Information
-
Patent Grant
-
6561165
-
Patent Number
6,561,165
-
Date Filed
Monday, April 23, 200123 years ago
-
Date Issued
Tuesday, May 13, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 467
- 123 496
- 123 447
- 123 446
- 123 456
-
International Classifications
-
Abstract
The invention relates to a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, in particular a large diesel engine, having an injector housing which communicates with a central high-pressure reservoir and in which a nozzle needle can move axially counter to the initial stress of a nozzle spring which is contained in a nozzle spring chamber, in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve. In order to improve the damping behavior in a common rail injection system, an injector pressure reservoir is integrated into the injector housing and communicates with the central high-pressure reservoir independent of the position of the 3/2-way valve.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a 35 USC 371 application of PCT/DE 00/02028 filed on Jun. 21, 2000.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, in particular a large diesel engine, having an injector housing which communicates with a central high-pressure reservoir and in which a nozzle needle can move axially counter to the initial stress of a nozzle spring which is contained in a nozzle spring chamber, in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve.
2. Description of the Prior Art
In known common rail injection systems, a high-pressure pump feeds the fuel into the central pressure reservoir, which is referred to as the common rail. High-pressure lines lead from the high-pressure reservoir to the individual injectors, which are associated with the cylinders of the engine. The injectors are individually triggered by the engine electronics. The rail pressure prevails at a pressure-balanced 3/2-way solenoid valve which keeps the high-pressure bores to the conventional injector free of pressure. Only when the magnet is supplied with current does the 3/2-way solenoid valve open the connection from the rail to the injector and the fuel travels into the combustion chamber via the nozzle needle, which has lifted up counter to the spring force. The injection onset and the end of injection are thus determined by the beginning and end of the power supply to the magnet. The duration of the power supply is decisive for the injection quantity.
Pressure waves occur during operation of the injection system and are damped in the central high-pressure reservoir. In order to achieve a favorable damping action, the volume of the central high-pressure reservoir must be of sufficient size. An increasing volume of the central high-pressure reservoir, however, has a negative influence on the starting behavior and the dynamic behavior of the injection system because the time required for changing the system pressure increases.
SUMMARY OF THE INVENTION
The object of the present invention is to improve the damping behavior in a common rail injection system.
In a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, in particular a large diesel engine, having an injector housing which communicates with a central high-pressure reservoir and in which a nozzle needle can move axially counter to the initial stress of a nozzle spring which is contained in a nozzle spring chamber, in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve, the object is attained by virtue of the fact that an injector pressure reservoir is integrated into the injector housing and communicates with the central high-pressure reservoir independent of the position of the 3/2-way valve. The pressure reservoir is used to damp the pressure waves coming from the central pressure reservoir during and after the injection.
One particular embodiment of the invention is characterized in that the volume of the injector pressure reservoir is 10 to 20 times the maximal injection quantity.
This value has turned out to be particularly advantageous in experiments carried out within the scope of the current invention.
Another particular embodiment of the invention is characterized in that the injector pressure reservoir communicates with a pressure-free chamber by means of a damping unit integrated into the injector housing. The total volume of the injector pressure reservoir and the central high-pressure reservoir can be considerably reduced as a result of the damping achieved by the damping unit.
Another particular embodiment of the invention is characterized in that the damping unit includes a damping throttle and a safety valve. Normally, the central high-pressure reservoir is equipped with a safety valve which opens in the event of an overpressure. This can be the case, for example, if the system pressure control circuit is not functioning properly. In the event of a possible mechanical failure of the safety valve controlled by the system pressure control circuit, serious damage to the engine can occur. Integrating the safety valve into the injector housing increases system safety. In addition, the safety valve normally provided in the central high-pressure reservoir can be eliminated.
Another particular embodiment of the invention is characterized in that the damping throttle is integrated into a screw plug which is screwed into the injector housing between the nozzle spring chamber and the injector pressure reservoir. This embodiment has the advantage that it can be produced in a particularly simple and inexpensive manner.
Another particular embodiment of the invention is characterized in that the injector pressure reservoir communicates with a fuel tank via the damping unit integrated into the injector housing. This offers the advantage that the injector pressure reservoir is discharged into the fuel tank if the pressure in the injector reservoir is greater than the system pressure.
BRIEF DESCRIPTION OF THE DRAWINGS
Other advantages, features, and details of the invention will be apparent from the detailed description contained herein below, taken in conjunction with the drawings, in which the single FIGURE is a longitudinal sectional view of an injector embodying the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawing, a conventional injection nozzle
2
is embodied at the end of an injector
1
oriented toward the bottom in the FIGURE. A solenoid valve
3
is disposed at the other end of the injector
1
. The solenoid valve
3
is controlled by a control unit
4
. The control unit
4
is coupled to a central high-pressure reservoir
5
and is coupled to a fuel pump unit
6
. The fuel pump unit
6
delivers fuel from a fuel tank
7
into the central high-pressure reservoir
5
. At the same time, the delivered fuel is subjected to high pressure in the fuel pump unit. The fuel that is acted on with the high pressure travels out of the central high-pressure reservoir
5
via a high-pressure line
8
into an elongated injector housing
9
which is the base body of the injector
1
.
An injector pressure reservoir
10
is embodied in the injector housing
9
. The injector pressure reservoir
10
is constituted by a section of a longitudinal bore through the injector housing
9
. The injector pressure reservoir
10
communicates with the central high-pressure reservoir
5
via the high-pressure line
8
. The end of the injector pressure reservoir
10
remote from the injector
2
feeds into a valve bore
11
which extends lateral to the longitudinal axis of the injector
1
. A valve piston
12
is contained in the valve bore
11
. The valve piston
12
can be moved axially in the valve bore
11
between two valve positions that are defined by valve seats
13
and
14
.
The valve piston
12
is pushed toward the right by the initial stress of a valve spring
22
which is contained in a valve spring chamber
21
. In this valve position, a high-pressure bore
16
communicates with the fuel tank
7
via a pressure-free discharge line
15
. When the solenoid valve
3
is supplied with power, the valve piston
12
moves toward the left counter to the initial stress of the valve spring
22
. The communication between the high-pressure bore
16
and the pressure-free discharge line
15
is thereby closed and the communication between the injector pressure reservoir
10
and a high-pressure bore
16
is opened by means of the valve bore
11
.
The fuel that is acted on with high pressure can travel from the injector pressure reservoir
10
, through the high-pressure bore
16
, and to the injector
2
. In the injector
2
, a nozzle needle
17
can be moved back and forth counter to the force of a nozzle spring
18
. The nozzle spring
18
is contained in a nozzle spring chamber
19
which is constituted by a section of the longitudinal bore through the injector housing
9
. When the pressure is sufficient to lift the nozzle needle
17
from its seat, the fuel is injected.
The nozzle spring chamber
19
communicates with the valve spring chamber
21
via a bore
20
. The valve spring chamber
21
in turn communicates via a bore
23
with the discharge line
15
, which leads to the fuel tank
7
.
The end of the nozzle spring
18
remote from the nozzle needle
17
rests against a spring plate
24
. A projection
29
is embodied on the side of the spring plate
24
remote from the nozzle spring
18
. The projection
29
protrudes into a recess that is embodied in a screw plug
25
. The screw plug
25
is fastened in the injector housing
9
with the aid of a thread
28
. A throttle bore
26
extends through the screw plug
25
in the direction of the longitudinal axis of the injector
1
. At the end remote from the injector pressure reservoir
10
, the throttle bore
26
is closed by a valve ball
27
. The projection
29
that is embodied on the spring plate
24
presses against the valve ball
27
.
If the pressure in the injector pressure reservoir
10
is greater than the system pressure, the spring plate
24
moves toward the injector
2
counter to the initial stress of the nozzle spring
18
. As a result, the valve ball
27
unblocks the throttle bore
26
so that the fuel that is acted on with high pressure can travel from the injector pressure reservoir
10
into the nozzle spring chamber
9
. From there, the fuel can escape into the fuel tank
7
via the bore
20
, the valve spring chamber
21
, the bore
23
, and the discharge line
15
.
The volume of the pressure reservoir
10
corresponds to 10 to 20 times the maximal injection quantity. The injector pressure reservoir
10
damps the pressure waves coming from the central pressure reservoir
5
during and after the injection.
The foregoing relates to preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Claims
- 1. In a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, the injector having an injector housing (9) which communicates with a central high-pressure reservoir (5) and in which a nozzle needle (17) is supported for movement axially counter to the initial stress of a nozzle spring (18) which is contained in a nozzle spring chamber (19), in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve (3), the improvement comprising an injector pressure reservoir (10) integrated into the injector housing (9) said injector pressure reservoir communicating with the central high-pressure reservoir (5) independent of the position of the 3/2-way valve (3), wherein the volume of the injector pressure reservoir (10) is 10 to 20 times the maximal injection quantity.
- 2. In a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, the injector having an injector housing (9) which communicates with a central high-pressure reservoir (5) and in which a nozzle needle (17) is supported for movement axially counter to the initial stress of a nozzle spring (18) which is contained in a nozzle spring chamber (19), in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve (3), the improvement comprising an injector pressure reservoir (10) integrated into the injector housing (9) said injector pressure reservoir communicating with the central high-pressure reservoir (5) independent of the position of the 3/2-way valve (3), wherein said injector pressure reservoir (10) communicates with a pressure-free chamber (19) via a damping unit (25, 26, 27) that is integrated into the injector housing (9).
- 3. The injector according to claim 2, wherein said damping unit includes a damping throttle (26) and a safety valve (27).
- 4. The injector according to claim 3, wherein said damping throttle (26) is integrated into a screw plug (25) which is screwed into the injector housing (9) between the nozzle spring chamber (19) and the injector pressure reservoir (10).
- 5. The injector according to claim 3, wherein said injector pressure reservoir (10) communicates with a fuel tank (7) via the damping unit (25, 26, 27) that is integrated into the injector housing (9).
- 6. The injector according to claim 4, wherein said injector pressure reservoir (10) communicates with a fuel tank (7) via the damping unit (25, 26, 27) that is integrated into the injector housing (9).
- 7. In a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine, the injector having an injector housing (9) which communicates with a central high-pressure reservoir (5) and in which a nozzle needle (17) is supported for movement axially counter to the initial stress of a nozzle spring (18) which is contained in a nozzle spring chamber (19), in order to adjust the injection onset and the injection quantity as a function of the position of a 3/2-way valve (3), the improvement comprising an injector pressure reservoir (10) integrated into the injector housing (9) said injector pressure reservoir communicating with the central high-pressure reservoir (5) independent of the position of the 3/2-way valve (3), wherein the volume of the injector pressure reservoir (10) is 10 to 20 times the maximal injection quantity and said injector pressure reservoir (10) communicates with a pressure-free chamber (19) via a damping unit (25, 26, 27) that is integrated into the injector housing (9).
- 8. The injector according to claim 7, wherein said damping unit includes a damping throttle (26) and a safety valve (27).
- 9. The injector according to claim 8, wherein said damping throttle (26) is integrated into a screw plug (25) which is screwed into the injector housing (9) between the nozzle spring chamber (19) and the injector pressure reservoir (10).
- 10. The injector according to claim 8, wherein said injector pressure reservoir (10) communicates with a fuel tank (7) via the damping unit (25, 26, 27) that is integrated into the injector housing (9).
- 11. The injector according to claim 9, wherein said injector pressure reservoir (10) communicates with a fuel tank (7) via the damping unit (25, 26, 27) that is integrated into the injector housing (9).
Priority Claims (1)
Number |
Date |
Country |
Kind |
199 28 906 |
Jun 1999 |
DE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/DE00/02028 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO01/00986 |
1/4/2001 |
WO |
A |
US Referenced Citations (9)
Foreign Referenced Citations (4)
Number |
Date |
Country |
31 51 065 |
Jul 1983 |
DE |
44 227 378 |
Feb 1996 |
DE |
197 15 234 |
Jun 1998 |
DE |
197 16 220 |
Oct 1998 |
DE |