This application is a 371 National Phase of PCT/US2013/049993 filed Jul. 11, 2013, which claims the benefit of U.S. Provisional Application No. 61/670,467 filed Jul. 11, 2012, both of which are incorporated herein in their entirety.
A riser extends from a vessel down to the sea floor. A downhole tool, such as a subsea test tree, may be disposed within the riser proximate the sea floor. An umbilical cable or line is oftentimes used to transfer communication signals between the vessel and the downhole tool. The umbilical line is disposed within the riser and coupled to the downhole tool.
The umbilical lines may be hundreds of meters long and have a diameter from about 5 cm to about 15 cm. As such, the umbilical lines may take up a large amount of space on the deck of the vessel. Further, the umbilical lines are coupled to a tubing string and the downhole tool within the riser at predetermined locations, and this coupling process may take a significant amount of time. What is needed, therefore, is an improved system and method for communicating between a surface location and a downhole tool.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
A system for communicating between a downhole tool and a surface location is disclosed. The system may include a downhole tool disposed within a subsea riser. The downhole tool may include a device that actuates between first and second positions. An internal transducer may be coupled to the downhole tool and transmit a signal indicative of the position of the device. An external transducer may be positioned on an exterior of a riser. The external transducer may receive the signal from the internal transducer through the riser. A transponder may be positioned on an exterior of the riser and coupled to the external transducer. The transponder may transmit a signal to a surface location indicative of the position of the device.
A method for communicating between a downhole tool and a surface location is also disclosed. The method may include running a downhole tool into a subsea riser. The downhole tool may include a device that actuates between a first position and a second position. The device may include a valve or a latch. A signal may be transmitted from an internal transducer coupled to the downhole tool to an external transducer positioned on an exterior of the riser. The signal from the internal transducer may be indicative of the position of the device.
In another embodiment, the method may include running a downhole tool into a subsea riser. The downhole tool may include a device that actuates between a first position and a second position. An external transducer may be positioned about an exterior of the riser with a remotely operated vehicle. A signal may be transmitted from an internal transducer coupled to the downhole tool through the riser and to the external transducer. The signal from the internal transducer may be indicative of the position of the device.
So that the recited features may be understood in detail, a more particular description, briefly summarized above, may be had by reference to one or more embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings are illustrative embodiments, and are, therefore, not to be considered limiting of its scope.
A system for communicating between a downhole tool 126 and a surface location 134 is disclosed. The system may include a downhole tool 126 disposed within a subsea riser 116. The downhole tool 126 may include one or more devices (three are shown 128, 130, 132) that actuates between first and second positions. An internal transducer 320 may be coupled to the downhole tool 126 and transmit a signal indicative of the position of the device 128, 130, 132. An external transducer 140 may be positioned on an exterior of the riser 116. The external transducer 140 may receive the signal from the internal transducer 320 through the riser 116. A transponder 150 may be positioned on an exterior of the riser 116 and coupled to the external transducer 140. The transponder 150 may transmit a signal to a surface location 134 indicative of the position of the device 128, 130, 132.
A riser 116 may extend from the vessel 112 to a blowout preventer (“BOP”) stack 118 positioned on the sea floor 120. As shown, a wellbore 122 has been drilled into the sea floor 120, and a tubing string 124 may extend from the vessel 112, through the riser 116 and the blowout preventer stack 118, and into the wellbore 122. The tubing string 124 includes an axial bore through which drilling fluids may be introduced into the wellbore 122 and/or through which hydrocarbons or other formation fluids may be produced from the wellbore 122 to the vessel 112.
A downhole tool 126 may be coupled to an end portion of the tubing string 124. The downhole tool 126 may be or include a drill bit, a rotary steerable tool, a stabilizer, an underreamer, a measurement while drilling tool, a logging while drilling tool, a subsea landing string, a subsea test tree (“SSTT”), combinations thereof, or the like. As shown, the downhole tool 126 includes a subsea test tree that is landed in the blowout preventer stack 118. The downhole tool 126 may include one or more devices that may be actuated between first and second positions. For example, the downhole tool 126 may include one or more valves 128, 130 and a latch 132 that may be actuated between first and second positions. The first valve 128 may act as a safety or control valve during testing of the wellbore 122. The second valve 130 may prevent fluid in the tubing string 124 from draining into the riser 116 when disconnected from the downhole tool 126. The latch 132 may connect the tubing string 124 to the downhole tool 126.
When the downhole tool 126 is a subsea test tree, the first valve 128 may be closed to prevent fluid flow from a lower portion of the tubing string 124 to an upper portion of the tubing string 124 when operating conditions fall outside a predetermined range. Once the first valve 128 is closed, the second valve 130 may be closed, thereby trapping pressure within the subsea test tree. The latch 132 may then disconnect the tubing string 124 from the subsea test tree, and the tubing string 124 may be pulled up to the vessel 112.
First and second external transducer arrays 140, 142 may be coupled to an exterior of the riser 116. The first and second external transducer arrays 140, 142 may be offset from one another by about 1 m to about 5 m, about 5 m to about 25 m, about 25 m to about 50 m, about 50 m to about 100 m, about 100 m to about 500 m, about 500 m to about 1000 m, or more. As shown, the second external transducer array 142 may be positioned proximate the blowout preventer stack 118. Although two external transducer arrays 140, 142 are shown, it may be appreciated that the number of external transducer arrays may range from 1, 2, 3, 4, or 5 to about 10, 20, 30, 40, 50, or more.
First and second transponders 150, 152 may also be coupled to an exterior of the riser 116. The first transponder 150 may be coupled to and/or in communication with the first external transducer 140, and the second transponder 152 may be coupled to and/or in communication with the second external transducer 142.
One or more transponders 150 may also be coupled to the riser 116. As shown, the transponder 150 may be coupled to a buoyant portion 117 of the riser 116. The buoyant portion 117 of the riser 116 may be made of a material that is less dense than the riser 116 to prevent the riser 116 from collapsing due to the surrounding hydrostatic pressure. Although not shown, in another embodiment, the transponder 1 may be coupled to the “bare” riser 116.
The transponder 150 may be adapted to transmit a signal to a surface operator station 134 (
The external transducer array 140 and/or the transponder 150 may be clamped around the exterior of the riser 116. The clamps 214, 216 may magnetically attach or couple to the exterior of the riser 116. In at least one embodiment, the external transducer array 140 and/or the transponder 150 may be clamped around the riser 116 at the vessel 112 before the riser 116 is lowered toward the sea floor 120. In another embodiment, the external transducer array 140 and/or the transponder 150 may be clamped around the riser 116 by a remotely operated vehicle (“ROV”) 220 after the riser 116 has been lowered from the vessel 112.
The remotely operated vehicle 220 may include one or more manipulators or arms 222 that are adapted to grasp and position components (e.g., the external transducer array 140 and/or the transponder 150) while underwater. The remotely operated vehicle 220 may also include a tether line 224 that extends up to the vessel 112. The movement of the remotely operated vehicle may be controlled through the tether line 224. In at least one embodiment, one or more signals may be transmitted from the remotely operated vehicle 220 to the vessel 112 through the tether line 224 and vice versa.
An annulus 312 may be formed between the body 310 of the downhole tool 126 and the riser 116. The annulus 312 may have a fluid disposed therein. The fluid may have a pressure ranging from about 1 MPa, about 5 MPa, about 10 MPa, about 20 MPa, or about 30 MPa to about 50 MPa, about 75 MPa, about 100 MPa, about 125 MPa, about 150 MPa, or more. For example, the pressure may be from about 5 MPa to about 25 MPa, about 25 MPa to about 50 MPa, or about 50 MPa to about 100 MPa.
A sensor 314 may be coupled to and/or disposed within the downhole tool 126. The sensor 314 may be coupled to and in communication with the valves 128, 130 and/or the latch 132 (
An internal transducer array 320 may be coupled to the exterior of the downhole tool 126. The internal transducer array 320 may include one or more transducers (two are shown 322, 324). The transducers 322, 324 may be parallel to the centerline 115 of the riser 116 and axially offset from one another, as shown. In another embodiment, the transducers 322, 324 may be circumferentially offset from one another around exterior of the downhole tool 126.
The internal transducer array 320 may be coupled to and in communication with the sensor 314. As such, the internal transducer array 320 may be adapted to receive one or more signals from the sensor 314 that indicate the status of the valves 128, 130 and/or the latch 132.
As discussed above, the external transducer array 140 may be coupled to the exterior of the riser 116. The external transducer array 140 may include one or more transducers (two are shown 332, 334). The transducers 332, 334 may be parallel to the centerline 115 of the riser 116 and axially offset from one another, as shown. In another embodiment, the transducers 332, 334 may be circumferentially offset from one another around exterior of the downhole tool 126 and/or the interior of the riser 116. The transducers 332, 334 in the external transducer array 120 may be radially aligned with the transducers 322, 324 in the internal transducer array 320. This may allow the transducer arrays 140, 320 to communicate with one another through the riser 116.
An electronics package 340 may be coupled to the external transducer array 140 and/or the transponder 150. The electronics package 340 may process the signals transmitted from the external transducer array 140 to the transponder 150 and vice versa. For example, the electronics package 340 may convert analog signals from the external transducer array 140 to digital signals for the transponder 150 and vice versa.
A battery pack 342 may be coupled to the external transducer array 140, the electronics package 340, and/or the transponder 150. The battery pack 342 may provide localized power to the external transducer array 140, the electronics package 340, and/or the transponder 150.
The clamp 214 may be arranged and designed to be installed around the riser 116 and radially-inward from the lines 410, 412, 414, 416, 418 (with respect to the longitudinal line extending through the riser 116). The clamp 214 may include a plurality of links or fingers 420 that are circumferentially offset from one another to at least partially form a ring. The external transducer array 140 may be coupled to or integral with at least one of the fingers 420. Each adjacent pair of fingers (e.g., 420-1, 420-2) may have a hinge 422 disposed therebetween to allow the fingers 420 to bend or flex with respect to one another. In place of one of the hinges 422, a clip 424 may be disposed between an adjacent pair of fingers (e.g., 420-5, 420-6). The clip 424 may be actuated from a closed position to an open position. In the closed position, the two fingers 420-5, 420-6 are secured together, as shown in
Once in the open position, the further compression of the spring 428 may cause the fingers 420-5, 420-6 to move away from one another forming the gap 426 therebetween. The gap 426 may be increased until the length of the gap 426 is equal to or greater than the outer diameter of the riser 116. When the gap 426 is equal to or greater than the outer diameter of the riser 116, the clamp 214 may be moved toward the riser 116, as shown in
Referring to
As the downhole tool 126 is lowered through the riser 116, the sensor 314 may determine or sense the status of one or more devices in the downhole tool 126. For example, the sensor 314 may sense the position of the valves 128, 130 (i.e., open or closed). In another embodiment, the sensor 314 may sense whether the downhole tool 126 is coupled to the tubing string 124 via the latch 132. The data from the sensor 314 may be transmitted to the internal transducer array 320. As the downhole tool 126 (and the internal transducer array 320 coupled thereto) pass by the first external transducer array 140, the internal transducer array 320 may transmit one or more signals indicative of the data from the sensor 314 through the riser 116 and to the first external transducer array 140. For example, the signals may be acoustic signals.
The first external transducer array 140 may transmit one or more signals to the first transponder 150 indicative of the data from the sensor 314. In at least one embodiment, the signals may be processed or pre-processed by the electronics package (
The second external transducer array 142 may be positioned proximate the sea floor 120. For example, the downhole tool 126 may be a subsea test tree, and the second external transducer array 142 may be positioned proximate the blowout preventer stack 118. The downhole tool 126 may land in the blowout preventer stack 118. The sensor 314 may sense the position of the valves 128, 130 during the landing process or after the downhole tool 126 has landed in the riser (“LIR”). In another embodiment, the sensor 314 may sense whether the latch 132 is coupling the downhole tool 126 to the tubing string 124 or whether the latch 132 has released the downhole tool 126 from the tubing string 124 indicating that the downhole tool 126 has landed in the riser (“LIR”). The data from the sensor 314 may be transmitted to the internal transducer array 320. The internal transducer array 320 may transmit one or more signals indicative of the data from the sensor 314 through the riser 116 and to the second external transducer array 142.
The second external transducer array 142 may transmit the signals to the second transponder 152, and the second transponder 152 may transmit the signals to the surface operator station 134 on the vessel 112 as described above. The first and second transponders 150, 152 may use unique channels to differentiate the signals. For example, the signals may have different frequencies (or frequency bands), modulation schemes, device IDs, or the like. Thus, the status of the downhole tool 126 may be monitored at multiple locations within the riser 116 without the use of a communications umbilical line in the riser 116. The first and second external transducer arrays 140, 142 may also determine or sense the status of the downhole tool 126 as the downhole tool 126 is pulled out of the hole (“POOH,” i.e., out of the riser 116 to the vessel 112).
In at least one embodiment, the remotely operated vehicle 220 may have an external transducer array coupled thereto (not shown). The remotely operated vehicle 220 may be adapted to position the external transducer array at any location along the riser 116 to receive the signals from the internal transducer array 320 as the downhole tool 126 moves through the riser 116. Once the signals are received, the remotely operated vehicle 220 may send the signals to the surface operator station 134 via spare conductors in the remotely operated vehicle's 220 tether line 224 and/or using spare channels in the remotely operated vehicle's 220 telemetry system. In another embodiment, the signals may be stored in a memory within the remotely operated vehicle 220 and accessed once the remotely operated vehicle 220 returns to the vessel 112.
As used herein, the terms “inner” and “outer”; “up” and “down”; “upper” and “lower”; “upward” and “downward”; “above” and “below”; “inward” and “outward”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular direction or spatial orientation. The terms “couple,” “coupled,” “connect,” “connection,” “connected,” “in connection with,” and “connecting” refer to “in direct connection with” or “in connection with via another element or member.” The terms “hot” and “cold” refer to relative temperatures to one another.
Although the preceding description has been described herein with reference to particular means, materials, and embodiments, it is not intended to be limited to the particulars disclosed herein; rather, it extends to all functionally equivalent structures, methods, and uses, such as are within the scope of the appended claims.
Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges including the combination of any two values, e.g., the combination of any lower value with any upper value, the combination of any two lower values, and/or the combination of any two upper values are contemplated unless otherwise indicated. Certain lower limits, upper limits and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.
Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/049993 | 7/11/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/011823 | 1/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4527425 | Stockton | Jul 1985 | A |
6150954 | Smith | Nov 2000 | A |
7273102 | Sheffield | Sep 2007 | B2 |
7347261 | Markel | Mar 2008 | B2 |
9010433 | Rios, III | Apr 2015 | B2 |
20020050930 | Thomeer et al. | May 2002 | A1 |
20050115708 | Jabusch | Jun 2005 | A1 |
20090056936 | McCoy, Jr. | Mar 2009 | A1 |
20120000664 | Nas | Jan 2012 | A1 |
Entry |
---|
International Search Report for PCT/US2013/049993 dated Oct. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20150226054 A1 | Aug 2015 | US |