1. Field of the Invention
The present invention relates to an injectable electronic device having an attached compressible loop. The compressible loop is coupled to electronics within the device and serves as an antenna for communication and/or energy transfer. The compressible loop can also aid in anchoring the device at a desired site within a patient.
In at least some instances, an electronic device positioned within a patient's body to measure patient data and communicate outside the body can be somewhat invasive and larger than would be ideal in at least some instances. The electronic device may have some type of antenna structure coupled to electronics within a housing of the device. For example, the antenna structure may be an inductive coil loop positioned with the electronics within the housing. This use of the loop inside the housing can allow all the components to be contained within the housing to maintain hermetic sealing of the device, and the housing may allow signals to pass there through, such that the loop can be used for charging and communication. However, in at least some instances this use of the loop inside the hermetically sealed housing can limit the housing material to non-metallic materials, such as glass, ceramic, polymers, etc. The non-metallic housings can result in increased wall thickness to maintain hermetic sealing and structural stability, such that the size and invasiveness of the device can increase in at least some instances.
With the current state of the art, the presence of the inductive coil loop can result in packaging and sizing that is less than ideal for an injectable device in at least some instances. Although a larger coil/loop, may use less energy for charging and communication, the larger coil/loop may not be injected easily and can be somewhat invasive than would be ideal in at least some instances. Also, the non-metal housing of at least some current device can result in an increased wall thickness to maintain hermetic sealing and structural stability may further increase the invasiveness of the device in at least some instances.
Therefore, a need exists for an injectable device that is less invasive and provides patient measurements and communication. Ideally, such improved devices will overcome at least some of the above limitations of the present methods and devices.
2. Description of the Background Art
The following U.S. Patent and Publications may be relevant to the present application: 2007/0150009; 2007/0118039; 2005/0080346; U.S. Pat. Nos. 7,295,879; and 6,658,300.
Embodiments of the present invention provide an injectable device that can be injected into a patient with decreased invasiveness so as overcome at least some of the above limitations. The implantable device comprises a first narrow profile configuration for injection so as to decrease invasiveness during injection through the skin of the patient, and a second expanded profile configuration so as to improve charging, communication and anchoring when the device is implanted in the patient.
In a first aspect, an injectable electronics device is provided. The device comprises a housing sized to fit within an injection tool lumen with one or more electrical components positioned within the housing and a self-expanding loop antenna coupled to at least one electrical component within the housing. The self-expanding loop antenna is expandable from a first compressed shape to a second expanded shape.
In another aspect, an injectable electronics device is provided. The device comprises an electronics package sized to fit within an injection tool lumen and a self-expanding wire loop coupled to the electronics package. The self-expanding wire loop is expandable from a first compressed shape to a second expanded shape.
In another embodiment, a method of implanting an injectable electronics device is provided. The method comprises providing an injection tool having a lumen and an injectable electronics device. The injectable electronics device includes an electronics package sized to fit within an injection tool lumen and a self-expanding wire loop coupled to the electronics package. The self-expanding wire loop is expandable from a first compressed shape to a second expanded shape. The method further comprises compressing the self-expanding wire loop, and loading the injectable electronics device within the injection tool lumen. A delivery end of the injection tool is positioned at a desired location of a patient, and the injectable electronics device is delivered from the injection tool lumen at the desired location.
In many embodiments, the compressed shape of the self-expanding loop fits within the injection tool lumen.
In many embodiments, the compressed shape may be an ellipse.
In many embodiments, the expanded shape is optimized for charging and/or communication with other electronic devices.
In many embodiments, the other electronic devices are located within a patient's body.
In many embodiments, the other electronic devices are located outside a patient's body.
In many embodiments, the self expanding loop antenna is configured such that the one or more loops extend at least partially around an area defined by the loop in the expanded shape, and the self expanding loop antenna is configured to expand such that the area is oriented toward a skin of the patient. This orientation of the area toward the skin of the patient can increase electromagnetic flux through the self expanding loop antenna.
In many embodiments, the expanded shape is planer, for example such that the loop extends substantially along a plane.
In many embodiments, the expanded shape is parallel to a patient's skin, for example substantially parallel to the skin of the patient.
In many embodiments, the self-expanding loop is constructed of a superelastic metal. The superelastic metal may comprise at least one of nitinol, stainless steel, MP35N or other metals that have been processed to provide elastic properties.
In many embodiments, the antenna is insulated with a material comprising at least one of ethylene tetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), silicone or polyurethane.
In many embodiments, the self-expanding loop includes one or more loops in the expanded shape. The one or more loops may be in the same plane, or the one or more loops may be in multiple planes. For example, the one or more loops may extend substantially along the same plane or may extend substantially along multiple planes.
In many embodiments, the housing is made of metal, such as titanium.
In many embodiments, the self-expanding loop anchors the injectable device within the patient.
Embodiments of the present invention are directed to an injectable device having a deformable loop antenna for charging, communication and anchoring the device. The deformable loop antenna and methods of injection described herein can be used with many implantable or injectable medical devices, and can be especially helpful for those devices that use a loop for electromagnetic charging and communication. The expandable loop can also be used for device anchoring and stability. The embodiments described herein can be used with devices implanted and/or injected in many parts of the body and for many therapies, diagnoses, and additional treatments, for example as described in co-pending U.S. application Ser. No. 12/209430, entitled “INJECTABLE DEVICE FOR PHYSIOLOGICAL MONITORING” and co-pending U.S. application Ser. No. 12/209479, entitled “DELIVERY SYSTEM FOR INJECTABLE PHYSIOLOGICAL MONITORING SYSTEM”. Other delivery systems may include a catheter, an introducer, a needle, or any tube used for injection or delivery of an injectable device.
The electronics package 110 has an outside diameter (OD) that can be slightly less than or equal to an inner diameter (ID) of a lumen of a delivery system. The OD of the electronics package 110 can be minimized by utilizing a metal material to reduce the wall thickness while maintaining structural stability and hermeticity. The electronics housing may be made of a variety of implantable materials with the primary option being titanium. Other bio-compatible metals may be used. The metal housing may also shield the electronics, such that electronics package does not interfere with communication from the antenna, which is outside electronics package.
The loop 105 is compressible or collapsible such that the loop 105 can be compressed to fit within the lumen of the delivery system. The loop 105 is also self-expanding, so as it is deployed from delivery system lumen, the loop 105 expands to create a large cross-sectional-area coil. The expanded coil of the loop can be planer. The expanded large cross-sectional area coil significantly reduces that amount of energy required to communicate and/or charge the device compared to a coil antenna within the electronics package that is limited to the size of the electronics package. The loop 105 may be constructed of a variety of metals: superelastic metals including Nitinol, stainless steel, MP35N or other metals that have been processed to provide elastic properties (i.e., can be compressed into a lumen without plastic deformation of the original loop shape). The loop 105 may also be insulated with a variety of polymers including ETFE, PTFE, silicone, or polyurethane.
The loop 105 shown in the
A loop antenna can be very directional, and may have a pickup pattern shaped like a figure eight, for example. The loop antenna can allow signals on opposite sides to be received, while off the sides of the loop antenna the signal can decrease or be nulled out. For this reason, it can be helpful to place the loop antenna in the proper orientation when it is injected. For communication with devices outside the body, the loop antenna can be oriented with the skin disposed over the antenna. For example, the loop antenna may comprise a substantially planar configuration that extends along a plane substantially parallel to the skin, such that the area of the loop is oriented toward the skin. The self expanding loop 105 can be configured such that the one or more loops extend at least partially around an area defined by the loop in the expanded shape. The self expanding loop antenna can be configured to expand such that the area is oriented toward a skin of the patient, for example when the package 110 is injected at a desired location in the patient with a desired orientation and position determined by an axis of the injection tool and a depth of the tip of the injection tool, respectively. This orientation of the area toward the skin of the patient can increase electromagnetic flux through the self expanding loop antenna. For communication with internal devices, the planer loop antenna axis and/or area can be pointed at the internal device.
Referring again to
The loop 105 allows the injectable electronics device 100 to communicate with devices within the patient's body or external devices outside the body.
Alignment may also be accomplished with the injection tool 150 having a mark 220 to orient the loop 105 for injection. The mark 220 may comprise a line drawn on the injection tool 150. Mark 220 may also comprise an indentation or other indicia for example.
Further embodiments may include a sliding mechanisms to align the loop 105 with the injection tool 150.
While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.
The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 61/084,567 filed Jul. 29, 2008; the full disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61084567 | Jul 2008 | US |