The present disclosure relates generally to techniques to cancelling noise resultant in a display. More specifically, the present disclosure relates generally to techniques for noise compensation of external common-mode noise in pixels that may be resistant to filtering correction.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Electronic display panels are used in a plethora of electronic devices. These display panels typically consist of multiple pixels that emit light. These pixels may be formed using self-emissive units (e.g., light emitting diode) or pixels that utilize units that are backlit (e.g., liquid crystal diode). These displays may include noise filtering as non-uniformity compensation to reduce noise at each pixel of the display. However, filtering pixels may miss external noise and/or error sources, such as capacitively coupled fluctuations in local supply voltage resulting in a common-mode error. Indeed, filtering may generate erroneous correction values that compromise the effectiveness of the non-uniformity compensation.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
To address common-mode error, when parameters (e.g., current) of one or more pixels are being sensed through a channel (i.e., the sensing channel), one or more nearby pixels is also sensed through its own channel (i.e., the observation channel) while keeping the pixel emission off for the observation channel. Sensed parameter values from the observation channel are scaled according to the relative mismatches of the sensing and observation channels as determined through an initial calibration process. The scaled parameter may be subtracted from the sensed current value in the sensing channel to determine a compensated sensing value.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Display panel uniformity can be improved by estimating or measuring a parameter (e.g., current) through pixel, such as an organic light emitting diode (LED). Based on the measured parameter, a corresponding correction value may be applied to compensate for any offsets from an intended value. Per-pixel sensing schemes can employ the use of filters and other processing steps to help reduce or eliminate the unwanted effects of pixel leakage, noise, and other error sources. Although the application generally relates to sensing individual pixels, some embodiments may group pixels for sensing and observation such that at least one channel senses more than a single pixel. However, some external noise and error sources, such as capacitively coupled fluctuations in local supply voltage that result in common-mode error, may not be fully removable through the filtering process, resulting in erroneous correction values that compromise the effectiveness of the non-uniformity compensation. Moreover, this common-mode error is amplified by the inherent mismatches of parasitic capacitance values between different sensing channels within a display as a result of imperfect device process variations.
To address this common-mode error, when a given pixel current is being sensed through a channel (i.e., the sensing channel), a nearby pixel is also sensed through its own channel (i.e., the observation channel) while keeping the pixel emission off for the observation channel. Sensed parameter (e.g., current) value from the observation channel is scaled according to the relative mismatches of the sensing and observation channels as determined through an initial calibration process. Then, the scaled parameter is subtracted from the sensed current value from the sensing channel to determine a compensated sensing value.
The proximity of the nearby pixel, and hence the observation channel, is dependent on the accuracy level to be used in the system and correspondingly determines the spatial correlation to be used to achieve this accuracy level.
The differential input mismatch of the observation channel may be adjustable to ensure that the component of the sensed value attributed to noise and error is higher in the observation channel than it is in the sensing channel. Sensing from both the sensing channel and observation channel may occur at the same time to establish high time correlation. Moreover, the observation channel and/or the sensing channel may utilize single-ended and/or differential sensing channels.
With the foregoing in mind and referring first to
In the electronic device 10 of
In certain embodiments, the display 18 may be a liquid crystal display (e.g., LCD), which may allow users to view images generated on the electronic device 10. In some embodiments, the display 18 may include a touch screen, which may allow users to interact with a user interface of the electronic device 10. Furthermore, it should be appreciated that, in some embodiments, the display 18 may include one or more light emitting diode (e.g., LED) displays, or some combination of LCD panels and LED panels.
The input structures 20 of the electronic device 10 may enable a user to interact with the electronic device 10 (e.g., pressing a button to increase or decrease a volume level, a camera to record video or capture images). The I/O interface 22 may enable the electronic device 10 to interface with various other electronic devices. Additionally or alternatively, the I/O interface 22 may include various types of ports that may be connected to cabling. These ports may include standardized and/or proprietary ports, such as USB, RS232, Apple's Lightning® connector, as well as one or more ports for a conducted RF link.
As further illustrated, the electronic device 10 may include the power source 24. The power source 24 may include any suitable source of power, such as a rechargeable lithium polymer (e.g., Li-poly) battery and/or an alternating current (e.g., AC) power converter. The power source 24 may be removable, such as a replaceable battery cell.
The interface(s) 26 enable the electronic device 10 to connect to one or more network types. The interface(s) 26 may also include, for example, interfaces for a personal area network (e.g., PAN), such as a Bluetooth network, for a local area network (e.g., LAN) or wireless local area network (e.g., WLAN), such as an 802.11 Wi-Fi network or an 802.15.4 network, and/or for a wide area network (e.g., WAN), such as a 3rd generation (e.g., 3G) cellular network, 4th generation (e.g., 4G) cellular network, or long term evolution (e.g., LTE) cellular network. The interface(s) 26 may also include interfaces for, for example, broadband fixed wireless access networks (e.g., WiMAX), mobile broadband Wireless networks (e.g., mobile WiMAX), and so forth.
By way of example, the electronic device 10 may represent a block diagram of the notebook computer depicted in
In certain embodiments, the electronic device 10 may take the form of a computer, a portable electronic device, a wearable electronic device, or other type of electronic device. Such computers may include computers that are generally portable (e.g., such as laptop, notebook, and tablet computers) as well as computers that are generally used in one place (e.g., such as conventional desktop computers, workstations and/or servers). In certain embodiments, the electronic device 10 in the form of a computer may be a model of a MacBook®, MacBook® Pro, MacBook Air®, iMac®, Mac® mini, or Mac Pro® available from Apple Inc. By way of example, the electronic device 10, taking the form of a notebook computer 30A, is illustrated in
The handheld device 30B may include an enclosure 32 to protect interior components from physical damage and to shield them from electromagnetic interference. The enclosure 32 may surround the display 18, which may display indicator icons. The indicator icons may indicate, among other things, a cellular signal strength, Bluetooth connection, and/or battery life. The I/O interfaces 22 may open through the enclosure 32 and may include, for example, an I/O port for a hard-wired connection for charging and/or content manipulation using a connector and protocol, such as the Lightning connector provided by Apple Inc., a universal serial bus (e.g., USB), one or more conducted RF connectors, or other connectors and protocols.
The illustrated embodiments of the input structures 20, in combination with the display 18, may allow a user to control the handheld device 30B. For example, a first input structure 20 may activate or deactivate the handheld device 30B, one of the input structures 20 may navigate user interface to a home screen, a user-configurable application screen, and/or activate a voice-recognition feature of the handheld device 30B, while other of the input structures 20 may provide volume control, or may toggle between vibrate and ring modes. Additional input structures 20 may also include a microphone that may obtain a user's voice for various voice-related features, and a speaker to allow for audio playback and/or certain phone capabilities. The input structures 20 may also include a headphone input (not illustrated) to provide a connection to external speakers and/or headphones and/or other output structures.
Turning to
Similarly,
Although the following discusses sensing current through an OLED as a pixel, some embodiments may include measuring other parameters suitable for other pixel types. For example, LED voltage may be sensed at LED pixels near each other in the display.
The single-channel current sensing scheme 100 detects at least some issues for the target pixel. But, common-mode noise sources, such as the noise source 110, may be picked up by the current sensing system 104 and converted into differential input by any inherent mismatches in the sensing channel 106. This differential input may result in an error in the sensed current and a resultant error in the pixel current compensation of the output 108.
Instead of using a single channel to sense current, two channels may be used.
To ensure that only noise is passed through the observation channel 150, the observation channel 150 may be decoupled from a corresponding current source 154 via a switch 155. A sensed observation current 156 is scaled at scaling circuitry 158 and subtracted from a sensed current 160 at summing circuitry 162 to generate a compensated output 164 indicative of current through the sensing channel 146 substantially attributable to the current provided by the current source 142. The scaling factor may be determined in a calibration of the display panel to determine an output of each channel in response to an aggressor image/injected signal to determine channel properties to determine a common-mode error between channels.
Furthermore, the dual-channel current sensing scheme 140 may include amplifiers, filters, analog-to-digital converters, digital-to-analog converters, and/or other circuitry used for processing in the dual-channel current sensing scheme 140 that have been omitted from
Each channel may include differential inputs. In embodiments with differential input channels, a sensing channel may utilize an inherent differential input mismatch while the observation channel may utilize an intentionally induced differential input mismatch to sense a time-correlated common-mode error.
For another pixel (e.g., a pixel near to the target pixel), a sensing system 190 is used to detect current through an observation channel 192 that receives current from a noise source 194 (e.g., capacitive coupling). The observation channel 192 includes an induced differential input mismatch 196 that is induced to sense a time-correlated common-mode error with the sensing channel 186. In other words, the observation channel 192 is used to observe noise (e.g., common-mode noise) in the observation channel 192 during driving of the sensing channel 186 to determine a magnitude of the noise (e.g., common-mode noise).
To ensure that only noise is passed through the observation channel 192, the observation channel 192 may be decoupled from a corresponding current source 198 using a switch 200. The current source 198 is used to supply data to a pixel corresponding to the observation channel 192. A sensed observation current 202 is scaled at scaling circuitry 204 and subtracted from a sensed current 206 at summing circuitry 208 to generate a compensated output 210 indicative of current through the sensing channel 186 substantially attributable to the current provided by the current source 182.
Furthermore, the dual-channel current sensing scheme 180 may include amplifiers, filters, analog-to-digital converters, digital-to-analog converters, and/or other circuitry used for processing in the dual-channel current sensing scheme 180 that have been omitted from
The scaling factor may be determined in a calibration of the display panel to determine an output of each channel in response to an aggressor image/injected signal to determine channel properties to determine a common-mode error between channels.
The channel is also tested with an induced differential mismatch by inducing a differential mismatch in the channel (block 226). While in the induced mismatch state, the current (e.g., using the same aggressor image/injected signal) is passed into the channel (block 228). A second output is sensed for the channel based on the current through the channel with the induced mismatch (block 230).
Once these outputs are obtained for each channel to be calibrated, the outputs are stored in a lookup table used to establish the scaling factors (block 232). For instance, the first output of the sensed channel (Gsi) is stored for each channel in an inherent differential sensing mode, and the second output of the sensed channel (Goi) is stored for each channel in an induced differential observing mode. The storage of these values may be stored in a lookup table, such as that shown below in Table 1.
These stored outputs may be used to determine a scaling factor using a relationship between outputs of a sensing channel and an observational channel. For example, the scaling factor that is used to scale observation channel sensed currents may be determined using the following Equation 1:
where channel i is the sensing channel, channel j is the observational channel, SFij is the scaling factor used to scale an output of the observational channel j when sensing via channel i, Goj is the output of channel j during induced differential mode calibration, and Gsi is the output of channel i during inherent differential mode calibration. As previously discussed, the scaling factor is used to scale the observational channel output before subtracting from the sensing channel output to ensure that the resulting compensated output is substantially attributable to the sensing channel's effects on the current through channel without inappropriately applying common-mode noise to the compensation.
In some embodiments, calibration measurements may be conducted multiple times to average the results to improve a signal-to-noise ratio of the outputs.
The sensing channel mode 252 generates a current that is sent through a channel of the display panel 256 corresponding to one or more pixels that is sensed through a sensing channel 258 having an inherent (e.g., non-induced) amount of differential input mismatch 260. The current through the channel 258 having the inherent differential input mismatch 260 is sensed at a current sensing system 262 producing an output (Gsi) 264 that is stored in memory (e.g., lookup table illustrated in Table 1) for the inherent mismatch value used in scaling factor calculations.
During another calibration step before or after sensing channel mode 252 analysis, an observational channel mode 254 is employed. In the observational channel mode 254, the same current is generated (e.g., using the same image or injected signal). However, the sensing channel 258 is now equipped with an induced differential input mismatch 266. The amount of mismatch may be an amount of mismatch used in the observational channel operation during dual-channel sensing previously discussed or may differ to tune the scaling factor. The current in the channel 258 with the induced differential input mismatch 266 is sensed using the current sensing system 262 and an output (Goi) 268 is stored in memory (e.g., lookup table illustrated in Table 1) for the induced mismatch in scaling factor calculations.
The specific embodiments described above have been shown by way of example, and it should be understood that these embodiments may be susceptible to various modifications and alternative forms. It should be further understood that the claims are not intended to be limited to the particular forms disclosed, but rather to cover all modifications, equivalents, and alternatives falling within the spirit and scope of this disclosure.
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. 112(f).
This application is a Non-Provisional application claiming priority to U.S. Provisional Patent Application No. 62/511,812, entitled “Common-Mode Noise Compensation”, filed May 26, 2017, which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62511812 | May 2017 | US |