The present invention relates generally to communication systems and more specifically to a common mode circuit for a communication system.
In wireline communication systems, the data is encoded on a modulated signal which is typically transmitted differentially over a pair of wires. In such systems, the common component of the differential signal on the two wires does not carry any information and it is typically noise from electro-magnetic interference (EMI) and crosstalk. Examples of wireline communication systems that are susceptible to common mode noise include various flavors of Digital Subscriber Line (DSL) and Ethernet over copper. In these systems the communication medium typically consists of multiple cascaded sections of twisted pair of wires typically terminated with transformers at both ends.
In a perfect system, the common mode component is very well balanced and does not convert to a differential signal. However, in any practical system the transversal conversion loss (TCL) is finite which means some portion of the common mode signal shows up as differential noise at the receiver. The imbalance that would cause a finite TCL can be anywhere in the signal path including the wireline channel, the connectors at both end of the channel, and even the components that is used to detect the differential signal. This noise may be a limiting factor in the performance of a wireline communication system. Therefore, it is important to be able to detect the common mode component for characterization purposes as well as potential improvement in the performance. The present invention addresses such a need.
A circuit for a wireline system is disclosed. In an embodiment, the circuit includes a twisted pair channel. The twisted pair channel delivers a differential signal that includes a converter mode component. The circuit includes at least one transformer coupled to the twisted pair channel and a transceiver coupled to the at least one transformer. The circuit further includes a common mode detection coupled to the transceiver for detecting a common mode component. In an embodiment, the circuit detects the common mode component. Accordingly, with common mode component detection capability, the common mode component of the differential can be analyzed for characterization purposes as well as for potential improvement in the system performance signal.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention relates generally to communication systems and more specifically to a common mode circuit for a communication system. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiments and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
A circuit for a wireline system is disclosed. In an embodiment, the circuit includes a twisted pair channel. The twisted pair channel delivers a differential signal that includes a converter mode component. The circuit includes at least one transformer coupled to the twisted pair channel and a transceiver coupled to the at least one transformer. The circuit further includes a common mode detection coupled to the transceiver for detecting a common mode component. In an embodiment, the circuit detects the common mode component. Accordingly, with common mode component detection capability, the common mode component of the differential can be analyzed for characterization purposes as well as for potential improvement in the system performance signal.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
There are a number of ways to sense and measure the common mode component in a transceiver.
The twisted pair channel 210 is a form of wiring in which two conductors (the forward and return conductors of a single circuit) are twisted together for the purpose of canceling out electromagnetic interference (EMI) from external sources, for instance, electromagnetic radiation from Unshielded Twisted Pair (UTP) cables, and crosstalk between neighboring pairs.
The common mode detector 255 is shown in the transceiver 260. Here, the common mode component 240 of a differential signal that has leaked into the transceiver 260 is extracted from the differential pair 250. A way to extract the common mode component 240 from a differential pair 250 is to tap the center point of impedance 235 that connects between the pair as shown in
Since the common mode to common mode gain of various components may be independent and different of the common mode to differential gain, there may be a significant common mode component converted to differential signal on the differential pair while the common mode component on the differential pair 250 is negligible. In such cases, the common mode component to noise ratio may not be adequate for proper detection through a circuit similar to what shown in
Alternatively,
An important consideration with regards to
The addition of this common mode transformer 440 as a discrete component can add a challenge for high density and/or price sensitive systems, making this solution not very attractive from practical implementation and production point of view. A solution to this problem is to integrate this transformer as an additional core to the package of the existing link transformer. In one solution, an existing package will have three additional pins per common mode transformer, two for differential connection of wires and one for center tap of transformer for proper biasing, thereby resulting in some increase in the size of the package with minimal impact on board layout and price.
This concept can be applied to Integrated Connector Modules (ICM) that combine a transformer and a connector. In fact the integration of the common mode transformers in the ICM is desirable as the center tap of the transformer in the cable side that carries the common mode component does not come out as a pin in the ICMs and are terminated inside the package. In the case of ICM, signal pins connected to the board are preferably all underneath the package. This is shown in
Referring back to
Additionally, it is envisioned that an implementation of the present invention includes a method of providing for a common mode detection circuit. The method comprises providing for a twisted pair channel, providing for a common mode choke coupled to the twisted pair channel, providing for at least one transformer coupled to the common mode choke, providing for a transceiver coupled to the at least one transformer and providing for a common mode component controller coupled to the at least one transformer and the transceiver.
Varying embodiments of the present invention define a unique common mode detection circuit for a communication system. In an embodiment, the circuit detects the common mode component. Accordingly, with common mode signal detection capability, the common mode component can be analyzed for characterization purposes as well as for potential improvement in the system performance.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/551,340, filed Aug. 31, 2009, which claims the benefit of U.S. Provisional Application No. 61/099,979, filed Sep. 25, 2008, entitled, “Interference Cancellation In 10gbase-T And Other Multi Channel Communication Systems,” which are incorporated herein by reference in their entireties. This application claims the benefit of: U.S. Provisional Application No. 61/141,640, filed Dec. 30, 2008, entitled, “Methods and Apparatus to Detect Common Mode Signal in Wireline Communication Systems”; U.S. Provisional Application No. 61/141,639, filed Dec. 30, 2008, entitled, “Methods and Apparatus to Detect Common Mode Signal in Wireline Communication Systems”; U.S. Provisional Application No. 61/173,394, filed Apr. 28, 2009, entitled, “Integrated Common-Mode Transformer for Detection of Electromagnetic Interference on the Channel”; all of which are incorporated herein by reference in their entireties. This application is related to: U.S. patent application Ser. No. 12/604,351, entitled, Rejecting RF Interference in Communication Systems,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. patent application Ser. No. 12/604,358, entitled, Fast Retraining for Transceivers in Communication Systems,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. patent application Ser. No. 12/604,343, entitled, A Magnetic Package for a Communication System,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. patent application Ser. No. 12/551,210, entitled, “Rejecting RF Interference in Communication Systems,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. Provisional Application No. 61/153,440, filed Feb. 18, 2009, entitled, “Methods of Rejecting RF Interference in 10GBase-T Communication Systems”; U.S. patent application Ser. No. 12/551,347, entitled, “Fast Retraining for Transceivers in Communication Systems,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. Provisional Application No. 61/148,112, filed Jan. 29, 2009, entitled, “Fast Retrain to In Decision-Directed Communication Systems”; U.S. patent application Ser. No. 12/563,938, entitled, “Cancellation of Alien Interference in Communication Systems,” filed Sep. 21, 2009 and assigned to the assignee of the present invention; U.S. patent application Ser. No. 12/551,396, entitled, “Cancellation of Alien Interference in Communication Systems,” filed concurrently herewith and assigned to the assignee of the present invention; U.S. patent application Ser. No. 12/551,326, entitled, “A Magnetic Package for a Communication System,” filed concurrently herewith and assigned to the assignee of the present invention; all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3506906 | Nestor | Apr 1970 | A |
3671859 | Miller | Jun 1972 | A |
4797902 | Nishiguchi et al. | Jan 1989 | A |
4870370 | Hedberg et al. | Sep 1989 | A |
5157690 | Buttle | Oct 1992 | A |
5283811 | Chennakeshu et al. | Feb 1994 | A |
5550924 | Helf et al. | Aug 1996 | A |
5777692 | Ghosh | Jul 1998 | A |
5832032 | Overbury | Nov 1998 | A |
5889511 | Ong et al. | Mar 1999 | A |
5910960 | Claydon et al. | Jun 1999 | A |
5995566 | Rickard et al. | Nov 1999 | A |
5995567 | Cioffi et al. | Nov 1999 | A |
6011508 | Perreault et al. | Jan 2000 | A |
6035360 | Doidge et al. | Mar 2000 | A |
6052420 | Yeap | Apr 2000 | A |
6069917 | Werner et al. | May 2000 | A |
6285718 | Reuven | Sep 2001 | B1 |
6385315 | Viadella et al. | May 2002 | B1 |
6424234 | Stevenson | Jul 2002 | B1 |
6486746 | Gilbert | Nov 2002 | B1 |
6683913 | Kantschuk | Jan 2004 | B1 |
6690739 | Mui | Feb 2004 | B1 |
6711207 | Amrany et al. | Mar 2004 | B1 |
6734659 | Fortner | May 2004 | B1 |
6771720 | Yang et al. | Aug 2004 | B1 |
6924724 | Grilo et al. | Aug 2005 | B2 |
6934345 | Chu et al. | Aug 2005 | B2 |
6959056 | Yeap et al. | Oct 2005 | B2 |
6999504 | Amrany et al. | Feb 2006 | B1 |
7026730 | Marshall et al. | Apr 2006 | B1 |
7031402 | Takada | Apr 2006 | B2 |
7103013 | Kim et al. | Sep 2006 | B1 |
7123117 | Chen et al. | Oct 2006 | B2 |
7164764 | Zimmerman et al. | Jan 2007 | B2 |
7173992 | Frigon | Feb 2007 | B2 |
7180940 | Li et al. | Feb 2007 | B2 |
7200180 | Verbin et al. | Apr 2007 | B2 |
7315592 | Tsatsanis et al. | Jan 2008 | B2 |
7333603 | Sallaway et al. | Feb 2008 | B1 |
RE40149 | Vitenberg | Mar 2008 | E |
7440892 | Tamura | Oct 2008 | B2 |
7457386 | Phanse | Nov 2008 | B1 |
7459982 | Miao | Dec 2008 | B2 |
7492840 | Chan | Feb 2009 | B2 |
7522928 | O'Mahony | Apr 2009 | B2 |
7542528 | Cheong | Jun 2009 | B1 |
7634032 | Chu et al. | Dec 2009 | B2 |
7656956 | King | Feb 2010 | B2 |
7706434 | Farjadrad | Apr 2010 | B1 |
7708595 | Chow et al. | May 2010 | B2 |
8094546 | Schenk | Jan 2012 | B2 |
8139602 | Meier | Mar 2012 | B2 |
8331508 | Dabiri | Dec 2012 | B2 |
8472532 | Schley-May et al. | Jun 2013 | B2 |
8625704 | Sedarat et al. | Jan 2014 | B1 |
20030186591 | Jensen et al. | Oct 2003 | A1 |
20030223488 | Li et al. | Dec 2003 | A1 |
20030223505 | Verbin et al. | Dec 2003 | A1 |
20040010203 | Bibian et al. | Jan 2004 | A1 |
20040023631 | Deutsch et al. | Feb 2004 | A1 |
20040164619 | Parker et al. | Aug 2004 | A1 |
20040213366 | Ono | Oct 2004 | A1 |
20040239465 | Chen et al. | Dec 2004 | A1 |
20040252755 | Jaffe et al. | Dec 2004 | A1 |
20040257743 | Chen et al. | Dec 2004 | A1 |
20050018777 | Azadet | Jan 2005 | A1 |
20050025266 | Chan | Feb 2005 | A1 |
20050053229 | Tsatsanis et al. | Mar 2005 | A1 |
20050097218 | Sultenfuss et al. | May 2005 | A1 |
20050123081 | Shirani | Jun 2005 | A1 |
20050135489 | Ho et al. | Jun 2005 | A1 |
20050203744 | Tamura | Sep 2005 | A1 |
20050243483 | Chen et al. | Nov 2005 | A1 |
20060018388 | Chan | Jan 2006 | A1 |
20060056503 | Keshab et al. | Mar 2006 | A1 |
20060159186 | King | Jul 2006 | A1 |
20060182014 | Lusky et al. | Aug 2006 | A1 |
20060256880 | Frisch | Nov 2006 | A1 |
20070014378 | Parhi et al. | Jan 2007 | A1 |
20070081475 | Telado et al. | Apr 2007 | A1 |
20070146011 | O'Mahony et al. | Jun 2007 | A1 |
20070192505 | Dalmia | Aug 2007 | A1 |
20070258517 | Rollings et al. | Nov 2007 | A1 |
20070280388 | Torre et al. | Dec 2007 | A1 |
20080089433 | Cho et al. | Apr 2008 | A1 |
20080095283 | Shoor et al. | Apr 2008 | A1 |
20080107167 | Tung et al. | May 2008 | A1 |
20080160915 | Sommer et al. | Jul 2008 | A1 |
20080198909 | Tsatsanis et al. | Aug 2008 | A1 |
20080267212 | Crawley et al. | Oct 2008 | A1 |
20090061808 | Higgins | Mar 2009 | A1 |
20090097401 | Diab | Apr 2009 | A1 |
20090097539 | Furman et al. | Apr 2009 | A1 |
20090154455 | Diab | Jun 2009 | A1 |
20090161781 | Kolze | Jun 2009 | A1 |
20100046543 | Parnaby | Feb 2010 | A1 |
20100073072 | Ullen et al. | Mar 2010 | A1 |
20100074310 | Roo et al. | Mar 2010 | A1 |
20100086019 | Agazzi et al. | Apr 2010 | A1 |
20100111202 | Schley-May et al. | May 2010 | A1 |
20100159866 | Fudge et al. | Jun 2010 | A1 |
20110032048 | Wu et al. | Feb 2011 | A1 |
20110069794 | Tavassoli Kilani et al. | Mar 2011 | A1 |
20110106459 | Christ et al. | May 2011 | A1 |
20110212692 | Hahn | Sep 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110293041 | Luo et al. | Dec 2011 | A1 |
20110296267 | Malkin et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 9740587 | Oct 1997 | WO |
WO2011056970 | May 2011 | WO |
Entry |
---|
U.S. Appl. No. 12/977,844, filed Dec. 23, 2010, Sedarat. |
U.S. Appl. No. 12/563,938, filed Sep. 21, 2009, Sedarat. |
U.S. Appl. No. 12/604,343, filed Oct. 22, 2009, Farjadrad et al. |
U.S. Appl. No. 12/604,351, filed Oct. 22, 2009, Sedarat et al. |
U.S. Appl. No. 12/604,358, filed Oct. 22, 2009, Sedarat et al. |
Number | Date | Country | |
---|---|---|---|
61141639 | Dec 2008 | US | |
61141640 | Dec 2008 | US | |
61173394 | Apr 2009 | US | |
61099979 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12551340 | Aug 2009 | US |
Child | 12604323 | US |