The present application claims priority to United Kingdom No. 2207974.3 filed with the Intellectual Property Office of the United Kingdom on May 30, 2022 which is incorporated herein by reference in their entirety for all purposes.
The present disclosure relates to a method for wireless communication channel selection, and associated hub, system and computer program product that implement the method.
Many wirelessly communicating systems comprise a hub and one or more associated peripherals, wherein the hub and the associated wireless communicate over one or more wireless communications channels. Such systems are generally installed at a location, which may comprise at least one building or premises such as a house, factory, office or other business location, amongst others. Examples of such systems includes security systems, smart home automation systems, health monitoring systems, and/or the like, but are not limited to these.
Devices that communicate wirelessly are becoming increasingly commonplace. Wireless communications signals from such other devices that are not intended for the wirelessly communicating system can be seen as noise by the wirelessly communicating system. Furthermore, although frequency bands for wireless communications are generally protected, there can be a level of background noise present that impinges on wireless communication frequency bands. Reducing the impact of such noise on wireless communication by the system and/or reducing the impact that wireless communication by the system has on other wireless communication devices can be beneficial.
Various aspects of the present disclosure are defined in the independent claims. Some preferred features are defined in the dependent claims.
According to a first aspect of the present disclosure is a hub configured for selective wireless communication over any channel of a plurality of wireless communication channels, the hub being configured to:
The activity may comprise electromagnetic activity, e.g. electromagnetic signals.
The activity may comprise transmissions or signals from devices. The activity characteristic for a given channel may represent a measured amount of activity on that channel. The activity characteristic for at least one or each channel may be representative of no activity being received. The activity received during the listening period may comprise one or more responses transmitted responsive to at least part of the response request. The activity received during the listening period may comprise transmissions by devices transmitting independently of the response request, e.g. not responsive to the response request. Depending on the nature of the devices, not all devices may be configured to receive and process the response request or may not be configured for, or capable of, acting on the response request or may not respond to the response request for other reasons. As such, the activity received by the hub listening for signals received during the listening period may, for at least one or each channel, comprise of one or more or each of: responses from devices that were transmitted responsive to receiving and processing the response request; transmissions by devices independently of the response request; background activity; or any combination thereof, or no activity may be received.
The response request and/or the one or more responses may be configured for emulating, upon each channel during the listening period, activity estimative of a nosiest environment expected to be subsequently possible for the channel during post-installation normal use of the hub (i.e. the use for which the hub is being installed). That noisiest environment may be exclusive of noise potentially generated from devices with which the hub is intended to communicate with during the normal use (e.g. devices of a system to be installed with the hub). Thus, the activity characteristic may therefore represent said activity estimative of a noisiest environment.
The one or more devices may be devices of already installed systems, which may be different systems and/or different types of systems to a system in which the hub is to be comprised. The already installed systems may in use operate (i.e. during their normal use, performing the purpose for which they were installed) independently of the hub. For example, they may be part of separate networks, for example corresponding to different premises. In another example, the already installed systems may be configured to operate with a different hub and optionally are not configured to operate with the hub being installed.
In view of the above, the hub may take into account other devices that could have an effect on communications over the wireless communication channels.
The activity received on the respective channel during the listening period may be activity, such as electromagnetic radiation, that would subsequently be treated as noise by the hub, during normal use of the hub. The activity may comprise any signal that is undesired by the hub during normal use. In other words, if such activity is later received during the normal use of the hub, that activity may constitute noise, e.g. by raising the noise floor (e.g. reducing the signal to noise ratio), and/or by causing interference, with respect to signals intended for the hub during its normal use (e.g. signals from devices controlled by the hub or in any way part of the system comprising the hub). The activity may therefore represent potential noise during normal use of the hub, for example because, during the normal use, the such activity may comprise at least one or all of: signals not intended for the hub; signals not addressed to the hub; signals that the hub is not configured or operable to process (e.g. by being from devices of a different network to the hub); background electromagnetic radiation or transmissions; and/or the like. Therefore, the activity characteristic for a given channel may be indicative of signals transmitted on that channel during the listening period that represent potential noise upon the hub, i.e. unwanted activity that could subsequently occur during normal use of the hub.
The response may comprise a response that is seen by the hub as potential noise during normal use. The response may be or comprise noise (e.g. random or pseudorandom data). The response request may be a request to transmit noise or non-noise data over the listening period.
The hub may be configured to identify (i.e. automatically pick out) a selection of at least one of the channels of the plurality of wireless communication channels for wireless communication based, at least in part, on the activity characteristic for each channel. The hub may be configured to selectively use the identified channel(s) for communications. The selective use of the identified channel(s) may occur automatically in response to the identifying of the selection. In some embodiments a single wireless communication channel is identified. In some embodiments is a single wireless communication channel is used.
The hub may be configured to provide or output an indication of the identified channel(s). Additionally or alternatively, the hub may be configured to provide or output an indication of the activity characteristic for one or more or each of the plurality of channels. The hub may be configured to present the indication of the identified channel(s) and/or the indication of the activity characteristic for one or more or each of the plurality of channels to a user, e.g. via a user interface or via transmission to another device such as a user device, or the like. The presentation may comprise at least one of: a graphical, textual or other visual, audible or haptic indication of the activity characteristic. The hub and/or said another device may be configured to selectively present the channels to the user based on the activity characteristic. The selectively presenting of the channels to the user may comprise one or more of: selectively presenting only those channels whose activity characteristic is below a threshold, selectively presenting only a subset of the plurality of channels comprising a set or pre-set number of the channels having the lowest activity characteristic, and/or the like. The hub may be configured to rank or otherwise order the channels presented to the user according to the activity characteristic of the channels.
The hub may be configured to receive a selection of the communication channel to be used for communication, which may be received after the indication has been provided. The selection of the channel to be used may be a selection by the user. The hub may be configured to receive the selection by the user of the communication channel to be used for communication via the user interface or via another device such as the user device.
Subsequently, (e.g. during normal use) the hub may be configured to selectively wirelessly communicate using the channel or channels selected for use. In view of the above, in some examples, the hub's ability to wirelessly communicate may be improved.
The at least one activity characteristic may be or comprise an activity profile or activity metric, which may be representative of activity on at least one of the wireless communications channels that would be seen as noise by the hub during regular use. The at least one activity characteristic may be, comprise or be indicative of at least one of: average received signal strength, peak received signal strength, and/or the like. The at least one activity characteristic may be, comprise, be indicative of, or be based on a received signal strength (e.g. RSSI or dBm), such as at least one of a peak and/or average received signal strength, for at least part or all of the listening period. The at least one activity characteristic may be, comprise, be indicative of, or be based on an accumulation of received signal strength over at least part or all of the listening period. The at least one activity characteristic may have a logarithmic scale.
The hub may be configured to identify the selection of the at least one of the channels of the plurality of wireless communication channels having a best activity characteristic for wireless communication. The best activity characteristic may be the activity characteristic indicative of and/or derived from one or more of: lowest average received signal strength, lowest peak received signal strength, and/or the like. The hub may be configured to identify the selection of the at least one of the channels of the plurality of wireless communication channels for wireless communication from amongst any of the plurality of wireless communication channels for which the activity characteristic indicates activity below a threshold measure of activity (e.g. RSSI, dBm, etc.) or meets one or more quality criteria. In view of the above, in some examples, the hub's ability to wirelessly communicate with its associated peripherals may be automatically improved.
The at least one activity characteristic may be or comprise a function of both peak and average received signal strength, for at least part or all of the listening period. The at least one activity characteristic may be, comprise or be indicative of a weighted sum or other weighted combination of: an average received signal strength and a peak received signal strength, over at least part or all of the listening period.
The hub may be a hub for a system that comprises one or more peripherals of the system that are configured or configurable to wirelessly communicate with the hub over any channel of a plurality of wireless communication channels. The channel of the plurality of channels used for wireless communication between the hub and the one or more peripherals of the system may have been selectively assigned by the hub, i.e. the channel may be selected for use. The channel of the plurality of channels that may have been selectively assigned by the hub may be the identified selection or a user selection. The system may be a system for a premises. The one or more peripherals of the system and the hub may be configured for local wireless communication within the premises over whichever of the plurality of channels is assigned by the hub. The hub may be configured to selectively wirelessly communicate with the one or more peripherals using the assigned channel or channels. In some embodiments, a single channel is assigned. The system may be, comprise or be comprised in at least one of: a security system, a smart home automation system and/or or a health monitoring system.
The hub may be configured to identify the selection of the at least one of the channels of the plurality of wireless communication channels for wireless communication based in part on the activity characteristic for each channel and in part using at least one additional metric. The at least one additional metric may comprise at least one of: data capacity of each channel, the number of devices communicating using each channel, security level or relative security of each channel, a type of data being communicated using the channel, a set or pre-set channel preference, an encryption level or standard of each channel, and/or the like. In view of the above, in some examples, factors other than channel transmission quality may additionally be taken into account for channel selection.
The one or more devices of the already installed systems may comprise at least one control device that is configured to wirelessly control operation of at least one peripheral of the already installed system. The control device may be an already installed hub of the already installed system. The at least one peripheral of the already installed system may be a peripheral serviced by or otherwise controlled by the already installed hub.
The response request may be transmitted over all of the channels.
The response request may comprise a plurality of response request signals, wherein a response request signal is transmitted at least once on each of the channels. That is, the response request may comprise the plurality of response request signals, and wherein, in transmitting the response request, at least one respective response request signal from the plurality of response request signals may be transmitted on respective channels of the plurality of channels. In this way, a likelihood of response of the device of the already installed system to the request may be improved.
Transmitting the response request may comprise transmitting a response request signal a plurality of times, e.g. two, three or more times, on each of the channels. In view of the above, if a device of the already installed system is busy when a first of the response request signals are transmitted, it may still receive and process a subsequent one of the response request signals.
A listening period for a given channel may be followed by a response request signal for a different channel. For example, the hub may be configured to transmit a response request signal associated with one of the plurality of channels channel and implement the listening period for that channel before transmitting a response request signal for another of the plurality of channels.
However, preferably the response request includes response request signals for all channels before the listening period. The response request may comprise sequentially transmitting response request signals for each respective channel of the plurality of channels, e.g. transmitting a response request signal for one of the channels before transmitting a response request signal for another of the channels. The response request may cause the response to be transmitted for all, or substantially all, of the listening period. In view of the above, in examples, crosstalk from one channel into another channel may be taken into account when the hub is measuring the other channel. Optionally, during the listening period the hub may listen to each of the channels sequentially, e.g. one at a time.
The listening period may be at least as long as, but in some embodiments longer than, the number of channels multiplied by a length of time for listening on each channel. The length of time for listening to each channel may be at least one second. This may be beneficial as if there are additional already installed systems that are not responsive to the request, and if these operate using a beacon-based communication protocol, noise may also be received from those further already installed systems. The period between such beacons would not normally not be more than 1 second. So by listening for at least one second, most likely their signal contribution would be detectable by the hub.
The length of time for listening to each channel may be a value that is more than 1 and up to 3 seconds (e.g. 2 seconds). The listening period may be no more than 15 seconds. For example, it may be about 10 seconds.
The listening period may correspond to a signal generating period for devices that receive and process the request to transmit a response to the hub. It may be advantageous to limit the duration of the signal generating period (and hence the listening period) because while hubs of already installed systems are transmitting the response they may be unable to receive any notifications from any peripherals. Thus, any supervision performed by hubs of already installed systems may be suspended over the course of the period in which they are generating the response that is seen by the hub as potential noise. For some kinds of systems, e.g. security systems, it is important to keep such a suspension to as low a duration of time as possible.
The transmitted response request may be a broadcasted transmission (e.g. which may for example involve setting a source addressing to a particular value reserved for broadcasting). This may enable the devices of already installed systems to respond without having to address those devices. For example respective identities of those device may not be known in advance to the hub.
During use, the hub may communicate with the peripherals of the system using a low-bandwidth, long-range wireless communication protocol (e.g. Amazon Sidewalk™) or a wireless home area network (WHAN), wireless personal area network (WPAN) or wireless local area network (WLAN) protocol, or the like, which may for example be a protocol in accordance with or similar to IEEE 802.15.4, for example.
During use, the hub may be configured to communicate with the peripherals of the system using a sub 1 GHz protocol.
The request comprised in the response request may be a request for devices that receive and process the response request and transmit the response at a maximum predefined power. In examples, one or more of the devices that receive and process the response request may, during use, transmit signals at different power levels at different times, with the power levels varying, e.g. between a predefined minimum and a predefined maximum. To account for such cases, devices that receive and process the response request and transmit a response to it may be configured to transmit the response at the maximum predefined power. In this way the hub may better take into account worst case activity that may occur during post-installation use.
According to a second aspect of the present disclosure a system comprises a first hub, the first hub being or comprising the hub of the first aspect, the system further comprising a second hub and a plurality of associated peripherals associated with the second hub, wherein the second hub has a transceiver configured for wirelessly communicating with the second hub's associated peripherals on a channel, the second hub being configured so that the transceiver of the second hub can also receive and process at least part of the response request from the first hub, wherein, in response to receiving and processing the at least part of the response request, the second hub is configured to:
The at least part of the request may be a response request signal from a plurality of response request signals, wherein the request comprises the plurality of response request signals, wherein a response request signal is transmitted at least once on each of the channels. In other embodiments, the second hub may receive and process the whole request, for example by having a plurality of receivers for respective channels, each receiver receiving and processing a response request signal on the respective channel. The second hub may be configured to, in response to receiving and processing the at least part of the response request, control or otherwise request at least one or all of its associated peripherals to transmit a response on the channel to the first hub during the response generating period.
The response may comprise a signal that is seen by the hub as potential noise.
The response may be or comprise a noise signal (e.g. random or pseudo-random data) or non-noise signal. In either case, were such a response transmitted during communication between the first hub and a peripheral associated with the first hub, such as response would be noise from the perspective of the first hub. Therefore the response may be representative of noise that could occur when the hub and a peripheral associated with the first hub are later in communication.
The response generating period may correspond to at least part or all or more than all of the listening period during which the first hub listens for responses. The response generating period may overlap the listening period during which the first hub listens for responses.
The response may be transmitted for at least 50% of the response generating period. The response may be transmitted for all or substantially all (e.g. 90% or more) of the response generating period.
The response may comprise a single transmission or a plurality of packets.
During operation of the system, in which the second hub may communicate data to the peripherals, the second hub may transmit periodic beacons with a regularity definable as a beacon interval. The response may last the duration of a plurality of beacons. The response may be interlaced with beacons. During the beacon interval, the response may be further broken into multiple packets. However, in other examples, when the second hub transmits the response it may transmit no beacons in a time between commencing and concluding the response.
Transmitting the response by the second hub may comprise transmitting data, such as noise or non-random data (e.g. as opposed to periods of quiet, like between data packets), a majority of the time, and preferably throughout all or substantially all (e.g. at least 90%) of the time, over which the response is transmitted.
The channel may be a channel that had been assigned from a plurality of channels on which the transceiver is capable of operating, wherein the assigned channel is always used when communicating with the peripherals.
Preferably, during the response generating period, the second hub only transmits on said assigned channel.
The response generating period preferably lasts for at least as long as the number of channels multiplied by one second. The response generating period may last for at least as long the number of channels multiplied a value that is more than 1 and up to 3 seconds, e.g. 2 seconds. The response generating period may be 15 seconds or less. For example the response generating period may be about 10 seconds.
The response generating period may commence a delayed time after receiving the response request. This may advantageously allow enough time for second hubs of other systems to also hear the request without causing responses that could present as noise at the other second hubs that interferes with the other second hubs receipt of subsequent requests transmitted by the first hub after commencement of the response generating period. The delay may comprise an interval for the second hub to communicate to its associated peripherals to command the associated peripherals to also transmit a response on the channel to the first hub.
The second hub may be configured to coordinate with its peripherals so that the second hub and each of its associated peripheral transmits their respective responses at the same time.
The system may be configured to ignore further response request transmissions after the response generating period at least for a minimum period of time, e.g. 30 minutes. This may help prevent malicious attempts to interfere with the functionality of the system by incessantly supplying the system with response requests.
The system may further comprise a third hub and at least one further peripheral associated with the third hub. The third hub may have a transceiver configured for wirelessly communicating with the at least one further peripheral associated with the third hub on a channel, so that the third hub can also receive and process the response request from the first hub, wherein in response to receiving and processing the response request the third hub is configured to:
The response may be a response that is seen by the first hub as potential noise. The response may be or comprise noise or non-noise data. Preferably the response transmitted by the third hub and the response transmitted by the second hub are substantially at the same time.
According to a third aspect of the present disclosure is a method for use in selective wireless communication over any channel of a plurality of wireless communication channels, the method comprising:
The method may comprise operating or otherwise using the hub of the first aspect to perform the method. The method may comprise operating or otherwise using the hub of the system of the second aspect to perform the method.
According to a fourth aspect of the present disclosure is a computer program product configured such that, when implemented on a hub that is configured for selective wireless communication over any channel of a plurality of wireless communication channels, causes the hub to perform the method of the third aspect.
The computer program product may be embodied on a non-transient physical computer readable medium.
The individual features and/or combinations of features defined above in accordance with any aspect of the present disclosure or below in relation to any specific embodiment of the disclosure may be utilised, either separately and individually, alone or in combination with any other defined feature, in any other aspect or embodiment of the disclosure.
Furthermore, the present disclosure is intended to cover apparatus configured to perform any feature described herein in relation to a method and/or a method of using or producing, using or manufacturing any apparatus feature described herein.
For a better understanding of the present disclosure and to show how embodiments may be put into effect, reference is made to the accompanying drawings in which:
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventive subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice them, and it is to be understood that other embodiments may be utilized, and that structural, logical, and electrical changes may be made without departing from the scope of the inventive subject matter. Such embodiments of the inventive subject matter may be referred to, individually and/or collectively, herein by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.
The following description is, therefore, not to be taken in a limited sense, and the scope of the inventive subject matter is defined by the appended claims and their equivalents.
In the following embodiments, like components are labelled with like reference numerals.
In the following embodiments, the term data store or memory is intended to encompass any computer readable storage medium and/or device (or collection of data storage mediums and/or devices). Examples of data stores include, but are not limited to, optical disks (e.g., CD-ROM, DVD-ROM, etc.), magnetic disks (e.g., hard disks, floppy disks, etc.), memory circuits (e.g., EEPROM, solid state drives, random-access memory (RAM), etc.), and/or the like.
As used herein, except wherein the context requires otherwise, the terms “comprises”, “includes”, “has” and grammatical variants of these terms, are not intended to be exhaustive. They are intended to allow for the possibility of further additives, components, integers or steps.
The functions or algorithms described herein are implemented in hardware, software or a combination of software and hardware in one or more embodiments. The software comprises computer executable instructions stored on computer readable carrier media such as memory or other type of storage devices. Further, described functions may correspond to modules, which may be software, hardware, firmware, or any combination thereof. Multiple functions are performed in one or more modules as desired, and the embodiments described are merely examples. The software is executed on a digital signal processor, ASIC, FPGA, microprocessor, microcontroller or other type of processing device or combination thereof.
Specific embodiments will now be described with reference to the drawings.
During use, the hub 10 optionally communicates with its associated peripherals 15a-15c using a wireless home area network (WHAN), wireless personal area network (WPAN) or wireless local area network (WLAN) protocol, or the like. The communications protocol could be, for example, a protocol in accordance with or similar to IEEE 802.15.4, or the like. During use, the hub 10 optionally communicates with its associated peripherals 15a-15c using a sub 1 GHz protocol.
Although the present example is described in terms of installation of a new system 5, the same process may be used for wireless communication channel selection, e.g. periodically or on request, which could allow for changes in the wirelessly communicating systems and devices at the location. A possible approach to selecting the one or more wireless communication channels from the plurality of wireless communications channels is to make the selection at installation, e.g. by an installer. An additional possibility would be to have the wireless communication channel(s) selected or re-selected after installation, e.g. by a user or service agent. A further possibility would be to have the hub 10 automatically make any such selection of wireless communication channel(s) ch1-ch5 to be used for wireless communication between the hub 10 and its associated peripheral(s) 15a, 15b, 15c, which may be done on installation, periodically, responsive to a user input, or according to any other suitable criteria.
Beneficially, the hub 10 is configured to make a determination of activity (if there is any) on each channel ch1-ch5. The activity represents activity on the channel ch1-ch5 that would be seen as noise by the system 5 (particularly by the hub 10) were the activity to occur during normal operation of the system 5. In this way, the selection of the wireless communications channel(s) ch1-ch5 subsequently used for wireless communications between the hub 10 and its associated peripherals 15a, 15b, 15c can be based on, or informed by, the determined activity for each channel ch1-ch5. This helps reduce the effect of noise on wireless communications by the system and/or reduce the impact of wireless communications made by the system 5 on other wirelessly communicating devices.
The activity could comprise, for example, communications between devices of already installed systems, which could include different systems or different types of systems. Examples of activity may comprise at least one or all of: signals not intended for the hub; signals not addressed to the hub; signals that the hub is not configured or operable to process (e.g. by being from devices of a different network to the hub); background electromagnetic radiation or transmissions; and/or the like. Such activity can exclude communications made between the hub 10 and its associated peripherals 15a, 15b, 15c.
However, many wirelessly communicating devices only transmit periodically or occasionally or their transmissions vary over time. In this case, there is a risk that the activity for each channel is measured during a period in which one or more devices are not transmitting or are transmitting a relatively low power or low impact transmission compared with their maximum power or highest impact transmission. As such, making channel determinations based on such activity (or lack of activity) could result in a sub-optimal channel selection.
However, some activity may be caused by preinstalled systems that the hub 10 is compatible with, for example other systems manufactured by the same manufacturer, in the sense that it may be achievable for the hub 10 to provide at least one request to such preinstalled systems. To aid in channel selection for hub 10, it would be beneficial if the hub 10 could configure such systems to ensure that they do in fact transmit while the hub 10 is listening to assess activity. Further, it would be beneficial to configure these systems so that transmissions from different devices that, left to their own, might coincidentally be simultaneous (thereby causing a superposition of noise) are forced (or at least made more likely) to be simultaneous during the listening period. In this way the activity during the listening period may be more representative of a worst-case noise that may potentially occur at some point in time “in use”, i.e. potential noise which may occur at some point during post-installation operation of the system 5. As such, this may enable for more appropriate channel selection.
In examples, the hub 10 is configured to transmit a response request, the response request comprising a request for devices that receive and process the response request to transmit a response over a listening period. The request may specify that the response should be sent using the wireless communication channel or channels that the device that receives and processes the response request would normally use to communicate. The hub 10 is further configured to, during the listening period, listen to each channel of the plurality of channels. The hub 10 is also configured to determine an activity characteristic for each channel based, at least in part, on activity received by the hub on the respective channel during the listening period. In this way, any devices that are capable of receiving, processing and acting on at least part of the response request, can transmit a response during the listening period. In this way, the hub 10 can better take into account such other devices that could have an effect on communications over the wireless communication channels.
In some embodiments, preinstalled systems may, during use, transmit at fixed power levels. In this case the preinstalled systems are configured to transmit the response to the response request at that fixed power level. However, in other embodiments, one or more preinstalled systems may, during use, transmit signals at different power levels at different times, with the power levels varying between a predefined minimum and a predefined maximum. The predefined minimum and/or maximum may respectively be the minimum and maximum operating limits of the transceiver (i.e. what the transceiver is capable of operating at, e.g. prior to installation of the preinstalled system) or may respectively be determined by a configuration setting determined when the preinstalled system had been installed or at some time thereafter. In the latter case, the predefined minimum may be greater than the minimum operating limit and/or the predefined maximum may be less than the maximum operating limit. To account for such cases in which a preinstalled system may, during use, transmit signals at different power levels at different times, devices that receive and process the response request and transmit a response to it may be configured to transmit the response at the maximum predefined power. In this way the hub 10 can better take into account worst case activity that may occur during post-installation use.
A first pre-installed system 105 is already installed at one of the premises 22a at the location 20. The first pre-installed system 105 comprises a first pre-installed hub 110 that communicates wirelessly with a plurality of first pre-installed peripherals 115a, 115b, 115b using a third wireless communications channel ch3 (see
A second pre-installed wirelessly communicating system 120 is also provided at the location 20, in the premises 22b. The second pre-installed wirelessly communicating system 120 comprises a second pre-installed hub 125 that wirelessly communicates with a plurality of associated second pre-installed peripherals 130a, 130b, 130c over a first wireless communications channel ch1 of the plurality of wireless communication channels ch1-ch5 (see
A fourth pre-installed wirelessly communicating system 150 is shown in
Wireless transmissions that could be seen as noise by the wirelessly transmitting system 5 are not limited to those originating from other wirelessly transmitting systems 105, 120, 135, 150, but could include stand-alone devices, such as stand-alone devices 165, 170 shown in
As such, the determination of activity during the listening period for each wireless communications channel ch1-ch5 might not correspond to the maximum possible activity but could correspond to the maximum activity that can be provided through a mixture of systems 105, 120, 135, 150 and devices 165, 175 transmitting responses to the response request sent by the hub 10 and transmitting only because transmitting during the listening period was part of their normal operation and not because of the response request.
The response request in some examples is a broadcast response request, which optionally could be made by sending the response request stating an address (e.g. an address of a recipient field) that had been reserved for broadcasting. This can enable pre-installed systems and devices to be addressed without having to individually address those systems and devices. The preinstalled systems capable of receiving and processing the request, namely systems 120, 135, and 150, may do so by operating the same or a compatible protocol as the hub 10.
The responses to the response request could be in the form of a signal comprising one or more of noise (e.g. random/pseudo-random data), non-random data, a pre-defined signal, or the like. In examples, the responses are provided over at least most of the listening period, and could be provided over at least 80%, at least 90% or substantially all of the listening period.
The listening period could be set by the hub 10 and/or be in some pre-defined relation to the transmission of the response request. For example, the listening period could be a set or pre-set period starting after a set or pre-set delay period after transmitting the response request. The delay period could allow more or all of the systems or devices at the location 20 to receive the response request before the listening period begins. Furthermore, in compatible systems 120, 135, 150 that comprise a hub and peripherals, the delay allows the hub to command its associated peripherals to also transmit a response, and optionally allows the hub and peripherals to coordinate responses so that the responses are transmitted at the same time or in some other defined relationship. A transmission period during which the systems 120, 135, 150 that receive and can action the response request transmit their responses can be defined in relation to a transmission delay after receiving and processing at least part of the response request. The transmission period overlaps at least some, most, all or more than all of the listening period and need not be exactly in register with the listening period. Beneficially, the transmission periods of each of the systems 120, 135, 150 that can receive and action the response requests partly, mostly or wholly overlap. In this way, the effect of cross talk between transmissions from different systems can be better taken into account.
In contrast, the second pre-installed hub 125 of the second pre-installed system 120 is configured to receive, process and action the response request from the hub 10 and the pre-installed peripherals 130a-130c of the second pre-installed wirelessly communicating system 120 are wakeable on demand and controllable by the second pre-installed hub 125 responsive to the response request. As such, as can be seen in
The third pre-installed hub 140 of the third per-installed system 135 is configured to receive, process and action the response request from the hub 10. As noted above in relation to
In the fourth pre-installed wirelessly communicating system 150, whilst the fourth pre-installed hub 155 is configured to receive, process and action the response request from the hub none of the associated fourth pre-installed peripherals 160a-160c are wakeable on demand by the fourth pre-installed hub 155. As such, during the listening period, the fourth pre-installed hub 155 transmits responses to the response request during a transmission period that overlaps the listening period, whilst the associated pre-installed peripherals 160a-160c, which are not wakeable on demand, may or may not transmit during the listening period depending on whether they would do anyway due to their normal use operation and not responsive to the response request.
It will be appreciated that variations and other combinations of the specific examples described above in relation to
The communications illustrated in
Upon instigation of the channel selection process, the hub 10 is configured to transmit a response request for at least one or any device receiving the response request to transmit a response over a listening period. In this particular example, the response request comprises a plurality of response request signals ch1req-ch5req respectively transmitted over different communication channels of the wireless communications channels ch1-ch5 on which the hub 10 can selectively communicate. A noise request signal ch1req-ch5req is transmitted at least once on each of the wireless communications channels of the plurality of wireless communications channels ch1-ch5 upon which the hub 10 can selectively transmit. That is, response request signal ch1request is transmitted over channel ch1 at least once, and response request signal ch2request is transmitted over channel ch2 at least once, and so on. As such, regardless of which of the channels an already installed system is operating on, it will hear the response request. Whilst in this example, the response request signals ch1req-ch5req are transmitted sequentially one communications channel at a time, in other examples two or more or all of the response request signals ch1req-ch5req can be transmitted simultaneously if the hub has the appropriate transmission hardware to do so (e.g. multiple transmitters).
Optionally, as in the example illustrated in
Responsive to receiving and processing the response request signal ch3req on the wireless communication channel ch3, the pre-installed hub 140 signals its associated pre-installed peripherals 145a, 145b that are wakeable on command to also transmit response signals during the transmission period that overlaps the listening period.
The listening period in this example is configured to begin after a determined or pre-determined listening delay period after the transmission of the final response request signal ch5req is transmitted. That is, the listening period follows the transmission of response request signals ch1req-ch5req for all of the channels ch1-ch5. However, in other examples, a listening period for a given wireless communications channel ch1-ch5 may immediately precede a noise request for a different channel. That is, the activity on one channel is evaluated before requesting a response on another channel.
The listening period preferably lasts for at least as long the number of channels ch1-ch5 multiplied by a length of time for listening on each channel ch1-ch5. The length of time for listening to each channel ch1-ch5 could be at least one second, which can be beneficial for receiving transmissions from systems that do not respond to the response request but that are operable to transmit according to a beacon based protocol. For example, the length of time that the hub 10 listens to each channel during the listening period may be in a range from 1 second to 3 seconds. In examples, the total listening period can be 15 seconds or less. Optionally, there may be a wait period after the end of a listening period, and/or other security measures such as the requirement to enter an over-ride passcode or other user verification, before the hub 10 will transmit a subsequent response request. It can be beneficial to limit the listening period to avoid or limit the effect of malicious or unintended use of the response requests. In this way, if the hub 10 received multiple requests to instigate the channel selection process, either in error or due to malicious actions, then the system would still be able to provide its usual services rather than continuously repeating the channel selection process.
Responsive to receiving and processing the relevant response request signal ch3req, the pre-installed hub 140 and its associated pre-installed peripherals 145a, 145b that are wakeable on command start transmitting their response signals on the wireless communications channel that they would ordinarily use during their general intended use operations (i.e. ch3 in this example) after a transmitting delay period to ensure that the response request has completed and to all time for the hub 140 to wake and command each of its wakeable peripherals 145a, 145b. The transmission delay period may be a delay with respect to an end of the response request (i.e. after the last response request signal of the response request). This may for example be achieved by each response request signal including a timestamp identifying a start of the response request, with the duration of the response request being pre-defined or being defined in each response request signal. In this manner different pre-installed systems receiving different response request signals of the response request at different times may synchronize transmission of their response signals to be at the same time at least for a predetermined minimum amount of time. After the expiry of the transmitting delay period, the pre-installed hub 140 and the pre-installed peripherals 145a, 145b had been woken to be commanded by the 140 to transmit response signals then transmit their response signals for a transmission period that is preferably as long or longer than the listening period. The transmissions during the transmission period may comprise a series of transmission activities (e.g. transmitting packets of data) or a continuous transmission activity, but in either case, it is preferable that the transmission activity by each device transmitting a response signal is for a majority, or more preferably all or substantially all, of the transmission period. The transmission period generally corresponds to the listening period, e.g. the transmission period could overlap the listening period but could overlap a majority or all of the listening period.
In this way, the starting of the transmissions by the pre-installed hub 140 and the pre-installed peripherals 145a, 145b that are wakeable on command don't need to be exactly synchronized with the start of the listening period. Indeed, it may be preferable if the transmission delay is different, e.g. shorter, than the listening delay. Furthermore, during the listening period the hub 10 can scan through the channels by listening to each channel ch1-ch5 sequentially (although in any order) and still receive the response signals from the pre-installed hub 140 and the pre-installed peripherals 145a, 145b since the response signals from the pre-installed hub 140 and the pre-installed peripherals 145a, 145b may be transmitted on their given channel over a transmission period that preferably the lasts the whole of the listening period.
That is, after expiry of the listening delay, the hub 10 sequentially listens to each channel of the plurality of channels ch1-ch5 to determine any activity on each channel. In the example illustrated in
After a determined or pre-determined period, the pre-installed hub 140 and its associated pre-installed peripherals 145a, 145b stop transmitting the response signals and return to normal operation.
The hub 10 determines the activity received on each of the wireless communications channels ch1-ch5 that it can selectively use to communicate. In examples, the activity could comprise or be based on a received signal strength during the listening period. The received signal strength may be represented as a Received Signal Strength Indicator (RSSI) value. RSSI values are not standardised so may thus depend on the receiver hardware. It may therefore be considered as a relative signal strength measurement. Additionally or alternatively, the received signal strength may be an absolute signal strength measurement, for example a dBm (i.e. decibel-milliwatts) measurement, which is a measure of signal power. The activity characteristic could comprise, be a function of or be based on at least one of: average and peak received signal strength (e.g. RSSI or dBm) during the listening period. In examples, the function is a weighted function of the average and peak of received signal strength are multiplied by a weighting factor and then combined to form the activity characteristic for a given wireless communications channel ch1-ch5. A logarithmic function may be applied to the activity levels as part of this function, which can help avoid over-emphasising short-duration peaks. For example, the function may be equal to (or in other embodiments proportional to):
Inverse-log (A.(polarity-of-signal-strength-average).log(abs(signal-strength-average))+B.(polarity-of-signal-strength-peak).log (abs(signal-strength-peak)))
where:
The log and inverse log functions referred to here have the same base as each other, and so may be for a base of any positive value.
In some embodiments A may be greater than B, e.g. A may be 0.7 while B is 0.3.
A non-limiting example of activity characterization is illustrated in the table shown in
In this example, the average and peak values of received signal strength (in dBm) for each channel are determined and the activity characteristic for a given channel ch1-ch5 is a function (f(SigStrave, SigStrpeak)) of both the average and peak values of signal strength for that channel.
In the example of the table shown in
The table shown in
The process for determining the activity characteristic is shown in
The measured activity or the activity characteristic derived therefrom can be used to identify and optionally select the wireless communication channel or channels from amongst the plurality of channels that can be used by the hub 10 and its associated peripherals 15a-15c to communicate. This may be done in any of a variety of ways. For example, the hub 10 could automatically identify, select and use the wireless communications channel from amongst the plurality of wireless communications channels ch1-ch5 having the lowest activity characteristic during the listening period. All subsequent communications between the hub 10 and its associated peripherals 15a-15c could then be via the selected communications channel ch1-ch5. In another example, the hub 10 could automatically identify, select and use any wireless communications channel from amongst the plurality of wireless communications channels ch1-ch5 for which the activity characteristic during the listening period is less than a set or pre-set activity threshold. Optionally the wireless communications channel or channels selected and used could be selected using the activity characteristic for that channel in combination with one or more other criteria or additional metric. For example, the hub 10 could identify any wireless communications channel from amongst the plurality of wireless communications channels ch1-ch5 for which the activity characteristic during the listening period is less than a set or pre-set activity threshold, and then the one or more other criteria or additional metric could be applied to select which of the identified wireless communications channels should be selected and used by the system 5 for wireless communications. In examples, the criteria could identify a preference or order of wireless communications channels. For example, where there is more than one viable channel and the viable channels have equally acceptable activity levels, a predetermined order may prevail (e.g. lower numbered channels first, or any other predetermined preferential order). Optionally, the criteria could specify a preference based on energy consumption associated with operating the receiver for the channel, the frequency of the channel, channels previously selected and/or how long since a channel was last selected (e.g. to preferentially select or avoid more recently used channels), and/or the like. Examples of additional metrics comprise at least one of: data capacity of each channel, the number of devices communicating using each channel, security level or relative security of each channel, a type of data being communicated using the channel, a set or pre-set channel preference, an encryption level or standard of each channel, and/or the like. However, it will be appreciated that other criteria or additional metrics could be used. In view of the above, in some examples, other factors can be taken into account for channel selection in addition to activity levels on each channel ch1-ch5.
In some examples, the wireless channel selection need not be fully automated, and the activity determined, and/or identification of the channel, by the hub 10 could be instead used to inform a user of the suitability of wireless communication channels ch1-ch5 and give the user the option to select a wireless communication channel from amongst the plurality of possible wireless communication channels ch1-ch5 for communication by the system 5 having been informed of the suitability of the channel. For example, the activity during the listening period measured for each channel ch1-ch5, or a metric or graphical representation indicative thereof, could be provided to a user by the hub 10. This could be provided, for example, on a display of the hub Alternatively or additionally, this could be provided by the hub 10 transmitting the measured activity or metric or graphical representation indicative thereof to at least one or each of: a control unit of the system 5 that is separate from the hub 10, a user device such as a mobile phone or tablet for display, a server for provision through a client web-portal, and/or the like. Additionally or alternatively, the wireless communications channel or channels identified by the hub 10, e.g. the channel or channels having the lowest activity characteristic or those below a set or pre-set activity threshold, could be provided to the user. For example, the wireless communications channels ch1-ch5 that are made available to the user for selection could be limited to those identified by the hub 10. In another example, the wireless communications channels identified by the hub 10 could be highlighted, or preferentially or more prominently displayed, or the wireless communications channels could be ordered, ranked or preferentially or more prominently displayed based on the activity during the listening period determined by the hub 10 with those wireless communications channels ch1-ch5. In this case, those channels ch1-ch5 having a lower activity would be ranked and/or ordered higher, or more prominently or preferentially displayed, or the like.
In any event, the hub 10 can be configured to receive a selection by the user of a wireless communication channel from the plurality of wireless communications channels ch1-ch5. This could be provided via at least one or any of: the user interface provided on the hub 10, an app running on the user device, the web or other client portal, the control unit that is separate from the hub, and/or the like.
In this way, either the hub 10 can automatically identify, select and use a wireless communication channel or channels from amongst the plurality of wireless communications channels ch1-ch5 that has a preferable or beneficial lack of activity. Additionally or alternatively, the hub 10 can inform, assist and/or guide a user to select a wireless communication channel or channels from amongst the plurality of wireless communications channels ch1-ch5, that has a preferable or beneficial lack of activity.
Regardless of which approach is used, wireless communication can be improved in that a wireless communication channel ch1-ch5 can be selectively used by the system 5 that is less subject to interference from other pre-installed systems and/or interferes less with wireless communications of pre-installed systems. Due to the hub 10 being configured to transmit the response request for at least one or any device receiving the signal to transmit a response over a listening period, the determination of potential activity for each channel ch1-ch5 determined by the hub 10 can be improved. This in turn can improve the selection of wireless communication channel ch1-ch5 and thereby improve the interference arising from, and/or due to, wireless communications by the system 5 in its normal use when communicating between the hub 10 and its associated peripherals 15a-15c.
The processing system 605 is configured to perform the method described above with reference to
Optionally, the hub 10 also comprises a user interface 625. In this example, the user interface 625 is integral with the hub 10 and physically connected to the processing system 605, for example via the one or more data busses 620. However, in other examples, the user interface could be separate from the hub 10 and configured to wireless communicate with it. In examples, the user interface could be provided on a user device such as a mobile phone or tablet that directly or indirectly communicates with the hub 10. In other examples, the user interface is provided in a client portal, such as a web-portal, implemented by a server or the like. However, other suitable mechanisms for providing a user interface could be used.
The user interface 625 comprises at least one output device 630 such as a display or an audio device, and at least one user input device 635 such as a keypad, buttons, trackball or the like. Optionally, the output device 630 and the user input device 635 are combined, e.g. as a touchscreen. The output device 630 is operable responsive to the processing system 605 as described above. For example, the output device 630 can be operable to provide an indication of the activity on each wireless communications channel ch1-ch5 during the listening period or to provide an indication of the wireless communication channel or channels ch1-ch5 identified by the hub 10, e.g. the wireless communication channels identified as being below the activity threshold or having the determined lowest activity. The user input device 635 is operable to receive the selection of the wireless communications channel ch1-ch5 from the user and convey that selection to the processing system 605 to implement the selection.
The above examples are provided by way of illustrating how the invention might be put into practice, but other implementations could be provided that fall within the scope of the claims.
For example, although examples with five wireless communications channels ch1-ch5 are given, in practice any number of wireless communications channels that constitute a plurality of channels could be used. Furthermore, although specific examples are given of pre-installed systems and standalone devices that are configured to receive and action the response request, e.g. with a hub and all peripherals or with only the hub and some or none of the peripherals, and pre-installed systems and standalone devices that do not receive and action the response request, any combination of these and any number of different pre-installed systems could be present.
In addition, although examples are given in which the hub 10 implements the response request by sequentially sending the response request signals ch1req-ch5req on different channels, one or more or each of the response request signals ch1req-ch5req could be sent simultaneously. Furthermore, although in the example of
Method steps of the invention can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit) or other customised circuitry. Processors suitable for the execution of a computer program include CPUs and microprocessors, and any one or more processors. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g. EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
To provide for interaction with a user, the invention can be implemented on a device having a screen, e.g., a CRT (cathode ray tube), plasma, LED (light emitting diode) or LCD (liquid crystal display) monitor, for displaying information to the user and an input device, e.g., a keyboard, touch screen, a mouse, a trackball, and the like by which the user can provide input to the computer.
Other kinds of devices can be used, for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.
Number | Date | Country | Kind |
---|---|---|---|
2207974.3 | May 2022 | GB | national |