth transistors are configured to operate with approximately the same current density as each other; the third, sixth, and eighth transistors are sized such that the third and sixth transistors are configured to operate with approximately the same current density as each other; and wherein the fifteenth, sixteenth, seventeenth, and eighteenth transistors are sized such that the seventeenth and eighteenth transistors are configured to operate with approximately the same current density as each other.
11. The current source circuit of claim 9, wherein the fifth, sixth, seventeenth, and eighteenth transistors are all n-type transistors.
12. An apparatus for differential gain boosting that is configured to produce a first output current and a second output current, the apparatus comprising:a first means for producing that is arranged to provide the first output current to a first output node, and also arranged to provide a first sense signal at a first sense node, wherein the first means for producing is responsive to a second sense signal from a second sense node; a second means for producing that is arranged to provide the second output current to a second output node, and also arranged to provide a third sense signal at a third sense node, wherein the second means for producing is responsive to a fourth sense signal from a fourth sense node, and wherein the first means for producing and second means for producing are arranged in cooperation to produce a first differential output signal via the first output current and the second output currents; a means for providing that is arranged to provide a second differential output signal to the second and fourth sense nodes in response to a bias signal and the first and third sense signals; a means for servoing that is responsive to the bias signal, wherein the means for servoing is configured to servo each of: the first sense signal, the second sense signal, a fifth sense signal, and a sixth sense signal to correspond to a voltage that is associated with the bias signal; a first means for level shifting that is arranged in a first negative feedback loop to servo the first sense signal to correspond to a predetermined voltage; and a second means for level shifting that is arranged in a second negative feedback loop to servo the third sense signal to correspond to approximately the predetermined voltage.
13. The current source circuit of claim 12, wherein:the first means for producing comprises a first transistor and a second transistor, wherein the first transistor has a first gate, a first drain and a first source, the second transistor has a second gate, a second drain, and a second source, and wherein the first gate is coupled to the second sense node, the first source is coupled to the first sense node, the first drain is coupled to the first output node, and the second drain is coupled to the first sense node; and the second means for producing comprises a third transistor and a fourth transistor, wherein the third transistor has a third gate, a third drain and a third source, the third gate is coupled to the fourth sense node, the third source is coupled to the third sense node, the third drain is coupled to the second output node, and the fourth drain is coupled to the third sense node.
14. The current source of claim 13, wherein the pre-determined voltage is equal to a drain to source saturation voltage of the second transistor, and wherein the drain to source saturation voltage of the second transistor is equal to a drain to source saturation voltage of the fourth transistor.
15. The current source circuit of claim 13, wherein:the first means for level shifting comprises a fifth transistor having a fifth gate, a fifth drain, and a fifth source, wherein the fifth gate is coupled to a fifth sense node, the fifth source is coupled to the first sense node, and the fifth drain is coupled to the fifth sense node; the second means for level shifting comprises a sixth transistor having a sixth gate, a sixth drain, and a sixth source, wherein the sixth gate is coupled to a sixth sense node, the sixth source is coupled to the third sense node, and the sixth drain is coupled to the sixth sense node; and wherein the means for servoing comprises: the first transistor, the third transistor, the first means for level shifting, the second means for level shifting, the means for providing, a third means for producing that is configured to provide a first folding current signal to the fifth sense node, wherein the first folding current is a fraction of the first output current, a fourth means for producing that is configured to provide a second folding current signal to the sixth sense node, wherein second folding current is a fraction of the second output current, a means for biasing, wherein the means for biasing is configured to provide a bias signal to the reference node, such that a voltage associated with the bias signal is approximately equal to the sum of the gate to source voltage of the fifth transistor and the saturation drain to source voltage of the first transistor, wherein the gate to source voltage of the fifth transistor is approximately equal to the gate to source voltage of the sixth transistor, and the saturation drain to source voltage of the first transistor is approximately equal to the saturation drain to source voltage of the second transistor.
16. The current source circuit of claim 15 wherein:the third means for producing comprises a seventh transistor having a seventh gate, a seventh drain, and a seventh source, wherein the seventh drain is coupled to the fifth sense node, and wherein the seventh transistor is sized such that the first folding current is the fraction of the first output current; the fourth means for producing comprises a eighth transistor having a eighth gate, a eighth drain, and a eighth source, wherein the eighth gate is coupled to the seventh gate, the eighth source is coupled to the seventh source, the eighth drain is coupled to the sixth sense node, and wherein the eighth transistor is sized such that the second folding current is the fraction of the second output current; and the means for biasing comprises: a ninth transistor having a ninth gate, a ninth drain, and a ninth source, wherein the ninth gate is coupled to the reference node, a tenth transistor having a tenth gate, a tenth drain, and a tenth source, wherein the tenth gate is coupled to the reference node, and wherein the tenth transistor is sized at least four times larger than the ninth transistor, a eleventh transistor having a eleventh gate, a eleventh drain, and a eleventh source, wherein the eleventh drain is coupled to the tenth source, the eleventh gate is coupled to the tenth drain, the second gate, and the fourth gate, the eleventh source is coupled to the second source and the fourth source, a twelfth transistor having a twelfth gate, a twelfth drain, and a twelfth source, wherein the twelfth source is coupled to the eighth source, the twelfth gate is coupled to the eighth gate, and the twelfth drain is coupled to the twelfth gate, wherein the twelfth transistor is sized significantly larger than the eighth transistor, a reference current source that is coupled between the eleventh source and the twelfth drain, a thirteenth transistor having a thirteenth gate, a thirteenth drain, and a thirteenth source, wherein the thirteenth source is coupled to the eighth source, the thirteenth gate is coupled to the eighth gate, and the thirteenth drain is coupled to the tenth drain, wherein the thirteenth transistor is approximately the same size as the twelfth transistor, and a fourteenth transistor having a fourteenth gate, a fourteenth drain, and a fourteenth source, wherein the fourteenth source is coupled to the eighth source, the fourteenth gate is coupled to the eighth gate, and the fourteenth drain is coupled to the reference node, wherein the fourteenth transistor is approximately the same size as the thirteenth transistor.
17. The current source circuit as in claim 16 wherein the means for providing comprises:a fifteenth transistor having a fifteenth gate, a fifteenth drain, and a fifteenth source, wherein the fifteenth source is coupled to the seventh source, and wherein the fifteenth drain is coupled to the second sense node; a sixteenth transistor having a sixteenth gate, a sixteenth drain, and a sixteenth source, wherein the sixteenth gate is coupled to the fifteenth gate, the sixteenth source is coupled to the fifteenth source, and wherein the sixteenth drain is coupled to the fourth sense node; a seventeenth transistor having a seventeenth gate, a seventeenth drain, and a seventeenth source, wherein the seventeenth drain is coupled to the second sense node, and the seventeenth gate is coupled to the fifth sense node; a eighteenth transistor having a eighteenth gate, a eighteenth drain, and a eighteenth source, wherein the eighteenth drain is coupled to the fourth sense node, the eighteenth source is coupled to the seventeenth source, and the eighteenth gate is coupled to the sixth sense node; a nineteenth transistor having a nineteenth gate, a nineteenth drain, and a nineteenth source, wherein the nineteenth drain is coupled to the seventeenth source, the nineteenth gate is coupled to the second and fourth gates, and the nineteenth source is coupled to the secondhand fourth sources; a twentieth transistor having a twentieth gate, a twentieth drain, and a twentieth source, wherein the twentieth gate is coupled to the fifteenth gate, the twentieth source is coupled to the seventh source, and the twentieth drain is coupled to the twentieth gate; and a twenty-first transistor having a twenty-first gate, a twenty-first drain, and a twenty-first source, wherein the twenty-first gate is coupled to the reference node, the twenty-first drain is coupled to the twentieth drain, and the twenty-first source is coupled to the nineteenth drain.
18. A method for differential gain boosting, comprisingsensing a first sense signal that is associated with a first sense node, wherein a first current source circuit is configured to produce the first sense signal and a first output current, and wherein the first current source circuit is further configured to be responsive to a second sense signal; sensing a third sense signal that is associated with a third sense node, wherein the second current source circuit is configured to produce the third sense signal and a second output current, the second current source circuit is further configured to be responsive to a fourth sense signal, and wherein the first current source circuit and the second current source circuit are arranged in cooperation to produce a first differential output signal via the first output current and the second output currents; providing a second differential output signal to the second and fourth sense nodes in response to a bias signal and the first and third sense signals; servoing the second sense signal to correspond to a voltage that is associated with the bias signal; servoing the fourth sense signal to correspond to the voltage that is associated with the bias signal; servoing a fifth signal to correspond to the voltage that is associated with the bias signal; servoing at sixth signal to correspond to the voltage that is associated with the bias signal; level shifting the fifth signal to provide the first sense signal such that the first sense signal is servoed to a pre-determined voltage; and level shifting the sixth signal to provide the third sense signal such that the third sense signal is servoed to the pre-determined voltage.
19. The method of claim 18, wherein the first and second current source circuits each comprise a cascode transistor and a current source transistor, wherein a source of the cascode transistor of the first current source circuit is coupled to the first sense node, a source of the cascode transistor of the second current source is coupled to the third sense node, a gate of the cascode transistor of the first current source circuit is coupled to the second sense node, and a gate of the cascode transistor of the second current source circuit is coupled to the fourth sense node.
20. The method of claim 19, wherein the pre-determined voltage is equal to a drain to source saturation voltage of the first current source transistor, and wherein the drain to source saturation voltage of the first current source transistor is equal to a drain to source saturation voltage of the second current source transistor.