This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-235178, filed on Oct. 9, 2009, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a point-to-multipoint optical communications system and, more particularly, to a communication device transmitting downstream signals to a plurality of subscriber communication devices and a method for allocating communication resources to downstream signals.
2. Description of the Related Art
In recent years, the deployment of broadband access links is promoted due to the progress of the Internet. For broadband access links, various systems such as ADSL and cable modems have already been put to practical use. However, to still broaden the bandwidth, passive optical network (PON) attracts attentions and is becoming prevalent worldwide. Recently, PON systems with gigabit-class interface speed are in practical use.
A PON system is a point-to-muitipoint system configured in such a manner that a plurality of optical network units (ONUs) are connected to an optical line terminator (OLT) through optical fibers (optical transmission lines) and optical splitter(s). The OLT is a communication device installed in a central office, and the ONUs are subscriber communication devices installed in end users' premises. It is also possible to connect a plurality of optical splitters in multiple stages if branches are made to a large number of ONUs.
Referring to
A REPORT message contains information on the queue status (queue length) of the buffer provided in the ONU originating the REPORT message. A GATE message contains information on a transmission start time and transmission duration, which are set for each signal priority. Each ONU transmits an upstream signal in accordance with the GATE information. That is, upstream bandwidth allocation is implemented as the allocation of timeslots.
In
However, there are many problems to be solved, such as arbitration and stabilization of wavelengths and reduction in cost, and it is difficult to realize a system in which individual wavelengths are allocated to all ONUs respectively. Therefore, systems combining technologies of TDM PON and WDM PON have been also proposed as a promising solution.
For example, Japanese Patent Application Unexamined Publication No. 2008-42525 (hereafter, referred to as JP2008-42525) discloses an example of an optical transmission system combining TDM and WDM. In this system, an OLT designates the wavelength, transmission timing, and transmission period of an upstream signal of each ONU. More specifically, ONUs are divided into groups, corresponding to upstream wavelengths to be used by the ONUs. The OLT buffers and monitors upstream data received from each ONU. If the bandwidth to be reserved for an upstream signal of a certain ONU cannot be secured in its current wavelength group, the OLT performs such wavelength allocation as to relocate the signal in question into another upstream wavelength group having a smaller number of signals.
In the same upstream wavelength group, the OLT appropriately changes the allocation of timeslots in TDM, whereby the capacity (bandwidth) of communication with each ONU can be optimized on the time axis based on requests. Particularly in the upstream direction (from ONU to OLT), arbitration is performed in real time by dynamic bandwidth allocation (DBA).
However, a downstream signal transmitted from the OLT to each ONU generally requires a wider bandwidth than an upstream signal transmitted from each ONU to the OLT in many cases. If a large number of downstream signals are time-division-multiplexed on a specific one of a plurality of downstream wavelengths, efficient bandwidth allocation in a network cannot be achieved.
In the above-described optical transmission system disclosed in JP2008-42525, determined is a wavelength to be used for an upstream signal transmitted from each ONU, not a wavelength to be used for a downstream signal transmitted from the OLT to each ONU. Accordingly, it is impossible to achieve efficient bandwidth allocation (maximum throughput) in the entire system.
The present invention is made in the light of the above-described situations, and an object thereof is to provide a communication device and a resource allocation method that enable optimal resource allocation over a plurality of wavelengths for downstream signals.
According to the present invention, a communication device for communicating with a plurality of subscriber communication devices using optical signals of a plurality of wavelengths, includes: a traffic monitoring section for monitoring a downstream traffic volume of a downstream signal destined for each of the plurality of subscriber communication devices; and a resource allocating section for allocating a different one of a predetermined number of wavelength resources to each of groups which includes at least one downstream signal grouped according to a predetermined wavelength allocation rule based on its downstream traffic volume.
According to the present invention, a method for allocating communication resources to a downstream signal in a communication device which communicates with a plurality of subscriber communication devices using optical signals of a plurality of wavelengths, includes the steps of: monitoring a downstream traffic volume of a downstream signal destined for each of the plurality of subscriber communication devices; and grouping the downstream signals under a predetermined number of wavelength resources according to a predetermined wavelength allocation rule based on their downstream traffic volumes; and allocating a different one of the predetermined number of wavelength resources to each of groups.
As described above, according to the present invention, it is possible to perform optimal resource allocation over a plurality of wavelengths for downstream signals.
Next, a detailed description will be given of an exemplary embodiment in which an optical communications system including a communication device according to the present invention and a plurality of subscriber communication devices is applied to a passive optical network (PON) system, with reference to the accompanying drawings.
A PON system according to the present exemplary embodiment combines technologies of wavelength division multiplexing (WDM) and time division multiplexing (TDM) to realize efficient bandwidth allocation (maximum throughput). More specifically, the PON system controls the allocation of resources (wavelength and time) to upstream signals depending on bandwidth requests received from individual subscriber ONUs. In addition, the PON system dynamically changes the allocation of resources (wavelength and time) to downstream signals depending on the state of the downstream traffic band. In other words, dynamic bandwidth allocation (DBA) used in existing PON systems is extended not only to the time axis but also to the wavelength domain, whereby it is possible to perform more flexible and efficient bandwidth allocation.
Referring to
The OLT 10 has a downstream traffic monitor 102 and a downstream resource allocation controller 103 and performs wavelength allocation control for the n ONUs depending on downstream traffic transmitted to each ONU.
The optical coupler/splitter 11 is an element for splitting a downstream signal to each ONU and coupling an upstream signal from each ONU to transfer them to the OLT 10. Note that the optical coupler/splitter 11 may include an optical wavelength demultiplexing element that can separate the directions of downstream signals based on their wavelengths and also can optically combine upstream signals. For such an element, arrayed wavelength grating (AWG) is most commonly used.
In
Referring to
The downstream resource allocation controller 103 determines the assignment of the wavelength groups to the ONUs 1 to n in accordance with an allocation rule 103a and outputs an allocation control signal indicating the determined assignment to the grouping section 104.
The allocation rule 103a is stored in memory, and the basic policy thereof is that for ONUs with lower downstream traffic volumes, the number of time-division multiplexed (TDMed) signals is increased by allocating the same wavelength to as many of these ONUs as possible and for ONUs with higher downstream traffic volumes, the number of TDMed signals is reduced so that as many timeslots as possible are allocated to these ONUs. For example, the allocation is performed in such a manner that ONUS are selected in descending order of downstream traffic volume and that as much traffic as possible is multiplexed on one downstream wavelength while held within the predetermined transmission bandwidth of the downstream wavelength.
The grouping section 104 sorts the n downstream signals corresponding to the ONUs 1 to n, which are input from the DEMUX 101, into the wavelength groups and outputs the downstream signals grouped by downstream wavelength to the timeslot allocation section 105. In
The timeslot allocation section 105 time-division-multiplexes a plurality of the downstream signals of each downstream wavelength in accordance with a timeslot allocation control signal from the downstream resource allocation controller 103 and outputs the signals to laser light sources provided respectively for the individual wavelengths.
Referring to
The upstream resource allocation controller 204 outputs an upstream-timeslot control signal to an upstream signal processor 205 and an upstream-wavelength control signal to a tunable wavelength laser section 206, in accordance with the upstream resource allocation information designated by the OLT 10. The upstream signal processor 205 allocates timeslot(s) to an upstream signal to transmit, in accordance with an upstream timeslot allocation direction. The tunable wavelength laser section 206 converts the upstream signal output from the upstream signal processor 205 into an optical signal of a designated upstream wavelength λi, in accordance with an upstream wavelength allocation direction. Thus, the optical signal of the upstream wavelength λi is transmitted to the OLT 10 through the MUX/DEMUX 201 at a designated timing.
The OLT 10 and the PON system according to the exemplary embodiment described above can realize efficient bandwidth allocation (maximum throughput) by dynamically changing the allocation of resources (wavelength and time) to downstream signals depending on downstream signal traffic. In other words, dynamic bandwidth allocation (DBA) used in existing PON systems is extended not only to the time axis but also to the wavelength domain, whereby it is possible to achieve optimal resource allocation over a plurality of wavelengths for downstream signals.
Hereinafter, a detailed description will be given of a PON system, communication device (OLT), and subscriber communication device (ONU) according to an example of the present invention. Note that those blocks having the same functions as the above-described blocks shown in
Here, to avoid complicating the description, it is assumed that one OLT 10 is optically connected to six ONUs 1 to 6 through an optical coupler/splitter 11 and optical transmission lines and that four wavelengths λ1 to λ4 are used in the entire system, as shown in
An example of the PON system as depicted in
Referring to
In this state, assuming that the traffic toward the ONUs 2 and 3 relatively increases and the traffic toward the ONUs 1 and 4 to 6 relatively decreases for example, wavelength allocation is changed so that the ONU 1 is relocated into the wavelength group G2 as shown in
However, since the upstream traffic and downstream traffic can vary independently of each other in practice, the upstream wavelength groups and downstream wavelength groups may have independent group structures irrelevantly to each other.
Referring to
A wavelength multiplexer/demultiplexer (MUX/DEMUX) 109 constitutes an interface section interfacing with the optical transmission line and is connected to the MUX 108 of the transmission section and also to a wavelength demultiplexer (DEMUX) 110 of a reception section.
The reception section of the OLT 10 includes the DEMUX 110, a plurality of photodiodes (PDs) 111 and 112, a demultiplexer (TDM DEMUX) 113, a cross-connect section 114, a multiplexer (MUX) 115, an upstream bandwidth request extractor 116, and an upstream wavelength and timeslot allocation controller 117.
Note that when a pair of a downstream wavelength and an upstream wavelength forms one wavelength group as described above, it is sufficient to perform control such that the cross-connect section 104 for grouping downstream signals and the cross-connect section 114 for dissolving upstream signal groups fall in connection states in the opposite directions to each other. Here, the connection states correspond to the grouping shown in
Next, the operation of the PON system according to the present example will be described in detail with reference to
A description will be given using the group structure shown in
Specifically, the cross-connect section 104 interchanges the downstream signals, and the next-stage TS MUX 105 multiplexes the signals toward the ONUs 2 and 3 and similarly multiplexes the signals toward the ONUs 1 and 4 to 6. The multiplex signal toward the ONUs 2 and 3 is input to the LD 106, and the multiplex signal toward the ONUs 1 and 4 to 6 is input to the LD 107. These multiplex signals are individually converted into optical signals of different wavelengths (λ1 and λ3) and then multiplexed by the MUX 108. All the downstream optical signals multiplexed into a single stream by the MUX 108 are output to the optical transmission line through the MUX/DEMUX 109.
When the MUX/DEMUX 109 of the OLT 10 receives an upstream optical signal from ONUs, the DEMUX 110 demultiplexes the upstream optical signal into optical signals of the wavelengths λ2 and λ4 by and then the PDs 111 and 112 convert the optical signals of the wavelengths λ2 and λ4 into electrical signals, respectively. The outputs of the PDs 111 and 112 are further demultiplexed into upstream signals (packets, frames, or the like) from the individual ONUs by the TDM DEMUX 113. The upstream signals from the individual ONUs output from the TDM DEMUX 113 are subject to interchanging at the cross-connect section 114, multiplexed by the MUX 115, and then output to a next-stage device.
The upstream bandwidth request extractor 116 receives as inputs the upstream signals of the individual ONUs output from the cross-connect section 114 and extracts upstream bandwidth request information of each ONU. The upstream wavelength and timeslot allocation controller 117 determines the allocation of upstream wavelengths and timeslots in accordance with the upstream bandwidth requests and predetermined rule and outputs this allocation information to the TS MUX 105 for downstream signals. The TS MUX 105 inserts this allocation information into downstream signals as ONU control information.
Moreover, the interchanging control over upstream signals from ONUs may also be performed independently of downstream signals by using the allocation information as a control signal to the upstream cross-connect section 114. The example in
Moreover, in an upstream signal as shown in
Further,
In the present example, the state of downstream traffic and upstream bandwidth requests are monitored at all times. Based on such information, wavelengths and timeslots are dynamically allocated to individual ONUs. Taking the states shown in
For those ONUs having low traffic volumes, the same wavelength is allocated to as many of these ONUs as possible, thereby increasing the number of TDMed signals and achieving efficient transmission. On the other hand, for those ONUS having high traffic volumes, the number of TDMed signals is reduced so that many timeslots can be allocated to these ONUs. It is also made possible that one ONU exclusively use one wavelength.
The way of allocating wavelengths and timeslots in response to the state of traffic and upstream bandwidth requests is stored beforehand in memory (not shown) as the allocation rule 103a for the OLT 10. Specifically, the upstream wavelength and timeslot allocation controller 117 and downstream wavelength and timeslot allocation controller 103 shown in
In accordance with the allocation rule information about wavelengths and timeslots stored beforehand as described above, the downstream wavelength and timeslot allocation controller 103 allocates wavelengths and timeslots in downstream signals toward individual ONUs, based on the state of traffic toward each ONU, which is constantly monitored by the downstream traffic monitor 102.
The upstream wavelength and timeslot allocation controller 117 allocates wavelengths and timeslots in upstream signals from individual ONUs in accordance with the allocation rule information about wavelengths and timeslots stored beforehand as described above, based on an upstream bandwidth request from each ONU.
As described above, according to the resource allocation method in the present example, dynamic bandwidth allocation (DBA) generally used in PON systems can be extended not only to the time axis but also to the wavelength domain. Therefore, it is possible to perform more flexible and efficient bandwidth allocation.
According to the present example, the OLT 10 can dynamically change the allocation of wavelengths in downstream signals during operation appropriately depending on the traffic volumes of the respective downstream signals. Therefore, it is possible to realize optimal bandwidth allocation (maximum throughput) in the system.
Note that the present invention is not limited to the above-described embodiment or example and can be implemented in various forms modified based on the technical ideas of the present invention.
For example, in the above-described example, a description is given of a case where ONUs are divided into two wavelength groups, using four wavelengths for upstream and downstream signals. However, the present invention is not limited to the cases using these numbers. The number of wavelengths used for optical signals and the number of wavelength groups assigned may be determined arbitrarily.
Moreover, in the above-described exemplary embodiment, a description is given assuming that one wavelength is allocated to each of the upstream and downstream signals of one ONU. However, the present invention is not limited to this configuration. It is also possible to make a configuration and method such that a plurality of wavelengths are allocated to each of the upstream and downstream signals of one ONU and the allocation is dynamically changed.
In the case of the configuration shown in
According to this configuration example shown in
Moreover, it is also possible to further provide a function of performing wavelength and timeslot allocation not dynamically as in the above-described example but statically, that is, during periods of OLT non-operation, based on information set in advance on the OLT 10. In this case, the downstream wavelength and timeslot allocation controller 103 stores beforehand static allocation rule information about wavelengths and timeslots and, in accordance with this static allocation rule information, allocates wavelengths and timeslots in downstream signals toward individual ONUs.
According to this static allocation function, wavelength allocation can be performed in accordance with the predetermined allocation rule even when the dynamic wavelength allocation according to the above-described example does not function for some reason.
In addition, processing procedures for implementing an OLT as any of the above-described exemplary embodiment and examples are recorded as programs on a recording medium, whereby the above-described functions according to the exemplary embodiment and examples of the present invention can be implemented by causing a CPU of a computer included in the system to execute the processing through the programs provided from the recording medium.
In this case, the present invention is applicable also in cases where an information group including the programs is provided to an output device from the above-mentioned recording medium or an external recording medium through a network. That is, the program codes themselves, read from a recording medium, implement new functions of the present invention, and a recording medium storing the program codes and signals read from the recording medium are included in the present invention.
Examples that can be used for the recording medium include flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW, magnetic tape, nonvolatile memory cards, ROM, and the like.
The programs according to the present invention can make an OLT controlled by the programs implement the functions according to the above-described exemplary embodiment and examples.
The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The above-described exemplary embodiment and examples are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2009-235178 | Oct 2009 | JP | national |