Next, an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description of the drawings, identical or similar constituents will be designated by identical or similar reference numerals. It is to be noted, however, that the drawings are merely schematic.
As shown in
In the following description, the mobile stations 11, 12, . . . , and 19 currently communicating with the radio base station 30 will be hereinafter collectively referred to as the mobile station n (n≧1) unless otherwise specified because these mobile stations are in the same state and having the same configuration and functions. Meanwhile, the mobile station 20 will be hereinafter used as an example of the mobile station in the state of an attempt to newly start communication.
Communication channels concerning the HSDPA representing an example of communication using the shared physical channel will now be described. The downlink in the HSDPA uses a downlink shared physical channel HS-PDSCH (which stands for High Speed—Physical Downlink Shared Channel, or may be also referred to HS-DSCH: High Speed Downlink Shared Channel in light of a transport channel) which is shared by the respective mobile stations 11, 12, . . . , and 18. The downlink in the HSDPA also uses a downlink shared control channel HS-SCCH (which stands for High Speed—Shared Control Channel) which is shared by the respective mobile stations, and downlink associated dedicated physical channels A-DPCH (which stands for Associated—Dedicated Physical Channel) which are associated with the shared physical channel and allocated dedicatedly to the respective mobile stations. In the meantime, the uplink in the HSDPA applies uplink dedicated physical channels DPCH which are allocated dedicatedly to the respective mobile stations, and control channels HS-DPCCH (which stands for High Speed—Dedicated Physical Control Channel) for the HSDPA which are allocated dedicatedly to the respective mobile stations.
Next, a configuration of the radio control station of this embodiment will be described. As shown in
The monitor 41 measures at least one of a proportion of power used for the dedicated physical channel to total transmission power, the number of used codes, a baseband use rate at the radio base station, the number of calls for high rate packets, and the number of calls for high rate videophones, and retains the value.
The call acceptance judging unit 42 (a controller) makes a judgment as to whether or not it is appropriate to accept a dedicated physical channel call in a radio frequency band subject to a connection request by using at least one piece of the information among the proportion of the power used for the dedicated physical channels to the total transmission power, the number of used codes, the baseband use rate at the radio base station, the number of calls for high rate packets, and the number of calls for high rate videophones obtained by the monitor 41.
Next, the communication control method in the mobile communication system of this embodiment will be described with reference to
An operation when the mobile station newly requests a dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed will be described with reference to
First, the mobile station newly requests the dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed and notifies the radio control station of the request (S101).
Next, the radio control station receives the request (S102). Then, in terms of calls using existing dedicated physical channels (hereinafter, referred to as “existing dedicated physical channel calls”) and the newly requested dedicated physical channel call in the radio frequency band subject to the connection request, the radio control station judges whether or not it is appropriate to accept the requested call (S103) based on at least one piece of the information among:
the proportion of the power, the number of used codes, the baseband use rate of the radio base station; and
the number of calls for high rate packets, the number of calls for high rate videophones.
The radio base station transmits a requested new call in the radio frequency band notified by the radio control station (S105). The mobile station performs communication of the requested new call in the ratio frequency band notified by the radio control station (S106).
Next, an operation when the radio control station newly requests a dedicated physical channel call in the radio frequencyband in which communication using the shared physical channel is performed will be described with reference to
First, the radio control station newly requests the dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed (S201). After receiving the request, in terms of the existing dedicated physical channel calls and the newly requested dedicated physical channel call in the radio frequency band subject to the connection request, the radio control station judges whether or not it is appropriate to accept the requested call (S202) based on at least one piece of the information among:
the proportion of the power, the number of used codes, the baseband use rate of the radio base station; and
the number of calls for high rate packets, the number of calls for high rate videophones.
The radio base station transmits the requested new call in the radio frequency band notified by the radio control station (S204). The mobile station performs communication of the requested new call in the ratio frequency band notified by the radio control station (S205).
Next, the above-described operations (S103 in
In
In this way, as shown in
In
In this way, as shown in
In
In this way, as shown in
In
In
Here, the high rate packet call is at least one of a packet call having a transmission rate of 384 kbps, a packet call having a transmission rate of 128 kbps, a packet call having a transmission rate of 64 kbps, and a packet call having a transmission rate greater than 384 kbps, for example. The high rate videophone call is at least one of a videophone call having a transmission rate of 64 kbps, a videophone call having a transmission rate of 32 kbps, and a videophone call having a transmission rate greater than 64 kbps, for example.
Examples of the judgments using the thresholds for the number of calls which is a sum of the number of the existing dedicated physical channel calls and the number of the newly requested dedicated physical channel call in
According to the patterns 0 to 4, it is possible to allocate a large portion of radio resources (including the power resources, the code resources, the baseband resources of the radio base station, and the like) usable in one radio frequency band for communication using the shared physical channel as shown in
A pattern 5 shows an example of restricting the number of calls on the dedicated physical channels to 0 call. In this case, the radio frequency band using the shared physical channel and the radio frequency band using the dedicated physical channels are separated as shown in
Although the example of locating the monitor and the call acceptance judging unit in the radio control station has been described above, it is also possible to locate the monitor and the call acceptance judging unit in the radio base station instead. Now, the radio base station including the monitor and the call acceptance judging unit will be described below.
As shown in
The baseband signal processor 34 includes a layer-1 processor 341 and a MAC-hs (which stands for Medium Access Control—HSDPA) processor 342.
The application unit 35 includes a monitor 351 configured to monitor a dedicated physical channel call that performs W-CDMA communication, and a call acceptance judging unit 352. The layer-1 processor 341 and the MAC-hs processor 342 in the baseband signal processor 34 are connected to the monitor 351 and to the call acceptance judging unit 352, respectively.
The layer-1 processor 341 performs channel encoding of downlink data and channel decoding of uplink data.
The MAC-hs processor 342 performs H-ARQ (Hybrid ARQ) on a downlink shared channel used in the HSDPA, scheduling of packets waiting for transmission, determination of a transmission format of a downlink shared channel in the AMC (Adaptive Modulation Coding), and the like.
In terms of existing dedicated physical channel calls and a newly requested dedicated physical channel call, the monitor 351 measures at least one of a proportion of power used for the dedicated physical channels to total transmission power, the number of used codes, a baseband use rate at the radio base station, the number of calls for high rate packets, and the number of calls for high rate videophones, and retains the value.
The call acceptance judging unit 352 makes a judgment as to whether or not it is appropriate to accept a dedicated physical channel call in a radio frequency band subject to a connection request by using at least one piece of the information among the proportion of the power used for the dedicated physical channels to the total transmission power, the number of used codes, the baseband use rate at the radio base station, the number of calls for high rate packets, and the number of calls for high rate videophones obtained by the monitor 351.
Next, the communication control method in the mobile communication system of this embodiment will be described with reference to
The operation when the mobile station newly requests a dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed will be described with reference to
First, the mobile station newly requests the dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed and notifies the radio control station of the request (S801). The radio control station receives the request (S802) and then inquires the radio base station, to which the mobile station requests to connect, as to whether or not it is appropriate to accept the requested call (S803). In terms of the existing dedicated physical channel calls and the newly requested dedicated physical channel call in the radio frequency band subject to the connection request, the radio base station that receives the inquiry judges whether or not it is appropriate to accept the requested call (S804) based on at least one piece of the information among:
the proportion of the power, the number of used codes, the baseband use rate at the radio base station; and
the number of calls for high rate packets, the number of calls for high rate videophones.
The radio control station receives the judgment result from the radio base station (S806). The radio control station notifies the radio base station and the mobile station of the radio frequency band in which the requested call shall be connected based on the judgment result (S807). The radio base station transmits the requested new call in the radio frequency band notified from the radio control station (S808). The mobile station performs communication of the requested new call in the radio frequency band notified from the radio control station (S809).
Next, the operation when the radio control station newly requests a dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed will be described with reference to
First, the radio control station newly requests the dedicated physical channel call in the radio frequency band in which communication using the shared physical channel is performed (S901). The radio control station receives the request and then inquires the radio base station, to which the radio control station requests to connect, as to whether or not it is appropriate to accept the requested call radio control station (S902). In terms of the existing dedicated physical channel calls and the newly requested dedicated physical channel call in the radio frequency band subject to the connection request, the radio base station that receives the inquiry judges whether or not it is appropriate to accept the requested call (S903) based on at least one piece of the information among:
the proportion of the power, the number of used codes, the baseband use rate at the radio base station; and
the number of calls for high rate packets, the number of calls for high rate videophones.
The radio control station receives the judgment result from the radio base station (S905). The radio control station notifies the radio base station and the mobile station of the radio frequency band to connect the call based on the judgment result (S906). The radio base station transmits the requested new call in the radio frequency band notified from the radio control station (S907). The mobile station performs communication of the requested new call in the radio frequency band notified from the radio control station (S908).
The above-described operations (S804 in
According to the communication control method, the radio base station, and the radio control station of this embodiment, in the system, communication using the dedicated physical channel and communication using the shared physical channel are mixed in the same radio frequency band, it is possible to restrict the number of communication channels used dedicatedly by the mobile stations or a resource of the communication channels used dedicatedly by the mobile stations.
For this reason, it is possible to increase the radio resources (such as the power or the number of codes) to be allocated to the shared physical channel and there by to increase effects of reduction in transmission delays, higher use efficiency of radio resources, and higher transmission rates attributable to the communication using the shared physical channel. Moreover, it is possible to prevent deterioration in quality of communication using the shared physical channel.
Meanwhile, in this embodiment, the number of the communication channels used dedicatedly by the mobile stations or the resource of the communication channels used dedicatedly by the mobile stations is restricted according to a type or a transmission rate of the communication channels used dedicatedly by the mobile stations.
Here, the type of the communication channels to be used dedicatedly by the mobile stations is preferably at least one of communication channels configured to transmit voice data, communication channels configured to transmit packet data, communication channels configured to transmit videophone data, and communication channels configured to transmit multimedia information. Moreover, the transmission rate of the communication channels used dedicatedly by the mobile stations is preferably equal to at least one of 384 kbps, 256 kbps, 128 kbps, 64 kbps, 32 kbps, and 12.2 kbps.
Further, in this embodiment, the communication channel to be shared by the plurality of the mobile stations is preferably a communication channel configured to perform communication by use of High Speed Downlink Packet Access.
Moreover, the communication channels used dedicatedly by the mobile stations are preferably the Dedicated Physical Channel (DPCH).
Meanwhile, in this embodiment, the resource of the communication channels used dedicatedly by the mobile stations preferably includes at least one of transmission power, the number of codes, and a baseband use rate at the base station.
Although the present invention has been described above with reference to the embodiment, it is to be understood that the description and the drawings constituting part of this closure will not limit the scope of the present invention. It is obvious to those skilled in the art that various other embodiments, example, and technical applications are possible from the teachings of this disclosure.
For example, the embodiment has been described on the example of applying the high speed packet transmission method HSDPA according to the 3GPP to downlink communication. However, the present invention is not limited only to this example but is applicable to other types of mobile communication systems. For instance, the present invention is applicable to a mobile communication system to which a high speed packet transmission method HSUPA (which stands for High Speed Uplink Packet Access or is also referred to as Enhanced Uplink) is applied according to the 3GPP to uplink communication. Moreover, other acceptable high speed packet transmission methods may be a high speed packet transmission method provided by the Long Term Evolution according to the 3GPP, the cdma2000 1xEV-DO according to the 3GPP2, a high speed packet transmission method according to the TDD method, and the like.
As described above, it is needless to say that the present invention encompasses various other embodiments which are not expressly described herein. Accordingly, the technical scope of the present invention shall be defined only by the matters to define the invention according to the appended claims which are reasonably understood from the description of this disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2006-221968 | Aug 2006 | JP | national |