Embodiments of the disclosure relate generally to shielded communication cables and, more particularly, to communication cables that include continuous shielding elements that contain one or more fusible elements or sections.
As the desire for enhanced communication bandwidth escalates, transmission media need to convey information at higher speeds while maintaining signal fidelity and avoiding crosstalk, including alien crosstalk. However, effects such as noise, interference, crosstalk, alien crosstalk, and/or alien equal-level far-end crosstalk (“ELFEXT”) can strengthen with increased data rates, thereby degrading signal quality or integrity. For example, when two cables are disposed adjacent to one another, data transmission in one cable can induce signal problems in the other cable via crosstalk interference.
One approach to addressing crosstalk between communication cables is to circumferentially encase one or more conductors in a continuous shield, such as a flexible metallic tube or a foil that coaxially surrounds the cable's conductors. However, complications can arise when a shield is electrically continuous between the two ends of the cable. The continuous shield can inadvertently carry voltage and current along the cable, for example from one terminal device at one end of the cable towards another terminal device at the other end of the cable. Signals carried along the shield can damage equipment connected to a cable and, in some cases, may pose a shock hazard. Loop currents that develop on the shields can also interfere with signals transmitted by the cable. Accordingly, there is an opportunity for improved continuous shields that include fusible elements that break down in the event that a sufficient current is present on the shield.
The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items; however, various embodiments may utilize elements and/or components other than those illustrated in the figures. Additionally, the drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Various embodiments of the present disclosure are directed to shielded communication cables, such as twisted pair communication cables and/or other cables that incorporate electrical conductors. A cable may include one or more transmission media within a core of the cable, such as one or more twisted pairs of conductors. Additionally, one or more suitable shielding elements may be incorporated into the cable in order to provide electromagnetic shielding for one or more of the transmission media. For example, individual twisted pair shields, shields for groups of twisted pairs, overall shields, and/or shielding separators or fillers may be incorporated into the cable. According to an aspect of the disclosure, at least one shielding element may be a continuous shielding element that includes at least one fusible element.
In certain embodiments, a shielding element may include a base layer of dielectric material that extends along a longitudinal direction. A plurality of longitudinally spaced segments (or patches) of electrically conductive material may be formed on the base layer. The longitudinally spaced segments may be formed with a wide variety of suitable dimensions, such as longitudinal lengths, widths, and/or thicknesses. Additionally, at least one fusible element may be positioned between each adjacent set of the longitudinally spaced segments. The fusible element(s) may provide electrical continuity between the longitudinally spaced segments of electrically conductive material, thereby resulting in the shielding element being electrically continuous along its longitudinal length. In certain embodiments, the longitudinally spaced segments may be discontinuous segments in the absence of the fusible element(s). Additionally, one or more of the fusible elements may be configured to fuse or break down in the event that a fusing current is applied to the shielding element. Once a fusible element has fused, the electrical continuity between the two longitudinally spaced segments connected by the fusible element may be severed. As a result, the two longitudinally spaced segments may be discontinuous, thereby preventing a current or voltage signal from propagating along the longitudinal length of the shielding element between the two segments.
A fusible element may be formed from a wide variety of suitable materials and with a wide variety of suitable dimensions. In certain embodiments, a fusible element and the longitudinally spaced segments connected by the fusible element may be formed from the same electrically conductive material. In other embodiments, the longitudinally spaced segments may be formed from a first electrically conductive material while the fusible element is formed from a second electrically conductive material different from the first electrically conductive material. Additionally, a fusible element may be formed with a wide variety of suitable lengths, widths, thicknesses, cross-sectional areas, and/or other dimensions. In certain embodiments, one or more dimensions of a fusible element may remain substantially uniform as the fusible element extends between an adjacent set of longitudinally spaced segments. A substantially uniform dimension may remain approximately equal and may not vary more than suitable manufacturing tolerances (e.g., plus or minus ten percent, etc.). For example, a fusible element may have a substantially uniform thickness as it extends between an adjacent set of longitudinally spaced segments. As another example, a fusible element may have a substantially uniform cross-sectional area as it extends between an adjacent set of longitudinally spaced segments. In other words, the cross-sectional area of a fusible element taken at any given point along a longitudinal direction of the fusible element (i.e., any given point in a direction perpendicular to the longitudinal direction) may be substantially the same. Additionally, in certain embodiments, at least one longitudinally spaced segment included in an adjacent set of segments may have a first width (taken along a widthwise direction perpendicular to the longitudinal direction). For example, one or both of the longitudinally spaced segments included in an adjacent set of segments may extend across or substantially across a width of the shield. The fusible element that connects the two segments may then have a second width that is less than the first width.
The fusible element may also be configured to fuse or break down based upon a wide variety of current and/or other signals being present on, transmitted through, or introduced to the fusible element. For example, the fusible element may have a minimum fusing current between approximately 0.001 and approximately 0.500 amperes. Additionally, a fusible element may be configured to fuse or break down within a wide variety of suitable time frames. For example, a fusible element may have a maximum time period to break down or fusing that is equal to 0.434 divided by the minimum fusing current (in amperes) to the power or exponent 1.213. In various embodiments, the fusing or break down of a fusible element may be based at least in part upon the material utilized to form the fusible element, a cross-sectional area of the fusible element, a current present on the fusible element, and/or a period of time for which the current is present. In certain embodiments, based upon the material utilized to form a fusible element, the fusible element may be sized such that it has a desired minimum fusing current (e.g., a minimum fusing current between 0.001 and 0.500 amperes). For example, the fusible element may be formed from one of (i) aluminum having a cross-sectional area between 0.157 and 1.339 square mils, (ii) copper having a cross-sectional area between 0.105 and 0.897 square mils, (iii) iron having a cross-sectional area between 0.506 and 4.324 square mils, (iv) lead having a cross-sectional area between 1.520 and 12.996 square mils, (v) nickel silver having a cross-sectional area between 0.257 and 2.197 square mils, (vi) platinum having a cross-sectional area between 0.261 and 2.230 square mils, and (vii) tin having a cross-sectional area between 1.204 and 10.298 square mils.
A wide variety of fusible element configurations may be utilized as desired within a shielding element and/or to provide electrical continuity between longitudinally spaced segments of electrically conductive material. In certain embodiments, at least one of the spaced segments may have a width that tapers as it extends longitudinally along the shielding element, and the fusible element may be formed at the narrowest point of the tapered width. In other embodiments, a gap may be formed between two longitudinally spaced segments, and a fusible element may span across the gap. As desired, a fusible element may extend across the gap in a longitudinal direction (e.g., parallel to the longitudinal direction of the shielding element), in a diagonal direction or at an angle relative to the longitudinal direction, in a direction that includes at least one curve or arc, or in any other suitable direction or combination of directions. In certain embodiments, a fusible element having a longer overall length may be more susceptible to fusing. Additionally, in certain embodiments, a fusible element may be formed on the same dielectric layer or substrate as the spaced segments. In other embodiments, a fusible element may be formed on a separate dielectric layer, and the spaced segments and the fusible element may be sandwiched by the two dielectric layers. In other embodiments, a fusible element may be formed on an opposite side of a dielectric layer from the spaced segments, and the fusible element may form an electrical connection between the segments when a shield layer is wrapped around one or more conductors. In yet other embodiment, a fusible element may be formed as an independent component (e.g., a wire, etc.) that is positioned over the spaced segments.
As a result of incorporating one or more fusible elements into a shielding element, a continuous shield layer may be provided that does not need to be grounded on either end. The shielding layer may provide electromagnetic shielding for one or more conductors incorporated into a cable. In the event that a potentially dangerous current or charge is present on the shielding element, one or more fusible elements may break down or fuse, thereby severing the electrical continuity of the shielding element. Accordingly, the fusible elements may limit or prevent damage to equipment connected to a cable incorporated the shielding element. In certain embodiments, use of fusible elements may also reduce or limit shock hazards resulting from potentially dangerous currents present on the shielding element.
Embodiments of the disclosure now will be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the disclosure are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
With reference to
According to an aspect of the disclosure, the cable 100 may also include one or more shielding elements. Shielding elements may include, for example, shield layers wrapped around or enclosing one or more conductors (e.g., one or more of the twisted pairs 105A-D, etc.) and/or a separation filler 110 incorporating shielding material and positioned between one or more conductors (e.g., one or more of the twisted pairs 105A-D). As explained in greater detail below, at least one of the shielding elements may include at least one fusible element. For example, a shielding element may include a plurality of longitudinally spaced segments of electrically conductive material, and a respective fusible element may be positioned between each adjacent set or pair of longitudinally spaced segments. Additionally, an outer jacket 115 may be formed around the twisted pairs 105A-D and one or more shielding elements.
In certain embodiments, one or more shield layers can be disposed between the jacket 115 and one or more additional cable components. For example, an external shield 120 or an overall shield may be disposed between the jacket 115 and the twisted pairs 105A-D (or other electrical conductors). As another example, as illustrated in
A shield layer, such as an external shield 120 or an individual twisted pair shield, may be formed from a wide variety of suitable materials and/or utilizing a wide variety of suitable techniques. In certain embodiments, a shield layer may be formed with a plurality of layers. For example, electrically conductive material may be formed on a dielectric substrate to form a shield layer. According to an aspect of the disclosure, the electrically conductive material may be arranged into a plurality of longitudinally spaced segments or patches. Additionally, each adjacent set or pair of segments may be electrically connected to one another by one or more fusible elements. As desired in various embodiments, a fusible element may be formed from the same electrically conductive material as the spaced segments or alternatively from a different electrically conductive material. Additionally, in certain embodiments, a fusible element may be formed on the same dielectric layer or substrate as the spaced segments. In other embodiments, a fusible element may be formed on a separate dielectric layer, and the spaced segments and the fusible element may be sandwiched between the two dielectric layers. In other embodiments, one or more fusible elements may be formed on an opposite side of a dielectric layer, and the fusible elements may extend between adjacent sets of spaced segments when the shield layer is wrapped around one or more conductors. In yet other embodiments, a fusible element may be formed as an independent component (e.g., a wire, etc.) that is positioned over the spaced segments. Example shield layer constructions and fusible element configurations are described in greater detail below with reference to 5A-8E.
Any number of electrical conductors, such as one or more twisted pairs, may be utilized as desired in the cable 100. As shown in
The twisted pair insulation (or insulation for other suitable conductors) may include any suitable dielectric materials and/or combination of materials. Examples of suitable dielectric materials include, but are not limited to, one or more polymeric materials, one or more polyolefins (e.g., polyethylene, polypropylene, etc.), one or more fluoropolymers (e.g., fluorinated ethylene propylene (“FEP”), melt processable fluoropolymers, MFA, PFA, ethylene tetrafluoroethylene (“ETFE”), ethylene chlorotrifluoroethylene (“ECTFE”), etc.), one or more polyesters, polyvinyl chloride (“PVC”), one or more flame retardant olefins, a low smoke zero halogen (“LSZH”) material, etc.), nylon, polyurethane, neoprene, cholorosulphonated polyethylene, flame retardant PVC, low temperature oil resistant PVC, flame retardant polyurethane, flexible PVC, one or more thermoplastic materials, one or more thermoset materials, one or more cross-linked materials, or a combination of any of the above materials. Additionally, in certain embodiments, the insulation of each of the electrical conductors utilized in the twisted pairs 105A-D may be formed from similar materials. For example, in certain plenum cables, each of the twisted pairs 105A-D may include FEP insulation. In other embodiments, at least two of the twisted pairs may utilize different insulation materials. In yet other embodiments, the two conductors that make up a twisted pair 105 may utilize different insulation materials. As desired in certain embodiments, insulation may additionally include a wide variety of other materials (e.g., filler materials, materials compounded or mixed with a base insulation material, etc.), such as smoke suppressant materials, flame retardant materials, etc.
In various embodiments, twisted pair insulation may be formed from one or multiple layers of insulation material. A layer of insulation may be formed as solid insulation, unfoamed insulation, foamed insulation, or other suitable insulation. As desired, combinations of different types of insulation may be utilized. For example, a foamed insulation layer may be covered with a solid foam skin layer. As desired with foamed insulation, different foaming levels may be utilized for different twisted pairs in accordance with twist lay length to assist in balancing propagation delays between the twisted pairs. Additionally, the insulation may be formed with any suitable thickness, inner diameter, outer diameter, and/or other dimensions.
Each twisted pair 105 can carry data or some other form of information, for example in a range of about one to ten Giga bits per second (“Gbps”) or other suitable data rates, whether higher or lower. In certain embodiments, each twisted pair 105 supports data transmission of about two and one-half Gbps (e.g. nominally two and one-half Gbps), with the cable 100 supporting about ten Gbps (e.g. nominally ten Gbps). In certain embodiments, each twisted pair 105 supports data transmission of up to about ten Gbps (e.g. nominally ten Gbps), with the cable 100 supporting about forty Gbps (e.g. nominally forty Gbps).
Each twisted pair 105 may also be formed with any suitable twist lay. In certain embodiments, each of the twisted pairs 105A-D may be formed with similar or approximately equal twist lays. In other embodiments, a desired number of the twisted pairs 105A-D may be formed with different respective twist lays. For example, each of the twisted pairs 105A-D may have a different twist lay. The different twist lays may function to reduce crosstalk between the twisted pairs, and a wide variety of suitable twist lay configurations may be utilized. In certain embodiments, the respective twist lays for the twisted pairs 105A-D may be selected, calculated, or determined in order to result in a cable 100 that satisfies one or more standards and/or electrical requirements. For example, twist lays may be selected such that the cable 100 satisfies one or more electrical requirements of a Category 5, Category 5e, Category 6, Category 6A, or other suitable standard. Twist lays may be selected in order to satisfy a wide variety of other electrical requirements as desired in various embodiments.
In certain embodiments, the differences between twist lays of twisted pairs that are circumferentially adjacent one another (for example the twisted pair 105A and the twisted pair 105B) may be greater than the differences between twist lays of twisted pairs that are diagonal from one another (for example the twisted pair 105A and the twisted pair 105C). As a result of having similar twist lays, the twisted pairs that are diagonally disposed can be more susceptible to crosstalk issues than the twisted pairs that are circumferentially adjacent; however, the additional distance between the diagonally disposed pairs may limit the crosstalk. Thus, the different twist lays and arrangements of the pairs can help reduce crosstalk among the twisted pairs 105A-D. As desired, the plurality of twisted pairs 105A-D may be twisted together with an overall twist or bunch. Any suitable overall twist lay or bunch lay may be utilized. Further, in certain embodiments, each of the twisted pairs 105A-D may be twisted in the same direction (e.g., clockwise, counter clockwise, etc.). In other embodiments, at least two of the twisted pairs 105A-D may be twisted in opposite directions. Additionally, a overall twist may be formed in any suitable direction. Indeed, a wide variety of suitable twist lays and twist directions may be utilized as desired in various embodiments.
As desired in certain embodiments, one or more suitable bindings or wraps may be wrapped or otherwise formed around the twisted pairs 105A-D once they are twisted together. Additionally, in certain embodiments, multiple grouping of twisted pairs may be incorporated into a cable. As desired, each grouping may be twisted, bundled, and/or bound together. Further, in certain embodiments, the multiple groupings may be twisted, bundled, or bound together.
In addition to or in the alternative to one or more twisted pairs 105A, a cable 100 may be formed with other suitable configurations of electrical conductors. For example, the cable 100 may be formed with a single conductors, a plurality of parallel conductors, or a plurality of conductors that are stranded together or stranded around a central element. As another example, the cable 100 may be formed with a combination of one or more twisted pairs and other electrical conductors. Regardless of the number and/or types of electrical conductors incorporated into the cable 100, one or more shield layers and/or other shielding elements may be incorporated into the cable 100 in a similar manner as that described herein for twisted pair cables.
The jacket 115 may enclose the internal components of the cable 100, seal the cable 100 from the environment, and provide strength and structural support. The jacket 115 may be formed from a wide variety of suitable materials and/or combinations of materials, such as such as one or more polymeric materials, one or more polyolefins (e.g., polyethylene, polypropylene, etc.), one or more fluoropolymers (e.g., fluorinated ethylene propylene (“FEP”), melt processable fluoropolymers, MFA, PFA, ethylene tetrafluoroethylene (“ETFE”), ethylene chlorotrifluoroethylene (“ECTFE”), etc.), one or more polyesters, polyvinyl chloride (“PVC”), one or more flame retardant olefins (e.g., flame retardant polyethylene (“FRPE”), flame retardant polypropylene (“FRPP”), a low smoke zero halogen (“LSZH”) material, etc.), polyurethane, neoprene, cholorosulphonated polyethylene, flame retardant PVC, low temperature oil resistant PVC, flame retardant polyurethane, flexible PVC, or a combination of any of the above materials. The jacket 115 may be formed as a single layer or, alternatively, as multiple layers. In certain embodiments, the jacket 115 may be formed from one or more layers of foamed material. As desired, the jacket 115 can include flame retardant and/or smoke suppressant materials. Additionally, the jacket 115 may include a wide variety of suitable shapes and/or dimensions. For example, the jacket 115 may be formed to result in a round cable or a cable having an approximately circular cross-section; however, the jacket 115 and internal components may be formed to result in other desired shapes, such as an elliptical, oval, or rectangular shape. The jacket 115 may also have a wide variety of dimensions, such as any suitable or desirable outer diameter and/or any suitable or desirable wall thickness. In various embodiments, the jacket 115 can be characterized as an outer jacket, an outer sheath, a casing, a circumferential cover, or a shell.
An opening enclosed by the jacket 115 may be referred to as a cable core, and the twisted pairs 105A-D may be disposed within the cable core. Although a single cable core is illustrated in the cable 100 of
In certain embodiments, the cable 100 may also include a separator 110 or filler configured to orient and or position one or more of the twisted pairs 105A-D. The orientation of the twisted pairs 105A-D relative to one another may provide beneficial signal performance. As desired in various embodiments, the separator 110 may be formed in accordance with a wide variety of suitable dimensions, shapes, or designs. For example, a rod-shaped separator, a flat tape separator, a flat separator, an X-shaped or cross-shaped separator, a T-shaped separator, a Y-shaped separator, a J-shaped separator, an L-shaped separator, a diamond-shaped separator, a separator having any number of spokes extending from a central point, a separator having walls or channels with varying thicknesses, a separator having T-shaped members extending from a central point or center member, a separator including any number of suitable fins, and/or a wide variety of other shapes may be utilized. In certain embodiments, material may be extruded, cast, or molded into a desired shape to form the separator 110. In other embodiments, a tape may be formed into a desired shape utilizing a wide variety of folding and/or shaping techniques. For example, a relatively flat tape separator may be formed into an X-shape or cross-shape as a result of being passed through one or more dies.
In certain embodiments, the separator 110 may be continuous along a length of the cable 100. In other embodiments, the separator 110 may be non-continuous or discontinuous along a length of the cable 100. In other words, the separator 110 may be separated, segmented, or severed in a longitudinal direction such that discrete sections or portions of the separator 110 are arranged longitudinally (e.g., end to end) along a length of the cable 100. Use of a non-continuous or segmented separator may enhance the flexibility of the cable 100, reduce an amount of material incorporated into the cable 100, and/or reduce the cable cost.
The separator 110 may be formed from a wide variety of suitable materials as desired in various embodiments. For example, the separator 110 and/or various separator segments can include paper, metals, alloys, various plastics, one or more polymeric materials, one or more polyolefins (e.g., polyethylene, polypropylene, etc.), one or more fluoropolymers (e.g., fluorinated ethylene propylene (“FEP”), melt processable fluoropolymers, MFA, PFA, ethylene tetrafluoroethylene (“ETFE”), ethylene chlorotrifluoroethylene (“ECTFE”), etc.), one or more polyesters, polyvinyl chloride (“PVC”), one or more flame retardant olefins (e.g., flame retardant polyethylene (“FRPE”), flame retardant polypropylene (“FRPP”), a low smoke zero halogen (“LSZH”) material, etc.), polyurethane, neoprene, cholorosulphonated polyethylene, flame retardant PVC, low temperature oil resistant PVC, flame retardant polyurethane, flexible PVC, or any other suitable material or combination of materials. As desired, the separator 110 may be filled, unfilled, foamed, un-foamed, homogeneous, or inhomogeneous and may or may not include additives (e.g., flame retardant and/or smoke suppressant materials).
In certain embodiments, electrically conductive material may be incorporated into a separator 110. For example, a separator 110 may include electrically conductive material formed on or adhered to a dielectric substrate or base (e.g., a tape that is folded into a desired separator shape, an extruded dielectric base, etc.). As another example, a separator 110 may include electrically conductive material embedded into a dielectric material or sandwiched between two dielectric layers. As a result of incorporating electrically conductive material, the separator 110 may function as a shielding element. Additionally, in certain embodiments and as described in greater detail below, electrically conductive material incorporated into a separator 110 may include a plurality of longitudinally spaced segments of electrically conductive material. One or more fusible elements may be utilized to electrically connect adjacent sets or pairs of the longitudinally spaced segments of electrically conductive material. Indeed, one or more fusible elements may be incorporated into a separator 110 in similar manners as those described herein with reference to shield layer or other suitable shielding elements.
As set forth above, a wide variety of different types of shielding elements (e.g., shield layers, separators that include shielding material, etc.) and/or combinations of shielding elements may be incorporated into a cable 100. A shielding element may provide electromagnetic interference (“EMI”) or radio-frequency interference (“RFI”) shielding for one or more conductors (e.g., one or more twisted pairs 105A-D, etc.) incorporated into the cable 100. For example, a shielding element may provide shielding for one or more shielded conductors that reduces the effects of crosstalk between other conductors in a cable 100, alien crosstalk from external conductors or cables, electromagnetic induction, and/or electrostatic coupling from one or more external sources. The shielding effects may assist the cable 100 in satisfying one or more desired electrical performance criteria, such as the requirements of a Category 5, Category 5e, Category 6, Category 6A, or other suitable standard. Additionally, in certain embodiments, the electrically conductive shielding material incorporated into a shielding element may be formed with suitable dimensions to provide desired shielding performance, such as performance that allows the cable 100 to satisfy one or more suitable standards. For example, the shielding material may provide EMI performance that allows the cable 100 to satisfy the Category 6 or Category 6A standard as defined in ANSI/TIA-568.2-D published by the Telecommunications Industry Association (“TIA”).
The shielding elements incorporated into a cable 100 may utilize a wide variety of different materials and/or have a wide variety of suitable configurations. For example, a wide variety of suitable electrically conductive materials or combinations of materials may be utilized in a shielding element including, but not limited to, metallic material (e.g., silver, copper, annealed copper, gold, aluminum, iron, lead, platinum, tin, etc.), metallic alloys (e.g., nickel silver, etc.), conductive composite materials, etc. Indeed, suitable electrically conductive materials may include any material having an electrical resistivity of less than approximately 1×10−7 ohm meters at approximately 20° C., such as an electrical resistivity of less than approximately 3×10−8 ohm meters at approximately 20° C. According to an aspect of the disclosure, at least one shielding element may include a plurality of longitudinally spaced segment of electrically conductive material. Each segment may have any desired dimensions, such as any desired lengths, widths, and/or thicknesses. Further, one or more fusible elements may span between each set of longitudinally adjacent segments. Each fusible element may have a wide variety of suitable lengths, widths, thicknesses, cross-sectional areas and/or other dimensions. In certain embodiments, a fusible element may be formed from the same material as the segments of electrically conductive material. In other embodiments, a fusible element may be formed from a different electrically conductive material.
A wide variety of suitable techniques and/or processes may be utilized to form a shielding element, such as a shield layer 120 or a separator 110. For example, a separator 110 may be formed by extruding, pultruding, or otherwise forming a base dielectric layer, and electrically conductive material may then be applied or adhered to the base material. As desired, a base layer in a separator 110 may have a substantially uniform composition and/or may be made of a wide range of materials. Additionally, the base layer may be fabricated in any number of manufacturing passes, such as a single manufacturing pass. Further, the base layer may be foamed, may be a composite, and/or may include one or more strength members, fibers, threads, or yarns. As desired, flame retardant material, smoke suppressants, and/or other desired substances may be blended or incorporated into the base layer. Additionally, as desired, the base layer may be hollow to provide a cavity that may be filled with air or some other gas, gel, fluid, moisture absorbent, water-swellable substance, dry filling compound, powder, one or more optical fibers, one or more metallic conductor (e.g., a drain wire, etc.), shielding, or some other appropriate material or element. In certain embodiments, a fusible element may also be formed on the base dielectric layer of the separator 110. In other embodiments, a fusible element may be positioned adjacent to the base dielectric layer and segments of electrically conductive material. For example, a fusible element may be formed on a second dielectric layer or as a separate element that is positioned adjacent to the base components of the separator 110.
In certain embodiments, a shielding element, such as a shield layer (e.g., an external shield layer 120, an individual twisted pair shield, etc.) or separator 110, may be formed as a tape that includes both a dielectric layer (e.g., plastic, polyester, polyethylene, polypropylene, fluorinated ethylene propylene, polytetrafluoroethylene, polyimide, or some other polymer or dielectric material that does not ordinarily conduct electricity, etc.) and electrically conductive material (e.g., copper, aluminum, silver, an alloy, etc.) formed on or otherwise attached (e.g., adhered, etc.) to the dielectric layer. For example, longitudinally spaced segments of electrically conductive material and, in certain embodiments, one or more fusible elements, may be formed on or attached to the dielectric layer. In the event that an adhesive is utilized to join a dielectric layer and electrically conductive material, a wide variety of suitable adhesives can be used. In other embodiments, electrically conductive material (e.g., longitudinally spaced segments, fusible elements, etc.) may be formed on a dielectric layer via any number of suitable techniques, such as the application of metallic ink or paint, liquid metal deposition, vapor deposition, welding, heat fusion, adherence of patches to the dielectric, etc. In certain embodiments, a dielectric layer and electrically conductive material may be over-coated with a second dielectric layer. For example, a separate or second dielectric layer may be formed over a first dielectric layer on which longitudinally spaced segments of electrically conductive material and fusible elements are formed. As another example, electrically conductive material utilized to form fusible elements may be formed on a second dielectric layer, and the second dielectric layer may be positioned over the first dielectric layer and longitudinally spaced segments. In either case, the spaced segments and fusible elements may be sandwiched between two dielectric layers. Indeed, any number of suitable layers of material may be utilized to form a tape which may be used as a shielding element.
A base dielectric layer incorporated into a shielding element may be formed from a wide variety of suitable materials and/or combinations of materials. Examples of suitable materials include, but are not limited to, paper, various plastics, one or more polymeric materials, one or more polyolefins (e.g., polyethylene, polypropylene, etc.), one or more fluoropolymers (e.g., fluorinated ethylene propylene (“FEP”), melt processable fluoropolymers, MFA, PFA, polytetrafluoroethylene, ethylene tetrafluoroethylene (“ETFE”), ethylene chlorotrifluoroethylene (“ECTFE”), etc.), one or more polyesters, polyimide, polyvinyl chloride (“PVC”), one or more flame retardant olefins (e.g., flame retardant polyethylene (“FRPE”), flame retardant polypropylene (“FRPP”), a low smoke zero halogen (“LSZH”) material, etc.), polyurethane, neoprene, cholorosulphonated polyethylene, flame retardant PVC, low temperature oil resistant PVC, flame retardant polyurethane, flexible PVC, or any other suitable material or combination of materials. As desired, one or more foamed materials may be utilized to form a base dielectric layer. Indeed, a base dielectric layer may be filled, unfilled, foamed, un-foamed, homogeneous, or inhomogeneous and may or may not include one or more additives (e.g., flame retardant and/or smoke suppressant materials).
The base dielectric layer may also be formed with a wide variety of suitable dimensions. For example, the base dielectric layer may have any suitable width. In certain embodiments, the width may be determined based at least in part upon a desired cable component (e.g., a shield, a separator, etc.) to be formed from a shielding element. In other embodiments, the width may be determined based at least in part upon a desired number of twisted pairs and/or other components to be encompassed by a shielding element. In certain example embodiments, the base dielectric layer may have a width W between approximately five (5) mm and approximately thirty (30) mm. For example, the base dielectric layer may have a width of approximately 5, 10, 15, 20, 25, or 30 mm, a width included in a range between two of the above values, or a width included in a range that is bounded at either a minimum or maximum end by one of the above values. Additionally, the base dielectric layer may be formed with any suitable thickness. For example, a base dielectric layer may have a thickness of about 0.025 mm (about 1 mil or thousandths of an inch) to about 0.12 mm (about 5 mils) or a thickness of about 10 to about 125 microns. In certain embodiments, the base dielectric layer may also be continuous along a longitudinal length of the cable 100.
According to an aspect of the disclosure, at least one shielding element may include a plurality of longitudinally spaced segments of electrically conductive material. Additionally, adjacent sets or pairs of the plurality of longitudinally spaced segments may be electrically connected to one another by one or more suitable fusible elements. In certain embodiments, segments of electrically conductive material may be formed on a base dielectric layer, such as a dielectric layer of a tape or an extruded or otherwise formed base layer of a separator. Any suitable number of longitudinally spaced segments of electrically conductive material may be incorporated into a shielding element. Further, each segment may include a wide variety of suitable dimensions, for example, any suitable lengths in the longitudinal direction, any suitable width across the base dielectric layer, and/or any suitable thicknesses. In certain embodiments, the longitudinally spaced segments may be formed in accordance with a pattern having a repeating step. For example, the segments may have lengths and/or spacings between segments that are arranged in a pattern. In other embodiments, the longitudinally spaced segments may be formed or arranged in a random or pseudo-random manner. As desired, the dimensions of the segments can be selected to provide electromagnetic shielding over a specific band of electromagnetic frequencies or above or below a designated frequency threshold.
Each of the longitudinally spaced segments of electrically conductive material may be formed with any suitable length. In certain embodiments, each of the segments may have equal or approximately equal lengths. In other embodiments, at least two segments may have different longitudinal lengths. In certain embodiments, each segment may have a length of about 0.1 meters to about ten meters or greater, although smaller lengths (e.g., lengths of about 0.03 to about 0.05 m, etc.) may be utilized. For example, each segment may have a length of at least 0.1 meters. In various embodiments, the segments may have longitudinal lengths of about 0.01, 0.02, 0.03, 0.05, 0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 meters or in a range between any two of these values. Additionally, each of the longitudinally spaced segments may have any suitable width. In certain embodiments, each segment may have equal or approximately equal widths. In other embodiments, at least two segments may have different widths. Further, in certain embodiments, one or more segments may have widths that span across or approximately across (e.g., with a narrow space of dielectric material present on one or both sides) the width of an underlying base layer. In other words, the longitudinally spaced segments may span across or substantially across the base layer in a widthwise direction or dimension perpendicular to the longitudinal direction. In other embodiments, one or more segments may have widths that are substantially smaller than that of the underlying base dielectric layer. For example, a shielding element may be formed with two or more parallel rows of longitudinally spaced segments, and the two or more rows may be spaced along a widthwise dimension of the base dielectric layer. Each of the one or more rows of longitudinally spaced segments may include respective fusible elements.
Additionally, the longitudinally spaced segments may include electrically conductive material having any desired thickness, such as a thickness of about 13 microns (0.5 mils) or greater. In many applications, signal performance of a cable 100 may benefit from a thickness that is greater than about 50 microns, for example in a range of about 50 to about 65 microns, about 50 to about 57 microns, about 57 to about 65 microns, about 65 to about 76 microns, or about 50 to about 76 microns. Indeed, with a thickness of less than about 38 microns (1.5 mils), negative insertion loss characteristics may be present on the cable 100. A wide variety of other configurations including different thicknesses will also be appreciated.
In certain embodiments, the longitudinally spaced segments of electrically conductive material may be sized in order to provide desired EMI shielding performance. For example, the spaced segments may have widths, lengths, and/or thicknesses that provide desired EMI shielding performance, such as shielding performance that facilities the cable 100 satisfying one or more suitable standards. In certain embodiments, the spaced segments may occupy a sufficient surface area of a shielding element to permit the shielding element to provide desired EMI shielding performance. In other words, the spaced segments may occupy a much greater surface area than any gaps or spaces formed between the spaced segments (e.g., gaps across which fusible elements extend, etc.). In certain embodiments, the spaced segments may occupy greater than eighty percent (80%) of the surface area of a shielding element. In other embodiments, the spaced segments may occupy greater than 75, 80, 85, 88, 90, 92, 94, 95, 96, 98, or 99 percent of the surface area of a shielding element.
Additionally, the longitudinally spaced segments may be formed with any suitable shapes as desired in various embodiments. In certain embodiments, gaps or spaces may be formed between adjacent segments, and one or more fusible elements may span each gap. For example, the spaced segments may be formed with rectangular shapes extending in a longitudinal direction, and one or more fusible elements may span gaps between adjacent rectangular segments.
In other embodiments, one or more spaced segments may be formed with portions that taper along a longitudinal direction. For example, a spaced segment included in a pair of longitudinally adjacent segments may have a width that tapers or narrows along a longitudinal direction as it approaches the adjacent segment. In certain embodiments, a single segment included in a pair of adjacent spaced segments may taper or narrow. In other embodiments, both of the segments included in a pair of spaced segments may taper or narrow as they approach one another. Additionally, in certain embodiment, a first segment may extend towards an adjacent second segment with a single tapering portion or section.
As set forth above, one or more respective fusible elements may span between or provide electrical continuity between each set of longitudinally adjacent spaced segments, sections, or patches of electrically conductive material. A fusible element may be configured to fuse or break down in the event that a threshold current is present on, transmitted through, or introduced to the fusible element. Once the one or more fusible elements spanning between a set of adjacent spaced segments have fused or broken down, the electrical continuity between the segments may be severed, thereby prevent an electrical current from propagating longitudinally along the shielding element. As a result, the fusible elements may function as a safety mechanism for equipment connected to the cable 100 and/or may reduce or limit the shock hazard of the shielding element.
A fusible element may be formed or designed to have a wide variety of suitable minimum fusing currents. In certain embodiments, a fusible element may have a minimum fusing current between approximately 0.001 and approximately 0.500 amperes. In various embodiments, a fusible element may have a minimum fusing current of 0.001, 0.005, 0.010, 0.020, 0.030, 0.040, 0.050, 0.075, 0.10, 0.125, 0.15, 0.175, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50 amperes, or a minimum fusing current included in a range between any two of the above values. Additionally, a fusible element may be configured to fuse or break down within a wide variety of suitable time frames. For example, a fusible element may have a maximum time period to break down or fusing defined by equation one (1) below:
T
F=0.0434/(CF1.213) (1)
where TF is the maximum time period until fusing or break down and CF is the minimum fusing current.
In various embodiments, the fusing or break down of a fusible element may be based at least in part upon several different factors including, but not limited to, the material(s) utilized to form the fusible element, a cross-sectional area of the fusible element, a current present on the fusible element, and/or a period of time for which the current is present. As desired, one or more materials utilized to form a fusible element and one or more dimensions of the fusible element (e.g., a width, a thickness, a cross-sectional area, etc.) may be selected in order to attain a desired minimum fusing current and/or maximum time until fusing.
A fusible element may be formed from a wide variety of suitable materials and/or combinations of materials. Examples of suitable materials that may be utilized to form a fusible element include, but are not limited to, metallic material (e.g., silver, copper, annealed copper, gold, aluminum, iron, lead, platinum, tin etc.), metallic alloys (e.g., nickel silver, etc.), conductive composite materials, etc. In certain embodiments, a fusible element and the longitudinally spaced segments connected by the fusible element may be formed from the same electrically conductive material. In other embodiments, the longitudinally spaced segments may be formed from a first electrically conductive material while the fusible element is formed from a second electrically conductive material.
In certain embodiments, a fusible element may be formed across or span across a longitudinal gap, spacing, or distance between two adjacent spaced segments of electrically conductive material. The fusible element may span across any suitable longitudinal gap as desired in various embodiments. For example, a fusible element may span across a longitudinal gap of approximately 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10, 12, 15, or 20 millimeters, a longitudinal gap or length included in a range between any two of the above values, or a longitudinal gap or length included in a range bounded on either a minimum or maximum end by one of the above values. In certain embodiments, a fusible element may span across a longitudinal gap that is large enough to prevent current from arcing across the gap once the fusible element has fused or broken down. Further, as explained in greater detail below, a fusible element may extend across a longitudinal gap or spacing in a wide variety of directions and/or combinations of directions.
Additionally, a fusible element may be formed with a wide variety of suitable dimensions, such as any suitable lengths, widths, thicknesses, cross-sectional areas, and/or other dimensions. In certain embodiments, a length of a fusible element may correspond to or incorporate the sections of one or more tapered portions of spaced segment that will fuse with a desired minimum fusing current. For example, one or both spaced segments included in an adjacent pair of spaced segments may taper as they approach one another. The tapering may result in progressively less electrically conductive material. The fusible element may begin at a point in which the electrically conductive material becomes small enough to fuse with a desired minimum fusing current. Accordingly, in certain embodiments, the fusible element may be formed as part of one or more spaced segments. For example, the fusible element may be formed at or proximate to a narrowest point of one or more tapering portions of spaced segments. In other embodiments, a fusible element may extend from the end of a narrowest point of a tapered portion of a spaced segment towards an adjacent spaced segment.
In other embodiments, a length of a fusible element may be approximately equal to the longitudinal gap or spacing formed between two adjacent spaced segments. For example, a fusible element may extend across a gap in a longitudinal direction between two adjacent spaced segments. In yet other embodiments, a length of a fusible element may be greater than the longitudinal length of a gap or spacing formed between two adjacent spaced elements. For example, a fusible element may extend across a gap at an angle relative to the longitudinal direction, in a direction that includes one or more curves or arcuate portions, or in a fashion that includes one or more changes of directions. In certain embodiments, a longer length of a fusible element may increase the likelihood of the fusible element fusing in the event that a fusing current is applied. A longer length results in the current propagating over a longer distance, thereby enhancing likelihood of fusing or break down.
A fusible element may also be formed with any suitable width (e.g., a dimension in a widthwise direction perpendicular to a longitudinal direction), thickness, and/or cross-sectional area. As set forth above, the minimum fusing current for a fusible element may be based at least in part on the cross-sectional area of the fusible element. The cross-sectional area of the fusible element may be based at least in part upon a width, thickness, diameter, and/or other dimensions of the fusible element. As desired, one or more dimensions of a fusible element may be selected in order to result in fusible element having a desired minimum fusing current. Further, the one or more dimensions of the fusible element may also be based at least in part upon the material utilized to form the fusible element. In certain embodiments, a fusible element may have a constant width, thickness, and/or cross-sectional area across its length. In other embodiments, a fusible element may have a width, thickness, and/or a cross-sectional area that is varied across its length. For example, a fusible element that is formed from parts of one or more tapering or narrowing portions of spaced segment may have a width that varies across its length (e.g., a width that narrows with a tapering section of a first segment and then widens with a tapering section of an adjacent second segment, etc.). Additionally, in certain embodiments, a fusible element may have a width that is smaller than that of one or both of the spaced segments connected by the fusible element. In other words, a spaced segment may have a first width that is greater than a second width of the fusible element. In certain embodiments, the spaced segments may span across or substantially across a width dimension of the shield (e.g., the width of the base layer). A fusible element may then have a smaller width (and typically a much smaller width) than the spaced segments, such as a width that does not span across the width dimension of the shield.
In certain embodiments, a fusible element may have a thickness that is approximately equal to the thickness of the longitudinal spaced segments of electrically conductive material. For example, the fusible element may have thickness that is approximately equal to any of the example thicknesses discussed above with reference to the spaced segments. In other embodiments, a fusible element may have a thickness that is less than that of the longitudinally spaced segments joined by the fusible element. The cross-sectional area of the fusible element may be reduced as a result of the smaller thickness, thereby enhancing the fusibility of the fusible element. Regardless of whether the fusible element has a thickness that is approximately equal to or less than that of the spaced segments, In certain embodiments, the fusible element may have a relatively constant or substantially uniform thickness along its length. In other words, the thickness of the fusible element may not vary or may vary no more than suitable manufacturing tolerances (e.g., plus or minus five percent, plus or minus ten percent, etc.). In other embodiments, a thickness of the fusible element may vary along its length. Similarly, in certain embodiments, a fusible element may have a substantially uniform cross-sectional area as it extends between an adjacent set of longitudinally spaced segments. In other words, the cross-sectional area of a fusible element taken at any given point along a length of the fusible element (e.g., at any given point in a direction perpendicular to the longitudinal direction) may be substantially the same (or may be approximately equal given suitable manufacturing tolerances).
As set forth above, in certain embodiments, a fusible element may be sized such that the fusible element has a desired minimum fusing current (e.g., a minimum fusing current between 0.001 and 0.500 amperes). For example, a fusible element may have a cross-sectional area at any given point along its length (e.g., its length in a longitudinal direction) that results in the fusible element having a desired fusing current. Additionally, the sizing of a fusible element may be based at least in part upon the material utilized to form a fusible element. A wide variety of fusible elements may be formed from different materials that are sized to have a desired minimum fusing current in various embodiments. For example, a fusible element may be formed from aluminum having a cross-sectional area between 0.157 and 1.339 square mils. As another example, a fusible element may be formed from copper having a cross-sectional area between 0.105 and 0.897 square mils. As another example, a fusible element may be formed from iron having a cross-sectional area between 0.506 and 4.324 square mils. As another example, a fusible element may be formed from lead having a cross-sectional area between 1.520 and 12.996 square mils. As another example, a fusible element may be formed from nickel silver having a cross-sectional area between 0.257 and 2.197 square mils. As another example, a fusible element may be formed from platinum having a cross-sectional area between 0.261 and 2.230 square mils. As yet another example, a fusible element may be formed from tin having a cross-sectional area between 1.204 and 10.298 square mils. Other suitable materials may be sized accordingly to result in a desired minimum fusing current.
A wide variety of suitable fusible element configurations may be utilized as desired within a shielding element and/or to provide electrical continuity between longitudinally spaced segments of electrically conductive material. In certain embodiments, at least one of the spaced segments may have a width that tapers as it extends longitudinally along the shielding element, and the fusible element may be formed at the narrowest point of the tapered width. A few example fusible elements formed within or proximate to one or more tapered portions are described in greater detail below with reference to
Additionally, in certain embodiments, a fusible element may be formed on the same dielectric layer, base layer, or substrate as the longitudinally spaced segments. For example, the fusible element and the longitudinally spaced segments may be formed on the same side of the dielectric layer. As another example, as explained in greater detail below with reference to
As a result of incorporating one or more fusible elements into a shielding element, a continuous shield layer may be provided that does not need to be grounded on either end. In the event that a potentially dangerous current or charge is present on the shielding element, one or more fusible elements may break down or fuse, thereby severing the electrical continuity of the shielding element. Accordingly, the fusible elements may limit or prevent damage to equipment connected to a cable incorporated the shielding element. In certain embodiments, use of fusible elements may also reduce or limit shock hazards resulting from potentially dangerous currents present on the shielding element. As desired, a minimum fusing current of a fusible element may be based at least in part on equipment tolerances and/or safety standards.
In certain embodiments and as illustrated in
A wide variety of other materials may be incorporated into the cable 100 as desired. For example, in certain embodiments, a respective dielectric separator or demarcator (not shown in
In certain embodiments, a dielectric separator may be woven helically between the individual conductors or conductive elements of a twisted pair 105. In other words, the dielectric separator may be helically twisted with the conductors of the twisted pair 105 along a longitudinal length of the cable 100. In certain embodiments, the dielectric separator may maintain spacing between the individual conductors of the twisted pair 105 and/or maintain the positions of one or both of the individual conductors. For example, the dielectric separator may be formed with a cross-section (e.g., an X-shaped cross-section, an H-shaped cross-section, etc.) that assists in maintaining the position(s) of one or both the individual conductors of the twisted pair 105. In other words, the dielectric separator may reduce or limit the ability of one or both of the individual conductors to shift, slide, or otherwise move in the event that certain forces, such as compressive forces, are exerted on the cable 100. In other embodiments, a dielectric separator may be formed as a relatively simple film layer that is positioned between the individual conductors of a twisted pair 105.
Additionally, in certain embodiments, a dielectric separator may include one or more portions that extend beyond an outer circumference of a twisted pair 105. When the individual conductors of a twisted pair 105 are wrapped together, the resulting twisted pair 105 will occupy an approximately circular cross-section along a longitudinal length of the cable 100, although the cross-section of the twisted pair 105 is not circular at any given point along the longitudinal length. In certain embodiments, a dielectric separator may extend beyond the outer circumference formed by the twisted pair 105. In this regard, the dielectric separator may maintain a desired distance between the twisted pair 105 and a shield layer, such as shield layer 110. Thus, when the shield layer 110 is formed around the twisted pair 105, a circumference of the shield layer 110 will be greater than that of the twisted pair 105. In other embodiments, a dielectric separator may include portions that extend beyond a twisted pair 105 and that are wrapped around the twisted pair 105. As a result, a dielectric separator may be utilized to form a shield layer (e.g., an individual shield layer, etc.) around a twisted pair 105. As desired, electrically conductive shielding material may be incorporated into the portions of a dielectric separator that form a shield layer. Further, in certain embodiments, a shielding portion or section of a dielectric separator may include longitudinally spaced segments of electrically conductive material and respective fusible elements that provide electrical continuity between adjacent spaced segments. In other words, a shielding portion or section of a dielectric separator may be formed in a similar manner as the other shielding elements described herein.
Other materials may be incorporated into a cable 100 as desired in other embodiments. For example, as set forth above, the cable 100 may include any number of conductors, twisted pairs, optical fibers, and/or other transmission media. In certain embodiments, one or more tubes or other structures may be situated around various transmission media and/or groups of transmission media. Additionally, as desired, a cable may include a wide variety of strength members, swellable materials (e.g., aramid yarns, blown swellable fibers, etc.), insulating materials, dielectric materials, flame retardants, flame suppressants or extinguishants, gels, and/or other materials.
With continued reference to
Further, the cable 200 includes respective dielectric separators 225A-D positioned between the individual conductors of the respective twisted pairs 205A-D. The dielectric separators 225A-D are formed as dielectric films that may maintain separation between the conductors of the twisted pairs 205A-D. Additionally, in certain embodiments, the dielectric separators 225A-D may extend beyond an outer circumference of the twisted pairs, thereby maintaining a desired separation distance between the twisted pairs 205A-D and the individual pair shields 210A-D. In other embodiments, the dielectric separators 225A-D may extend beyond and be wrapped around an outer periphery of each respective twisted pair. As a result, a dielectric separator may be utilized to form an individual shield around a twisted pair. As desired, a shielding portion of a dielectric separator may be formed with a plurality of longitudinally spaced segments of electrically conductive material and one or more respective fusible elements that provide electrical continuity between each longitudinally adjacent set or pair of spaced segments.
The separator 310 illustrated in
With continued reference to
Further, the cable 300 of
The cables 100, 200, 300 illustrated in
A wide variety of suitable techniques may be utilized as desired to wrap one or more twisted pairs with a shield layer.
In certain applications, two conductors, which are typically individually insulated, will be twisted together to form a twisted pair 105. The shield layer 120 may then be wrapped around the twisted pair 105. Alternatively, the shield layer 120 may be wrapped around multiple twisted pairs of conductors, such as twisted pairs that have been twisted, bunched, or cabled together. During wrapping, one edge (or both edges) of the shield layer (e.g., the distal edge opposite the edge at which the twisted pair(s) is positioned) may be brought up over the twisted pair(s) 105, thereby encasing the twisted pair(s) 105 or wrapping the shield layer around or over the twisted pair(s) 105. In an example embodiment, the motion can be characterized as folding or curling the shield layer over the twisted pair(s) 105. In certain embodiments, an overlap may be formed when the shield layer is wrapped around the twisted pair(s) 105. For example, a first edge of the shield layer may extend over an opposite edge of the shield layer following the wrapping operation such that a portion of the shield layer overlaps itself.
In certain embodiments, the shield layer 120 may be wrapped around the twisted pair(s) 105 without substantially spiraling the shield layer 120 around or about the twisted pair(s). Alternatively, the shield layer 120 may be wrapped so as to spiral around the twisted pair(s) 105. Additionally, in certain embodiments, the electrically conductive material incorporated into the shield layer 150 may face away from the twisted pair(s) 105, towards the exterior of a cable. In other embodiments, the electrically conductive material may face inward, towards the twisted pair(s) 105. In yet other embodiments, electrically conductive material may be formed on both sides of a shield layer 120. In one example embodiment, the shield layer 120 and the twisted pair(s) 105 are continuously fed from reels, bins, containers, or other bulk storage facilities into a narrowing chute or a funnel that curls the shield layer over the twisted pair(s).
As set forth above, a shield element (e.g., a shield layer, a separator, etc.) may be formed with a wide variety of suitable layer constructions.
A shield element (e.g., a shield layer, a separator, etc.) may also be formed with a wide variety of suitable arrangements of fusible elements.
Turning first to
In certain embodiments, a shielding element may include a plurality of longitudinally spaced segments of electrically conductive material, and respective gaps or spaces may be formed between each adjacent set or pair of spaced segments. One or more fusible elements may then span across each longitudinal gap or space in order to provide electrical continuity between the spaced segments. As desired, a gap or space may be formed at any suitable angle between two spaced segments.
As shown in
In certain embodiments, a shielding element may include one or more fusible elements that extend between spaced segments in a direction that includes at least one curve or arc.
As set forth above, one or more benefits may be provided as a length of a fusible element is increased. It will be appreciated that a wide variety of different fusible elements may be formed between two spaced segments that include a length longer than that of a gap formed between the segments. These fusible elements may include any number of curves, bends, angles, and/or other direction variations that result in a longer length. For example,
In certain embodiments, a shielding element may include longitudinally spaced segments of electrically conductive material formed on a base dielectric layer. Separate electrically conductive material may then be brought into contact with the spaced segments in order to form one or more fusible elements between each adjacent pair of spaced segments. For example, a topcoat or top layer of electrically conductive material may be positioned over the spaced segments. In certain embodiments, the topcoat may include only second electrically conductive material that is brought into contact with the spaced segments. In other embodiments, the topcoat may include second electrically conductive material that is formed on a second dielectric layer, for example, on an underside of a second dielectric layer. In certain embodiments, when the second electrically conductive material is brought into contact with the spaced segments, the two dielectric layers may sandwich the spaced segments and the fusible elements.
In other embodiments, second electrically conductive material that forms fusible elements between spaced segments disposed on a first dielectric layer may be formed on a second dielectric layer. The second dielectric material may be formed with a wide variety of suitable dimensions (e.g., thicknesses, cross-sectional areas, widths, etc.). Additionally, the second dielectric material may longitudinal extend along the second dielectric material in a wide variety of suitable directions and/or combinations of directions.
With reference to
The spaced segments 810A-C may be formed from first electrically conductive material. Additionally, second electrically conductive material 815 may be formed on a second surface of the dielectric layer 805 opposite the first surface on which the spaced segments 810A-C are formed. The second electrically conductive material 815 may form fusible elements between adjacent sets of spaced segments 810A-C when the shield element 800 is incorporated into a cable (e.g., cable 850, etc.) and wrapped around one or more electrical conductors. More specifically, when the shield element 800 is wrapped around one or more conductors, a first widthwise edge of the shield element 800 may overlap an opposite widthwise edge and an overlapping portion or region of the shield element 800 may be formed along at least a portion of the outer periphery or circumference of the shield element 800. The second electrically conductive material 815 may be positioned within the overlapping portion such that it is brought into contact with the spaced segments 810A-C, thereby forming fusible elements between adjacent sets of the spaced segments 810A-C.
The second electrically conductive material 815 may be formed from a wide variety of suitable materials. In certain embodiments, the first and second electrically conductive materials may be formed form the same material. In other embodiments, the first and second electrically conductive material may be formed from different materials. Additionally, the second electrically conductive material 815 may be formed with a wide variety of suitable configurations. As shown in
With continued reference to
Although
The shield element 800 and the cables 850, 860 illustrated in
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments could include, while other embodiments do not include, certain features, elements, and/or operations. Thus, such conditional language is not generally intended to imply that features, elements, and/or operations are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or operations are included or are to be performed in any particular embodiment.
Many modifications and other embodiments of the disclosure set forth herein will be apparent having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/680,646, filed Nov. 12, 2019 and entitled “Communication Cables Having Fusible Continuous Shields, which is a continuation-in-part of U.S. patent application Ser. No. 16/106,258, filed Aug. 21, 2018 and entitled “Fusible Continuous Shields for Use in Communication Cables.” Each of these prior matters is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16680646 | Nov 2019 | US |
Child | 17330034 | US | |
Parent | 16106258 | Aug 2018 | US |
Child | 16680646 | US |