The inventions relate to fluid leak containment plumbing, and more particularly, to a high pressure fluid system, such as a fuel system of an internal combustion engine, and a fluid system component, that can contain and detect leaking fluid.
To safely deliver fuel in high pressure systems, modern fuel systems include measures to contain fuel leaks that may occur. For example, marine agency requirements such as the International Convention for the Safety of Life at Sea (SOLAS) treaty require double-walled fuel lines to prevent the likelihood of fire on a commercial marine vessel. These double-walled fuel lines must include a gap between the inner and outer walls to allow any fuel leaked from the inner wall to be detected by a fuel sensor while being contained by the outer wall.
This disclosure provides a fuel system for use with an internal combustion engine and an internal combustion engine including such a fuel system, each of which include a single-walled high pressure common rail, plural double-walled high pressure fuel lines that include a low pressure leak containment passage, and drain plumbing that includes leakage drain connectors forming interfaces between the single-walled high pressure common rail and respective ones of the double-walled high pressure fuel lines and forming part of the low pressure containment passage. This disclosure also provides a connector for interfacing a single-walled high pressure common rail with a double-walled fuel line, and a leak containment system for containing fuel or other types of fluids delivered from one place to another under high pressure.
In an embodiment, a fuel system for supplying fuel to an internal combustion engine includes a single-walled high pressure common rail including a main body and plural members extending from the main body, where each member has a high pressure passage leading to the main body. The system includes plural double-walled fuel line segments adapted to fluidly connect the high pressure passages of the single-walled high pressure common rail to respective plural fuel injectors, where each segment includes a high pressure fuel line, a jacket surrounding the high pressure fuel line, a low pressure passage between the high pressure fuel line and the jacket, and a fuel line connector. The fuel line connector includes a main body housing a portion of the high pressure fuel line such that an end portion of the high pressure fuel line protrudes from a first end of the main body and a second end of the main body is sealingly connected to the jacket to thereby extend the low pressure passage into the fuel line connector. The system includes plural leakage drain connectors, where each of the leakage drain connectors is sealingly connected at a first end portion thereof to one of the members, and sealingly connected at a second end portion thereof to one of the plural fuel line connectors. In this way, the protruding end portion of the high pressure fuel line sealingly engages with the high pressure passage of the member, and the low pressure passage of the fuel line connector extends through the leakage drain connector to an opening at an outer surface of the leakage drain connector. A fuel drain line fluidly is coupled to each of the openings of the plural leakage drain connectors.
In another embodiment, an internal combustion engine includes a plurality of cylinders and plural fuel injectors, where each of the cylinders is associated with one of the fuel injectors. The engine includes a single-walled high pressure common rail including a main body and plural members extending from the main body, where each member has a high pressure passage leading to the main body. The engine includes plural double-walled fuel line segments, where each of the segments has a high pressure fuel line, a jacket surrounding the high pressure fuel line portion, a low pressure passage between the high pressure fuel line and the jacket, a first end fluidly connected to a respective one of the fuel injectors, and a fuel line connector including a main body. The fuel line connector houses a portion of the high pressure fuel line such that an end portion of the high pressure fuel line protrudes from a first end of the main body and a second end of the main body is sealingly connected to the jacket to thereby extend the low pressure passage into the fuel line connector. The engine includes plural leakage drain connectors, where each leakage drain connector is sealingly connected at a first end portion thereof to one of the members, and is sealingly connected at a second end portion thereof to one of the plural fuel line connectors. In this way, the protruding end portion of the high pressure fuel line sealingly engages with the high pressure passage of the member, and the low pressure passage of the fuel line connector extends through the leakage drain connector to an opening at an outer surface of the leakage drain connector. A fuel drain line fluidly coupled to each of the openings of the plural leakage drain connectors.
In another embodiment, a connector for connecting a single-walled high pressure common rail to a double-walled fuel line includes a main body having a first opening substantially aligned along a longitudinal axis of the main body and is configured to sealingly attach to a member extending from a single-walled high pressure common rail, and a second opening opposite the first opening and configured to sealingly attach to a connector of a double-walled high pressure fuel line such that the high pressure portion of the double-walled fuel line seals with the member to form a continuous high pressure passage. The at least one third opening provided along a direction substantially orthogonal to the longitudinal axis. A fuel collection manifold is around the main body and has a channel between the third opening and an outer surface of the fuel collection manifold such that a low pressure passage for fuel leaking from the double-walled fuel line extends from the channel through the third opening.
In yet another embodiment of the disclosure, a leak containment system includes a single-walled high pressure accumulator including a high pressure cavity, a double-walled line including a high pressure line, a jacket surrounding the high pressure line, an annular region between the high pressure line and the jacket, and a line connector housing a portion of the double-walled line and configured to fluidly attach the double-walled line to the single-walled high pressure accumulator, a drain line, and a leakage drain connector having a first end sealingly attached to the single-walled high pressure accumulator, a second end sealingly attached to the line connector, and a side portion fluidly connected to the leakage drain line. The leakage drain connector houses a portion of the high pressure line. A leakage detector is fluidly coupled to the drain line. In the system, a continuous high pressure passage is formed that includes the high pressure cavity fluidly connected to the high pressure line, and a continuous low pressure passage is formed that includes the annular region, the drain line, and interior regions of the leakage drain connector and the line connector outside the housed high pressure line.
The inventors have realized that known single-walled high pressure common rails (i.e., accumulators) and/or designs of high pressure common rails that would be commonly available can be made to interface with a bank of double-walled fuel injection lines and meet marine agency safety requirements. More specifically, drain plumbing described herein provides an interface between a single-walled high pressure common rail and a double-walled high pressure line (e.g., a fuel injector line) that avoids complicated and expensive designs that would require developing a double-walled high pressure common rail, while also providing a structure that can contain and detect fluid leaks.
More specifically, the drain plumbing 14 includes a fuel drain line 16 into which fuel leaking from any of the double-walled fuel injector lines 10 flows. Leaking fuel in the fuel drain line 16 is directed to a leakage detector (not shown) that detects the leaking fuel. For example, one end 18 of the fuel drain line 16 can be provided with or fluidly coupled to a fuel leakage detector, such as a tell tale sensor element, flow meter, pressure or vacuum sensor, float switch, or a low pressure fuel sensor, and the other end 20 of the fuel drain line 16 can be capped or connected to a fuel drain line of another bank of plural double-walled fuel line segments 10, drain plumbing 14 and injectors.
The fuel drain line 16 is part of a low pressure circuit also including the outer walls of the plural double-walled fuel line segments 10 and the outer walls of the drain plumbing 14, which contains the leaking fluid so it can be directed back in one or more conduits to the fuel tank, the fuel pump, and/or another storage tank or container (not shown). A detected leak can trigger activation of a visual and/or audible alarm, a message (e.g., email, text) or another indication or notification mechanism. For example, a leakage detector can be monitored by an ECM (engine control module), which upon receiving a signal indicating a leakage event, triggers an audible alarm or visual alarm on a display to alert an operator of the engine.
Although the fuel system embodiment of
The fuel collection manifold 26 is retained at a predetermined longitudinal position on the leakage drain connector 22 by a bump out portion forming a nut head at one end of the leakage drain leakage drain connector 22, which provides a stop preventing insertion of the main body of the leakage drain connector 22 into the fuel collection manifold 26 beyond the predetermined longitudinal position along the direction of the longitudinal axis of the connector 22. The leakage drain connector 22 is retained on its other end by a retaining clip element 29 (e.g., a c-clip) engaged with a profile feature on the leakage drain connector 22, which is shown as slot formed in a surface of the outer wall of the leakage drain connector 22. It is to be appreciated that a configuration for retaining the fuel collection manifold 26 different from one having a retaining clip can be used, such as a retaining nut, pin etc. used in combination with a profile feature such as a slot, hole threads, or another profile element positioned on an outer surface of the main body to secure the leakage drain connector 22 at the predetermined position. In a preferred embodiment, the fuel collection manifold 26 is rotatable about and relative to the leakage drain leakage drain connector 22 to facilitate aligning plural fuel collection manifolds 26 to be connected to a single fuel drain line 16.
In another embodiment, the fuel collection manifold 26 may be an integrally formed portion of the leakage drain connector 22. In another embodiment, no manifold is provided, and the drain line 16 is connected to a surface of the leakage drain connector 22.
Each leakage drain connector 22 can include at least one opening 23 that opens in a direction substantially orthogonal to the longitudinal axis of the main body of the connector 22 to allow the low pressure passage in the leakage drain connector 22 to fluidly communicate with a low pressure channel 41 provided in the fuel collection manifold 26. For each double-walled fuel line segment 10, fuel leaking from a high pressure inner wall portion 38 can enter the channel 41 of the corresponding fuel collection manifold 26, and the channels 41 of all the fuel collection manifolds 26 in a bank of double-walled fuel lines 10 are fluidly connected to a low pressure passage in fuel drain line 16. Because fuel leaks from any of the high pressure fuel lines 38 of the plural double-walled fuel line segments 10 are directed to a single fuel drain line 16 in this embodiment, a single fuel leakage detector (e.g., a single sensor) can be used to detect any fuel leaked from any one of the high pressure fuel lines 38.
As shown in
In the exemplary embodiment shown in
Embodiments consistent with the disclosure allow the common rail (accumulator) 12 to remain single-walled, which simplifies design and facilitates cost savings. For example, without plural fuel collection manifolds 26 being plumbed together using a single fuel drain line 16 and a single fuel sensor (not shown), a more complicated, expensive design of a unique double-walled common rail (accumulator) would be required to allow for use of a single fuel sensor. Furthermore, the single-walled common rail 12 is compliant with requirements such as SOLAS, because a common rail is considered by marine agencies to be substantial fuel system component (i.e., not a fuel line), and thus it is not required for the common rail 12 to be double-walled. Additionally, embodiments consistent with the disclosure allow use of a single fuel sensor to detect a fuel leak from any of the inner walls of the bank of plural fuel injection lines.
In an exemplary embodiment described above, the fuel drain line 16 is a single tube structure including banjo connectors. However, the low pressure nature of the leaking fuel allows for embodiments having another configuration. For example, a fuel drain line can include plural sections (not shown) attached by compression fittings, for example, between a tee plumbing fitting or flexible lines having compression fitting at each end that mate with complementary fittings on one of opposite sides of a fuel collection manifold 26.
While an exemplary embodiment is described in the context of a marine internal combustion engine, for example, high horsepower diesel fuel systems, the same concepts can be applied to other applications of internal combustion engines, such as those used in wheeled vehicles, construction equipment, standby generators etc. Further, embodiments of the fuel system described herein can be used in applications including any type of internal combustion engine cylinder bank configuration, such as in-line, v-type or horizontally opposed. Additionally, the system described herein can be used to contain and detect leaks of fluids in applications using fluids other than fuels, where the fluids are stored at high pressure in an accumulator to be distributed to double walled lines.
Although a limited number of embodiments is described herein, one of ordinary skill in the an will readily recognize that there could be variations to any of these embodiments and those variations would he within the scope of the appended claims. Thus, it will be apparent to those skilled in the art that various changes and modifications can be made to the common rail fuel system with leak containment and detection described herein without departing from the scope of any appended claim and its equivalents.
This application claims benefit of priority to Provisional Patent Application No. 61/332,524, filed on May 7, 2010, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61332524 | May 2010 | US |