The present discussion is related to power machines. More particularly, the present discussion is related to providing an attachment interface to which utility attachments may be coupled. Power machines such as skid steer loaders, tracked vehicles, mini-excavators, utility vehicles, wheel loaders and the like have high utility in construction, landscaping, agriculture, and many other types of applications. Part of that utility includes the ability to engage a number of different types of attachments to perform various tasks. For example, power machines can be attached to buckets, augers, graders, planers, backhoes, grapple forks, to name but a few of a large number of different types of attachments that are available for use with power machines.
Some power machines have an attachment interface mounted thereon to which a number of different types of utility attachments may be engaged. Such attachment interfaces provide a connection point that allows attachments to be quickly and securely attached to the power machine. Additionally, the attachment interface can be manipulated to quickly disengage the attachment from the power machine. Thus, power machines can quickly be decoupled from one attachment and coupled to another attachment, allowing one power machine to perform substantially different tasks simply by exchanging one attachment for another.
The attachment interface for a power machine may have forces applied to it via the power machine and/or the attachment. The attachment interface preferably is capable of withstanding a long term exposure to forces that are applied to it through normal use. There is an ongoing need for attachment interfaces that are easy and cost effective to make, easy to use, and capable of withstanding or avoiding forces applied to them under normal use.
In one illustrative embodiment, an attachment interface adapted for use with a loader is discussed. The attachment interface includes a horizontally extending cross member configured to be pivotally attached to the loader at each of first and second ends. The attachment interface further includes first attachment mounting bracket having a generally flat portion and a brace that is attached to and perpendicularly extends from the generally flat portion and a second attachment mounting bracket spaced apart from the first attachment mounting bracket. The horizontally extending cross member is attached to the brace and the second attachment mounting bracket and wherein the second attachment bracket is otherwise unattached to the first attachment bracket.
In another illustrative embodiment, a self propelled loader having a frame is discussed. The loader has a lift arm assembly including first and second lift arms pivotally coupled to either side of the frame with a horizontal cross member attached between the lift arms. The loader further includes an attachment interface coupled to the lift arm assembly, including a horizontally disposed element attached to a portion of each of the first and second lift arms along a mounting axis. First and second attachment mounting brackets are attached to the horizontally disposed element and are configured to engage an attachment. The first attachment mounting bracket and the second attachment mounting bracket are otherwise unattached to each other. First and second actuators are pivotally coupled to the lift arm assembly and the first and second attachment mounting brackets, respectively.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
While the above-identified figures set forth one or more illustrative embodiments, other embodiments are also contemplated, as noted herein. In all cases, concepts presented herein describe the embodiments by way of representation and not by limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the discussion herein.
An operator can be located inside the cab 16 and control the power machine 10 by manipulating control devices (not shown in
Power machine 10, as illustrated in
The power machine 10 illustrated in
Power machine 10 further includes an attachment interface 28, which, in one illustrative embodiment is rotatably coupled to the lift arm 18 about attachment point 30. One or more tilt actuators (not shown in
In one illustrative embodiment, each of the first and second mounting brackets 104 and 106 has a generally flat surface 110 along the first side 100. A lip 112 illustratively extends from one end of the flat surface 110 and an angled surface 114 extends away from the flat surface 110 on an opposing end of the flat surface 110. The lip 112, flat surface 110, and the angled surface 114 each are configured to engage a portion of an attachment (not shown).
A wedge 128 is extendable through the angled surface 114 to engage the attachment and secure the attachment to the power machine 10. The wedge 128 is capable of extending and retracting from a wedge guide 116. Wedge 128 is illustratively attached to a handle 122 at a connection point 126. By rotating the handle 122 about pivot 124, the wedge 128 can be extended and retracted to allow the attachment interface 28 to be attached or detached from the attachment. Although the wedge 128 is shown as capable of being manually manipulated by rotation of handle 122, alternatively any actuation mechanism can be used to extend and retract wedge 128, including, for example, an electric motor, a hydraulic cylinder, or any other similar device.
Each of the first and second mounting brackets 104 and 106 is illustratively supported by braces 130, 132, and 138. Braces 130, 132 and 138 extend generally perpendicularly from, and are attached to, the mounting brackets 104 and 106 on a second side 102 of the attachment interface 28. The braces 130, 132, and 138 provide structural support for the first and second mounting brackets 104 and 106. A plate 152 extends between brace 132 and brace 138. The plate 152 illustratively provides reinforcement between the braces 132 and 138. Wedge 128 is positioned between plate 152 and the flat surface 110.
In addition, each of the braces 130, 132, and 138 has an aperture 140, through which the cross tube 108 can be inserted. The cross tube 108 can then be attached to the braces 130, 132, and 138 at the apertures 140 such as by welding the cross tube 108 to the braces 130, 132, and 138. Cross tube 108 is positioned along an axis 150. The attachment interface 28 is illustratively attached to the lift arms 18 at the cross tube 108 so that the attachment interface 28 can pivot about axis 150. Thus, the cross tube 108 provides both an attachment point to the lift arms 18 as well as a connection between the first and second mounting brackets 104 and 106.
The braces 130 and 132 illustratively provide a connection point between actuators 170 and the attachment interface 28. Bushing 134 is attached to the brace 130 and bushing 146 is attached to brace 132 on each of the first and second mounting brackets 104 and 106. The bushings 132 and 146 on each of the first and second mounting brackets 104 and 106 are aligned along axis 135. Axis 135 is illustratively generally parallel to the axis 150.
Actuators 170 are illustratively hydraulic cylinders. A base end 172 of each actuator 170 is illustratively attached to a bracket 162 on cross member 160. A rod 174 of each actuator 170 is pivotally mounted to the braces 130 and 132 of each of the first and second attachment mounting brackets 104 and 106 with a pin 178 that extends though bushings 134 and 146 and an end 176 of the rod 174. Alternatively, other attachments of the actuators 170 can be provided. For example, the base end 172 of the actuators 170 can be attached to the lift arms 18. In addition, the rod 174 can be attached to each of the attachment mounting brackets 104 and 106 at other locations besides braces 130 and 132 without departing from the spirit and scope of the disclosure.
The system described above provides several important advantages. The attachment interface described in the foregoing discussion requires less material and can be manufactured more quickly and using fewer welds than other attachment interfaces. In addition, the use of a cross member that serves as both connection between the attachment mounting plates as well as the connection axis between the lift arms reduces the forces applied to the attachment interface, thereby providing an improved resistance to the effects of fatigue during normal use.
Although the discussion has been focused upon illustrative embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and the scope of the discussion.