The task of connecting agents and customer is not a simple one. Typically, agents of a help desk are unfamiliar with the customers they are helping and customers are unfamiliar with the agents who they are receiving assistance from. Further, communication tends to breakdown if an issue is unresolved after an initial attempt at resolution. In most cases, a follow-up inquiry requires a bit of phone tag to connect a customer and a help desk agent. In instances where a customer does connect with a help desk agent for a follow-up request, it is common that a help desk agent may be unaware of details regarding a state of a case. In other instances, a help desk agent may not even follow-up with a customer. Such examples lead to inefficient processing during a help request as well as reduced customer satisfaction.
As such, examples of the present application are directed to the general technical environment related to improving processing efficiency and customer satisfaction when routing communications through a help desk service, among other examples.
Non-limiting examples of the present disclosure describe insight-based routing that is used to improve transparency and communication between customers and support agents of a help desk service. Among other examples, processing described herein is useful for initiating follow-up inquiries for an unresolved case of a help desk service. An unresolved case may be identified through a help desk service. Case details associated with the unresolved case may be evaluated. In examples, an evaluation of the case details may comprise analyzing an issue that requires resolution, detecting a case state that corresponds with one or more actions taken to resolve the issue of the unresolved case and detecting, through the help desk service, user presence information indicating availability of a customer associated with the unresolved case. A follow-up inquiry may be generated based on the detected case state. The follow-up inquiry may be automatically transmitted to the customer based on an evaluation of the user presence information indicating that the customer is available. While examples may be described in context of an unresolved case, it is to be understood that processing operations described herein are applicable to enable better coordination at any stage of helpdesk workflow processing.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Additional aspects, features, and/or advantages of examples will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
Non-limiting and non-exhaustive examples are described with reference to the following figures.
Non-limiting examples of the present disclosure describe insight-based routing that is used to improve transparency and communication between customers and support agents of a help desk service. Among other examples, processing described herein is useful for initiating follow-up inquiries for an unresolved case of a help desk service. While examples may be described in context of an unresolved case, it is to be understood that processing operations described herein are applicable to enable better coordination at any stage of helpdesk workflow processing. For instance, an exemplary routing determination model may be applied to evaluate case details data to make routing determinations for a help desk case. Case details data is used to provide status and context for a help desk case. Case details data may comprise but are not limited to: an assigned case/ticket number, state of the case (e.g. resolution indication, event data, timeline, commentary, task list/action items), support agent data pertaining to a pool of support agents provided by the help desk service, customer data (e.g. encompassing some user-specific signal data) and indications of presence data through modalities of the help desk service for customer or assigned support agents, among other examples. Case details data including identification of customers and support agents can be used to provide transparency for resolving help desk issues, where parties can see who they are communicating with as well as provide real-time data that can foster better interactions.
As an example, an unresolved case may be identified. Case details data associated with the unresolved case may be evaluated to best determine how to manage a follow-up inquiry related to the unresolved case. Evaluation of case details data may comprise generating insights related to one or more of: a state of a help desk case, customers associated with the help desk case, issues related to the help desk case, assignment of support agents to the help desk case and methods of communication (e.g. modalities) of a help desk service, among other examples. Insights may be generated in real-time to provide most relevant data for a help desk case. Generated insights (generated from analysis of the case detail data) may be analyzed by a routing determination model. In one example, generated insights may factor into assignment of a support agent to a specific help desk case. An evaluation of case details data may be further utilized to generate other routing determinations for a help desk case including but not limited to: dedication of specific support agents to specific customers, determining a next step for resolution of an unresolved case (e.g. automatic resolution, follow-up inquiry, modality to use for a follow-up communication), evaluating when to contact a customer or identification of when a support agent is available based on presence information for customers and support agents and identification of predictive information that may be useful to provide to a support agent based on identification of issue/line of questioning by the customer, among other examples.
Accordingly, the present disclosure provides a plurality of technical advantages including but not limited to: generation of real-time insights that are used to enhance processing efficiency and customer satisfaction of a help desk service, extensibility to integrate different applications/services of a distributed network to enhance signal-based processing of a help desk service, more efficient operation of processing devices (e.g., saving computing cycles/computing resources) in resolving help desk issues and improving user interaction with a help desk service including a reduction in time needed to connect customers and support agents as well as transparency for presence information for customers and support agents of a help desk service at any point in time, among other examples.
One or more data stores/storages or other memory may be associated with system 100. For example, a component of system 100 may have one or more data storage(s) 116 (described below) associated therewith. Data associated with a component of system 100 may be stored thereon as well as processing operations/instructions executed by a component of system 100. Furthermore, it is presented that application components of system 100 may interface with other application services. Application services may be provided as platform resources referenced in the foregoing. Application services may be any resource that may extend functionality of one or more components of system 100. Application services may include but are not limited to: personal intelligent assistant services, word processing services, spreadsheet services, presentation program services, illustration/diagramming services, social networking services, call/video communication services, language understanding services, speech recognition services, optical character recognition services, facial recognition services, web search services, e-mail applications, calendars, device management services, address book services, informational services, line-of-business (LOB) management services, customer relationship management (CRM) services, debugging services, accounting services, payroll services and services and/or websites that are hosted or controlled by third parties, among other examples. Application services may further include other websites and/or applications hosted by third parties such as social media websites; photo sharing websites; video and music streaming websites; search engine websites; sports, news or entertainment websites, and the like. Application services may further provide analytics, data compilation and/or storage service, etc., in association with components of system 100.
System 100 may comprise one or more storage(s) 116 that may store data associated with operation of one or more components of system 100. In examples, storage(s) 116 may interface with other components of system 100. Data associated with any component of system 100 may be stored in storage(s) 116, where components may be connected to storage(s) 116 over a distributed network including cloud computing platforms and infrastructure services. Exemplary storage(s) 116 may be any of a first-party source, a second-party source, and a third-party source. Storage(s) 116 are any physical or virtual memory space. Storage(s) 116 may store any data for processing operations performed by components of system 100, retained data from processing operations, stored programs, code or application programming interfaces (APIs), training data, links to resources internal and external to system 100 and knowledge data among other examples. For example, storage(s) 116 may be utilized to manage data for processing and operation of an exemplary routing determination model that is used for executing routing determinations for management of help desk cases. An exemplary routing determination model is subsequently described in at least the description of the routing determination component 114 (of
In
An exemplary storage application/service may provide a user of processing device 102 with access to data stored in an exemplary data center. In one example, processing device 102 may be connected with storage(s) 116 via a distributed network, which may provide users with access to user data. One or more tenant resources (e.g. Tenant Resource A, Tenant Resource B, Tenant Resource C, etc.) may be associated with processing device 102. A tenant resource may be a user account associated with a processing device and/or distributed network service. Data associated with a tenant resource may be stored on storage(s) 116, where a tenant account can be utilized to access stored data by processing device 102 and/or other processing devices. As identified above, storage(s) 116 may further be configured to store data associated with the help desk service components 106. Help desk service components 106 are components of an exemplary help desk service, where the help desk service components 106 are configured to execute processing operations to enable management and routing of help desk requests of a help desk service. An exemplary help desk service may comprise additional components, which are known to one skilled in the art.
An exemplary help desk service is an application that provides service and support for products/services. In one example, the help desk service provides technical support for suite of applications/services that are accessed by processing device 102. A help desk service may be configured to further provide support in other areas such as billing issues and business policies, among other examples. In operation, the help desk service is configured to provide a plurality of modalities that enable communication between users/customers and support agents. For instance, the help desk service may be configured to enable a customer to connect with a support agent via: chat/instant messaging, phone/video conferencing, email and communications through a web-based platform and/or mobile application, among other examples. In one example, an exemplary help desk service may comprise a web portal that customers and support agents can log into for the management of issues/cases, thereby fostering transparency related to interactions between users/customers and support agents. While a customer may interact with a support agent through one type of modality (e.g. chat service or phone service) case details related to created cases may be maintained and updated in the web portal.
The help desk service components 106 are executed by one or more computing devices. An exemplary computing device may comprise one or more processors and memory, among other components. Examples of computing devices are provided in the description of at least
The case management component 108 is a component configured for managing data associated with created help desk cases. For instance, the case management component 108 is configured to manage, for help desk cases: creation, update (in real-time), resolution (e.g. closing of help desk cases and notifications), access to case details data and management of follow-up inquiries (e.g. with customers). As an example, the case management component 108 may be configured to enable creation of a new case for tracking of a customer issue with an application/service. A help desk case can be created by a customer or a support agent (on behalf of a user). For instance, the case management component 108 is configured to enable a customer to select, through any of the web-based modalities of the help desk service, user interface features for help desk case creation. In another example, a customer can initiate help desk case creation through a phone/web based modality.
Further, the case management component 108 is configured to manage case details associated with created help desk cases. Case details data may comprise but are not limited to: an assigned case/ticket number, state of the case (e.g. resolution indication, event data, timeline, commentary, task list/action items), support agent data pertaining to a pool of support agents provided by the help desk service, customer data (e.g. encompassing some user-specific signal data utilized for matching and routing processing) and indications of presence data through modalities of the help desk service for customer or assigned support agents, among other examples. Case details data is used to provide status and context for a help desk case, where other components of the help desk service such as the routing determination component 114 are configured to interface with the case management component 108 for management (and update of) case detail data. For instance, the routing determination component 114 is configured to access case detail data, which can be used by the routing determination model to generate routing determinations for routing management of help desk cases/requests. In one example, case detail data may be analyzed by the routing determination model and factor into assignment of a support agent to a specific help desk case.
Moreover, the case management component 108 is configured to management transmission/output of case details data when a help desk case is being accessed through a modality of the help desk service. The case management component 108 is configured to interface with the customer management component 110, for example, for managing association of customer data with a specific help desk case. In one instance, a user profile of a customer is included in the case details data so that information associated with a specific customer is available in real-time when a help desk case is being viewed through a modality of the help desk service. Further examples of customer data are provided in the subsequent description of the customer management component 110. Additionally, the case management component 108 is configured to interface with the support agent pooling component 112, for example, to manage an association of one or more support agents to a specific help desk case. Support agent data (managed by the support agent pooling component 112) may be shared with the case management component 108. In one example, a profile of a support agent is associated with case details data so that information associated with a specific agent is available in real-time when a help desk case is being viewed through a modality of the help desk service. Further examples of support agent data are provided in the subsequent description of the support agent pooling component 112.
The case management component 108 may further be configured to manage a state associated with a help desk case. In one example, listings may be maintained for help desk cases, which may be used to identify unresolved help desk cases, among other examples. The case management component 108 may be configured to employ processing operations for managing states associated with help desk case listings, for example, where telemetry analysis may be executed and reported. In one example, the case management component 108 is configured to interface with the routing determination component 114 for identification of unresolved cases and management of follow-up inquiries.
The customer management component 110 is a component configured for managing information associated with customers of the help desk service. Customer data may comprise but is not limited to: customer login data, user presence information (e.g. indicating availability of the customer), profile information for a customer, reviews of a customer (e.g. by support agents), usage data pertaining to use of the help desk service and data (including usage data for the customer) from other related applications/services, among other examples. Customer data, along with real-time signal data pertaining to the user that is collected during a communication, may be collectively referred to as user-specific signal data. User-specific signal data may be utilized for the generation of insights about a customer, for example, which can be used to match a support agent (to the customer) as well as make additional determinations regarding routing of help desk requests. As an example, a user account of a customer may be associated with suite of applications/services, where usage data from other applications/services can provided to the help desk service components 106 (e.g. through an API) for the generation of insights about the customer. Generated insights can then be modeled to generate routing determinations for improving processing of the help desk service. For instance, usage data from the help desk service and/or one or more other applications/services can be collected, aggregated (at a customer level) and analyzed, where telemetric analysis can be executed and results provided to the routing determination model for insight generation/routing determination. As identified above, the customer management component 110 interfaces with the case management component 108 for management of customer data with case details data of a specific help desk case. As referenced above, the customer management component 110 further interfaces with the routing determination component 114 to provide customer data for use in generation insights (about the customer) as well as routing determinations for routing of help desk cases.
The support agent pooling component 112 is a component configured to manage support agent data for a pool of support agents that are associated with the help desk service. Support agents may comprise agents that are exclusively affiliated with the help desk service and/or agents of third-party services that are associated with the help desk service. In some examples, support agents may be bots (e.g. chat bots) or software agents that are programmed to assist customers. Bot agents may be trained and build off learning models that can adaptively adjust to customers based receipt of generated insights and/or other routing determinations made by the routing determination model. Support agent data is information pertaining to a specific support agent. In one example, the support agent data may be managed (and continuously updated), where the support agent data is utilized in a determination that identifies a best possible match for assigning a support agent to a case of a specific customer. Examples of support agent data may comprise but are not limited to: customer performance reviews of support agents, organizational reviews of the support agents, agent self-evaluations (that include a review of a technical expertise of the support agents and a review of communication skills of the support agents) and availability information for the support agents, among other examples. An exemplary routing determination model (executed by the routing determination component 114) may be configured to utilize any of the above identified support agent data in generating a matching determination for assigning a specific support agent to a customer (and help desk case). Support agent data may further be used to in generating other determinations such as how and when to initiate a follow-up inquiry into an unresolved case.
Customer performance reviews for support agents may be managed by the support agent pooling component 112. As an example, customer performance reviews may be any information associated reviews received for specific support agents from customers of the help desk service. For instance, data associated with customer performance reviews may be collected, parsed, aggregated and analyzed (in total and/or to specific aspects) to evaluate a support agent. Examples of areas of review for a support agent that be evaluated by the routing determination model comprise but are not limited to a review of: overall satisfaction rating with the service provided, technical expertise of the support agent, communication/soft skills of the support agent, efficiency in case management and ratings on notifications/keeping the customer informed including follow-up inquiries if a case remains unresolved, among other examples.
Organization reviews for support agents may also be managed by the support agent pooling component 112. Organization reviews of the support agents may be an analysis of support agents from the perspective of the help desk service. In one example, organizational reviews of the support agents comprise peer reviews, from other support agents of the pool of support agents, that have the same (or different) technical expertise as the support agent. In further examples, organization reviews of the support agents comprise telemetric analysis of services provided by the support agents. Telemetric analysis of support agents may be evaluated for a specific time period (e.g. recent performance of the support agent) and/or in aggregate over a career of the support agent, where both types of data may be useful in evaluating compatibility of a support agent for a specific customer and case. Data on performance of support agents may be obtained through training, monitoring of interactions with customers and statistical analysis of help desk cases (aggregated at different levels) including an analysis of case resolution rates and experience/career progression, among other examples.
Further, self evaluation of support agents may also be managed by the support agent pooling component 112. Support agent data may comprise agent self-evaluations. The help desk service may require that its support agents provide information evaluating themselves. In some instances, an agent self evaluation relates to creation of an initial profile, where a support agent provides information about itself. In further examples, self evaluation data may be updated periodically by the agent (e.g. in reviews or as often as required by the help desk service). Self evaluation data for support agents may comprise data indicating a review of a technical expertise (e.g. primary and secondary areas of expertise) of the support agent, a review of problem solving ability of the support agent and a review of communication skills/soft skills of the support agent. While other areas of review may also be collected, an honest assessment by the agent for: technical expertise and review of problem solving and communication skills may be factors that can help influence a matching determination. For example, if generated insights indicate that a customer has a high frustration level and a string of recent bad help desk experiences, the routing determination model can be configured to weight factors such as problem solving skills and communication skills of the agent as being more important when matching a customer and a support agent. In such an example, problem solving and communication skills of the pool of support agents can be evaluated from a number of different perspectives (e.g. customer evaluation, organizational evaluation and agent self-evaluation) to determine the best possible match for a specific situation.
Availability information for support agents may also be managed by the support agent pooling component 112. Availability information may pertain to information indicating: whether an agent is logged into a help desk service; one or more modalities of the help desk service that a user is actively using; and whether an agent is engaged (or scheduled to be engaged) in an interaction with a customer. Such information may be evaluated by the routing determination component 114 to generate routing determinations including a matching of a support agent to a specific customer/help desk case.
The routing determination component 114 is a component configured for management of routing determinations for help desk cases. To make the best possible routing determinations, the routing determination component 114 is configured to receive signal data (e.g. case specific signal data, user-specific signal data, signal data from an ongoing communication, support agent-specific signal data, etc.) and generate insights from an evaluation of the signal data. The routing determination component 114 generates insights related to a specific help desk case, specific customer and/or specific support agent (e.g. that is engaged in an active communication with a customer). Feature selection processing may be executed for the generated insights, where the insights may be modeled to make routing determinations for a help desk case. In an alternative example, signal data may be collected and evaluated separately from the routing determination model, where generated insights may be transmitted to the routing determination model for subsequent processing. In that example, an API or another model, among other examples, may be utilized to collect, parse and analyze signal data for insight generation.
The generated insights may be evaluated by an exemplary routing determination model to make routing determinations for a specific help desk case. An exemplary routing determination model (employed by the routing determination component 114) may be adaptive and update over time based on new available data and training. In some examples, the routing determination component 114 may be configured to employ multiple different models that each may be configured for processing different routing determinations. Examples of routing determinations that may be generated based on application of the routing determination model (and/or additional models) comprise but are not limited to: matching of a customer to a support agent, dedication of specific support agents to specific customers, determining a next step for resolution of an unresolved case (e.g. automatic resolution, follow-up inquiry, modality to use for a follow-up communication), evaluating when to contact a customer or identification of when a support agent is available based on presence information for customers and support agents and identification of predictive information that may be useful to provide to a support agent based on identification of issue/line of questioning by the customer, among other examples.
Generated insights may comprise insights generated based on evaluation of static data (e.g. information retrieved about a case, customer data such as profile data, support agent profiles, etc.) as well as insights generated from analysis of real-time signal data during a communication/interaction with a customer and/or support agent. Examples of insights generated by the routing determination component 114 include insights regarding a technical expertise of a customer and a support agent. In one example, a matching of a support agent to a customer may be based in part on a matching of technical expertise of the customer and a support agent. Other examples of insights that may be considered in routing determinations include but are not limited to: a state of a help desk case, a level of customer frustration (of a customer and/or a support agent), an indication of recent poor customer experiences for a customer, a rating indicating likelihood that a customer may leave the help desk service, language and communication skills of a customer, a classification of inquiries by the customer (e.g. whether questions are out-of-scope for specific applications/services or whether questions are related to business policy, billing, etc.), whether questions exceed an expertise of a support agent and modality/presence information (including ability for a customer to receive multimodal communications through different applications/services), among other examples. As an example, insights may be generated from evaluation of real-time signal data based on any of: voice analytics analyzing speech (e.g. lexical and prosodic features), analytics for text/handwritten input, optical character recognition analytics, emotion recognition and facial recognition, among other examples. The help desk service may interface with one or more other applications services (described in the foregoing) to extend functionality to enable real-time signal processing to occur.
Furthermore, processing by the routing determination model is configured to account for a state of a help desk case. For instance, the routing determination model may evaluate whether a help desk case is newly initiated, involved in an active communication, unresolved after one or more interactions with support agents, etc. Generation of insights may vary based on the stage at which the help desk case is in. For example, if a help desk case is at an initial stage where no support agent has yet to be assigned, insights may be generated based on available case details and available customer data. In some instances, customer data may include insights generated based on real-time signal data such as voice depending on a modality that a user is initiating a help desk request from. If a customer is engaged in an active communication with a support agent, real-time signal data may be analyzed for the communication. Insights related to a state of a help desk case may also be used in making additional routing determinations (e.g. next actions for a case, whether to dedicate a support agent to a case, a best approach for a follow-up inquiry, etc.).
The routing determination component 114 is configured to match the customer with a support agent. In one example, a support agent is newly assigned to a help desk case when a help desk case is initiated. Matching of a support agent to a customer may be automatically initiated based receipt of (or creation of) a help desk case. In another example, a support agent may be added to an existing help desk case, for example, where a support agent is patched into a communication between a customer and a support agent to provide additional assistance. One such example is the case where a generated insight indicates that a support agent is in over their head and can benefit from additional support. For instance, a matching of a support agent to a customer may be automatically initiated during a help desk communication based on identification of a generated insight indicating that the support agent is in over their head. In another example, matching of a support agent to a customer/help desk case may be initiated based on a user interface selection for assistance that is selected through a modality of the help desk service. For instance, a modality of the help desk service may be configured to provide user interface features for a customer and/or support agent to indicate that assistance is requested. In one example, an insight for selection of a user interface feature for assistance may be evaluated in the context of other insights (e.g. real-time insight that agent is struggling to find an answer) before a matching processing is initiated. Alternatively, evaluation of real-time signal data may identify that a user or support agent has provided keywords indicating that additional assistance should be incorporated into an interaction.
In at least one example, a support agent involved in an interaction for help desk assistance may be provided with data for another matched agent who can be added to the interaction. This may enable the agent to smoothly transition the interaction to introduce a newly added support agent. In an alternative example, the routing determination component 114 is configured to provide a support agent with a listing of matched support agents. This may enable a support agent to select a support agent from a list of best candidates support agents as identified by a routing determination model.
In any example, the routing determination component 114 is configured to select a support agent from a pool of support agents based on application of the routing determination model that analyzes support agent data in correlation with the generated insights. Examples of support agent data may comprise: customer performance reviews of support agents from the pool of support agents, organizational reviews of the support agents, agent self-evaluations that include a review of a technical expertise of the support agents and a review of communication skills of the support agents and availability information for the support agents. Processing for output of N best matches are known to one skilled in the art, where learning models are configured to generate an output from any number of inputs. In one example, the exemplary routing determination model may be configured to employ a ranker to select one or more best matches. In some example, different weighting may be assigned to different insights, which may impact the matching processing (for selecting a most appropriate support agent or other type of routing determination processing). For instance, technical expertise and communication skills for support agents may be weighted more heavily than other factors for matching based on an evaluation of the generated insights. Similar processing may be employed for mapping of generated insights to execute other routing determinations such as: dedicating a specific support agents to a specific customer, determining a next step for resolution of an unresolved case (e.g. automatic resolution, follow-up inquiry, modality to use for a follow-up communication), evaluating when to contact a customer or identification of when a support agent is available based on presence information for customers and support agents and identification of predictive information that may be useful to provide to a support agent based on identification of issue/line of questioning by the customer, among other examples.
The routing determination component 114 is configured to output a routing determination in accordance with a state of the help desk case. For instance, in an example where a help desk request is being created, an interaction between the matched support agent and the customer may be initiated through a modality of the help desk service. In an example, where a first support agent is involved in a communication with a customer, a second support agent (e.g. matched support agent) may be added/patched into the communication. In examples where a routing determination relates to generation of a follow-up inquiry for an unresolved help desk case, the routing determination component 114 may automatically provide a notification to a support agent to follow-up with a customer. For instance, an agent may be automatically assigned to follow-up with a customer for an unresolved request. In another instance where an agent is assigned to a help desk case, an agent may automatically receive a reminder to follow-up with a customer. In further examples, a follow-up inquiry may automatically be transmitted based to a customer and/or support agent. For instance, the routing determination model may identify that a follow-up is needed for a help desk case, evaluate presence information for the customer and/or support agent and transmit a communication. This processing may be useful in keeping resolution of the help desk case as a priority.
As an example, method 200 may be executed by an exemplary processing device and/or system such as those shown in
Method 200 begins at processing operation 202, where an unresolved help desk case may be identified through a help desk service. Examples related to identification of an unresolved help desk case are described in the description of system 100 (
Flow may proceed to processing operation 204, where case details data associated with an identified help desk case may be evaluated. Case details data associated with the unresolved case may be evaluated to best determine how to manage a follow-up inquiry related to the unresolved case. Case details data is used to provide status and context for a help desk case. Case details data may comprise but are not limited to: an assigned case/ticket number, state of the case (e.g. resolution indication, event data, timeline, commentary, task list/action items), support agent data pertaining to a pool of support agents provided by the help desk service, customer data (e.g. encompassing some user-specific signal data) and indications of presence data through modalities of the help desk service for customer or assigned support agents, among other examples. Evaluation (processing operation 204) of case details data may occur automatically to improve processing efficiency in processing of an unresolved help desk request.
Evaluation (processing operation 204) of case details data may comprise generating insights related to one or more of: a state of a help desk case, customers associated with the help desk case, issues related to the help desk case, assignment of support agents to the help desk case and methods of communication (e.g. modalities) of a help desk service, among other examples. Insights may be generated in real-time to provide most relevant data for a help desk case. For instance, an exemplary routing determination model may be applied to evaluate (processing operation 204) case details data to make routing determinations for a help desk case. In examples, an evaluation (processing operation 204) of the case details may comprise: analyzing an issue that requires resolution, detecting a case state that corresponds with one or more actions taken to resolve the issue of the unresolved case and detecting, through the help desk service, user presence information indicating availability of a customer associated with the unresolved case.
In some examples of method 200, a routing determination may be generated for assignment of a support agent to an unresolved case. An exemplary help desk service may assign (processing operation 206) a support agent to the unresolved help desk case, for example, based on evaluation of case details associated with the unresolved help desk case. In one example, evaluation of case details of an unresolved help desk case may yield an insight that an assignment support agent was unable to answer specific technical questions related to an application/service. At processing operation 206, a support agent may be assigned to an unresolved case, wherein the assigning comprises applying a model that analyzes support agent data in correlation with an evaluation of the case details data. Such an evaluation can be used to select a most appropriate support agent, from a pool of support agents, for a specific help desk case. An exemplary model used to execute routing determination may be the routing determination model (described in at least the description of
Flow may proceed to processing operation 208, where a follow-up inquiry is generated for the unresolved case. Generation (processing operation 208) of a follow-up inquiry may be automatically executed based on the evaluation of the case details associated with an unresolved case. For instance, an exemplary routing determination model may be configured to generate one or more of: a notification for follow-up to the support agent to instruct the support agent to contact a customer based on the availability of the customer (e.g. analysis of presence information for customer); or a communication for initiating interaction between the customer and the support agent.
The generated follow-up inquiry may then be transmitted/routed (processing operation 210) to the appropriate party to further address the unresolved case. In one instance a follow-up inquiry may be directed to a support agent, where the follow-up inquiry is transmitted (processing operation 210) to the support agent so that the support agent may take additional steps for resolution before initiating subsequent communication with a customer. For example, an agent may have received a notification to follow-up on an unresolved and may have resolved an issue of the case. In that instance, a follow-up inquiry can be transmitted (processing operation 210) to the customer indicating automatic resolution of the unresolved case by the support agent.
In another instance, a follow-up inquiry may be a communication directed to one or more of the customer and the support agent, where the follow-up inquiry can be transmitted (processing operation 210) to the one or more parties. For instance, a follow-up inquiry may comprise identification of a support agent assigned to the unresolved case as well as presence information for the support agent and/or customer. Transmission (processing operation 210) of follow-up inquiry initiates a bi-directional communication between customer and one or more support agents assigned to unresolved matter, for example, through a modality of the help desk service. Such a communication may comprise two-way presence information for the customer and the support agent. Presence information may comprise indication of availability of a user through one or more modalities of the help desk service. In this way, a follow-up inquiry may be utilized to foster subsequent interaction between the customer and the support agent, preventing an unresolved issue from going too long without being re-visited. This may also limit unnecessary communications between a customer and a support agent, for example, when trying to coordinate a time to discuss a help desk case.
In further examples, a user interface of the help desk service is configured to enable single click operations for communications between customers and support agents. As an example, an exemplary follow-up inquiry is automatically transmitted based on a single-click operation associated with a user interface feature that is selected by the support agent. For instance, a support agent may receive a notification for a follow-up inquiry, where a modality (e.g. web portal) of the help desk service is configured to provide user interface features for single click operations to forward communications/inquiries/notifications. The help desk service is also configured to enable customers to send communications through single click operations. In some instances, a user interface of the help desk service is configured to provide pre-populated content, where a single click operation can enable updates to be sent through the help desk service. Examples of pre-populated messages may include but are not limited to: “Got It!”, “Update Received, will call you back in 10 minutes” or “Thanks for the update. I'll let you know if I need more information”, among other examples.
At any point in time, case details data of an unresolved case may be updated by a customer, support agent or automatically by the help desk service following an event (e.g. interaction between the customer and support agent). For instance, case details data may be accessed through a modality of the help desk service as described in the description of system 100 (of
At processing operation 214, real-time notification is provided for update to the unresolved case. In one example, processing operation 214 comprises providing, to the customer through the help desk service, a real-time notification that the update has been reviewed by the support agent or that case details data has been updated by the support agent. In another example, processing operation 214 comprises receiving, through the help desk service a notification that a customer has updated case details data for an unresolved case.
Flow may proceed to decision operation 216, where it is determined whether the help desk case is resolved. For example, a follow-up inquiry may have been sufficient to resolve an issue, resulting in a closure of a help desk case. In examples, additional processing operations such as updating a state or status of a case may occur to indicate that the issue has been resolved and the case is closed. Ultimately, if the case is determined to be resolved, flow of decision operation 216 branches YES and processing ends. If the case is determined to be unresolved, flow of decision operation 216 branches NO and returns to processing operation 204 where case details data may be further evaluated.
As stated above, a number of program modules and data files may be stored in the system memory 306. While executing on the processing unit 404, program modules 408 (e.g., Input/Output (I/O) manager 324, other utility 326 and application 328) may perform processes including, but not limited to, one or more of the stages of the operations described throughout this disclosure. Other program modules that may be used in accordance with examples of the present invention may include electronic mail and contacts applications, word processing applications, spreadsheet applications, database applications, slide presentation applications, drawing or computer-aided application programs, photo editing applications, authoring applications, etc.
Furthermore, examples of the invention may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. For example, examples of the invention may be practiced via a system-on-a-chip (SOC) where each or many of the components illustrated in
The computing device 302 may also have one or more input device(s) 312 such as a keyboard, a mouse, a pen, a sound input device, a device for voice input/recognition, a touch input device, etc. The output device(s) 314 such as a display, speakers, a printer, etc. may also be included. The aforementioned devices are examples and others may be used. The computing device 404 may include one or more communication connections 316 allowing communications with other computing devices 318. Examples of suitable communication connections 316 include, but are not limited to, RF transmitter, receiver, and/or transceiver circuitry; universal serial bus (USB), parallel, and/or serial ports.
The term computer readable media as used herein may include computer storage media. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, or program modules. The system memory 306, the removable storage device 309, and the non-removable storage device 310 are all computer storage media examples (i.e., memory storage.) Computer storage media may include RAM, ROM, electrically erasable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other article of manufacture which can be used to store information and which can be accessed by the computing device 302. Any such computer storage media may be part of the computing device 302. Computer storage media does not include a carrier wave or other propagated or modulated data signal.
Communication media may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media.
One or more application programs 466 may be loaded into the memory 462 and run on or in association with the operating system 464. Examples of the application programs include phone dialer programs, e-mail programs, personal information management (PIM) programs, word processing programs, spreadsheet programs, Internet browser programs, messaging programs, and so forth. The system 402 also includes a non-volatile storage area 468 within the memory 462. The non-volatile storage area 468 may be used to store persistent information that should not be lost if the system 402 is powered down. The application programs 466 may use and store information in the non-volatile storage area 468, such as e-mail or other messages used by an e-mail application, and the like. A synchronization application (not shown) also resides on the system 402 and is programmed to interact with a corresponding synchronization application resident on a host computer to keep the information stored in the non-volatile storage area 468 synchronized with corresponding information stored at the host computer. As should be appreciated, other applications may be loaded into the memory 462 and run on the mobile computing device (e.g. system 402) described herein.
The system 402 has a power supply 470, which may be implemented as one or more batteries. The power supply 470 might further include an external power source, such as an AC adapter or a powered docking cradle that supplements or recharges the batteries.
The system 402 may include peripheral device port 430 that performs the function of facilitating connectivity between system 402 and one or more peripheral devices. Transmissions to and from the peripheral device port 430 are conducted under control of the operating system (OS) 464. In other words, communications received by the peripheral device port 430 may be disseminated to the application programs 466 via the operating system 464, and vice versa.
The system 402 may also include a radio interface layer 472 that performs the function of transmitting and receiving radio frequency communications. The radio interface layer 472 facilitates wireless connectivity between the system 402 and the “outside world,” via a communications carrier or service provider. Transmissions to and from the radio interface layer 472 are conducted under control of the operating system 464. In other words, communications received by the radio interface layer 472 may be disseminated to the application programs 566 via the operating system 464, and vice versa.
The visual indicator 420 may be used to provide visual notifications, and/or an audio interface 474 may be used for producing audible notifications via the audio transducer 425 (as described in the description of mobile computing device 400). In the illustrated example, the visual indicator 420 is a light emitting diode (LED) and the audio transducer 425 is a speaker. These devices may be directly coupled to the power supply 470 so that when activated, they remain on for a duration dictated by the notification mechanism even though the processor 460 and other components might shut down for conserving battery power. The LED may be programmed to remain on indefinitely until the user takes action to indicate the powered-on status of the device. The audio interface 474 is used to provide audible signals to and receive audible signals from the user. For example, in addition to being coupled to the audio transducer 425 (shown in
A mobile computing device 400 implementing the system 402 may have additional features or functionality. For example, the mobile computing device 400 may also include additional data storage devices (removable and/or non-removable) such as, magnetic disks, optical disks, or tape. Such additional storage is illustrated in
Data/information generated or captured by the mobile computing device 400 and stored via the system 402 may be stored locally on the mobile computing device 400, as described above, or the data may be stored on any number of storage media that may be accessed by the device via the radio 472 or via a wired connection between the mobile computing device 400 and a separate computing device associated with the mobile computing device 400, for example, a server computer in a distributed computing network, such as the Internet. As should be appreciated such data/information may be accessed via the mobile computing device 400 via the radio 472 or via a distributed computing network. Similarly, such data/information may be readily transferred between computing devices for storage and use according to well-known data/information transfer and storage means, including electronic mail and collaborative data/information sharing systems.
Reference has been made throughout this specification to “one example” or “an example,” meaning that a particular described feature, structure, or characteristic is included in at least one example. Thus, usage of such phrases may refer to more than just one example. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more examples.
One skilled in the relevant art may recognize, however, that the examples may be practiced without one or more of the specific details, or with other methods, resources, materials, etc. In other instances, well known structures, resources, or operations have not been shown or described in detail merely to observe obscuring aspects of the examples.
While sample examples and applications have been illustrated and described, it is to be understood that the examples are not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems disclosed herein without departing from the scope of the claimed examples.