This application claims priority of Taiwan Patent Application No. 107141861 filed on Nov. 23, 2018, the entirety of which is incorporated by reference herein.
The disclosure generally relates to a communication device, and more particularly, it relates to a communication device and an antenna structure therein.
With the advancements being made in mobile communication technology, mobile devices such as portable computers, mobile phones, multimedia players, and other hybrid functional portable electronic devices have become more common. To satisfy user demand, mobile devices can usually perform wireless communication functions. Some devices cover a large wireless communication area; these include mobile phones using 2G, 3G, and LTE (Long Term Evolution) systems and using frequency bands of 700 MHz, 850 MHz, 900 MHz, 1800 MHz, 1900 MHz, 2100 MHz, 2300 MHz, 2500 MHz, and 2700 MHz. Some devices cover a small wireless communication area; these include mobile phones using Wi-Fi and Bluetooth systems and using frequency bands of 2.4 GHz, 5.2 GHz, and 5.8 GHz.
An antenna is indispensable in a mobile device supporting wireless communication. However, the radiation pattern of the antenna is often fixed and has some nulls, which may degrade the communication quality of the antenna in specific directions. Accordingly, there is a need to propose a novel solution for solving the problems of the prior art.
In an exemplary embodiment, the disclosure is directed to a communication device including a ground element, an antenna structure, a first reflector, a second reflector, a first tuning element, and a switch element. The first reflector is disposed adjacent to the antenna structure. The second reflector is disposed adjacent to the antenna structure. The second reflector is separate from the first reflector. The switch element is coupled to the first tuning element. When the switch element is enabled, the switch element couples the first tuning element to the first reflector or the second reflector. When the switch element is disabled, the first tuning element is separate from the first reflector and the second reflector.
In some embodiments, the first reflector has a substantially inverted L-shape.
In some embodiments, the second reflector has a substantially straight-line shape.
In some embodiments, the combination of the first reflector and the second reflector has a substantially U-shape, and the antenna structure is positioned in a notch region of the U-shape.
In some embodiments, the communication device further includes a second tuning element coupled to a bending portion of the first reflector.
In some embodiments, each of the first tuning element and the second tuning element has a substantially straight-line shape.
In some embodiments, the antenna structure covers a first frequency band from 2400 MHz to 2500 MHz, and a second frequency band from 5150 MHz to 5850 MHz.
In some embodiments, the length of the first reflector is longer than ½ wavelength of the second frequency band.
In some embodiments, the length of the second reflector is longer than ½ wavelength of the second frequency band.
In some embodiments, the length of the first reflector is longer than the length of the second reflector.
In some embodiments, the distance between the first reflector and the antenna structure is from 1/16 to ¼ wavelength of the second frequency band.
In some embodiments, the distance between the second reflector and the antenna structure is from 1/16 to ¼ wavelength of the second frequency band.
In some embodiments, the antenna structure includes a feeding radiation element, a first radiation element, a second radiation element, and a shorting element. The feeding radiation element is coupled to a signal source. The first radiation element is coupled to the feeding radiation element. The second radiation element is coupled to the feeding radiation element. The feeding radiation element is coupled through the shorting element to the ground element.
In some embodiments, the feeding radiation element has a substantially straight-line shape.
In some embodiments, the first radiation element has a substantially C-shape, and the second radiation element has a substantially rectangular shape.
In another exemplary embodiment, the invention is directed to a communication device including a ground element, an antenna structure, a first reflector, and a second reflector. The first reflector is disposed adjacent to the antenna structure. The second reflector is disposed adjacent to the antenna structure. The second reflector is separate from the first reflector. The first reflector is partially parallel to the second reflector. A virtual extension line of the first reflector is perpendicular to a virtual extension line of the second reflector. The combination of the first reflector and the second reflector has a substantially U-shape. The antenna structure is positioned in a notch region of the U-shape.
In some embodiments, the first reflector has a substantially inverted L-shape, and the second reflector has a substantially straight-line shape.
In some embodiments, the communication device further includes a first tuning element and a switch element. A notch is formed between the first reflector and the second reflector. The first tuning element is adjacent to the notch, and is coupled to the switch element. When the switch element is enabled, the switch element couples the first tuning element to the first reflector or the second reflector. When the switch element is disabled, the first tuning element is separate from the first reflector and the second reflector.
In another exemplary embodiment, the disclosure is directed to a notebook computer device including a cover element, a hinge element, a body element, and a communication device. The hinge element is connected to the cover element. The body element is connected to the cover element by the hinge element. The communication device is disposed in the notebook computer device. The communication device includes a ground element, an antenna structure, a first reflector, a second reflector, a first tuning element, and a switch element. The first reflector is disposed adjacent to the antenna structure. The second reflector is disposed adjacent to the antenna structure. The second reflector is separate from the first reflector. When the switch element is enabled, the switch element couples the first tuning element to the first reflector or the second reflector. When the switch element is disabled, the first tuning element is separate from the first reflector and the second reflector.
In some embodiments, the first reflector has a substantially inverted L-shape, the second reflector has a substantially straight-line shape, the combination of the first reflector and the second reflector has a substantially U-shape, and the communication device is positioned in a notch region of the U-shape.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In order to illustrate the purposes, features and advantages of the invention, the embodiments and figures of the invention are shown in detail as follows.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. The term “substantially” means the value is within an acceptable error range. One skilled in the art can solve the technical problem within a predetermined error range and achieve the proposed technical performance. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
The ground element 110 may be a ground copper foil, which may be coupled to a system ground plane (not shown). The system ground plane provides a ground voltage. The shape and type of the antenna structure 200 are not limited in the invention. For example, the antenna structure 200 may be a monopole antenna, a dipole antenna, a PIFA (Planar Inverted F Antenna), a helical antenna, a patch antenna, or a chip antenna, but it is not limited thereto.
In the embodiment of
In some embodiments, the antenna structure 200 covers a first frequency band from 2400 MHz to 2500 MHz, and a second frequency band from 5150 MHz to 5850 MHz. With respect to the antenna theory, the feeding radiation element 210 and the first radiation element 220 are excited to generate the first frequency band. The feeding radiation element 210 and the second radiation element 230 are excited to generate the second frequency band. The shorting element 240 is configured to fine-tune the impedance matching of the antenna structure 200. The width W2 of the second radiation element 230 may be greater than the width W1 of the first radiation element 220, so as to increase the operation bandwidth of the second frequency band. Accordingly, the antenna structure 200 can support at least the dual-band operations of WLAN (Wireless Local Area Networks) 2.4 GHz/5 GHz.
The first reflector 120 may substantially have an inverted L-shape. The first reflector 120 has a first end 121 and a second end 122. The second end 122 of the first reflector 120 is an open end, which is adjacent to the ground element 110. The second reflector 130 may substantially have a straight-line shape. The second reflector 130 has a first end 131 and a second end 132. The first end 131 of the second reflector 130 is adjacent to the first end 121 of the first reflector 120. The second end 132 of the second reflector 130 is an open end, which is adjacent to the ground element 110. The first reflector 120 may be partially perpendicular to the second reflector 130, and the first reflector 120 may be partially parallel to the second reflector 130. For example, a virtual extension line VL1 of the first reflector 120 may be perpendicular to a virtual extension line VL2 of the second reflector 130. Specifically, the combination of the first reflector 120 and the second reflector 130 may substantially have a U-shape. The antenna structure 200 may be positioned in a notch region 135 of the U-shape. The first tuning element 140 may substantially have a straight-line shape, which may be substantially perpendicular to the second reflector 130. The first tuning element 140 has a first end 141 and a second end 142. The first end 141 of the first tuning element 140 is adjacent to the first end 121 of the first reflector 120 and the first end 131 of the second reflector 130. The second end 142 of the first tuning element 140 is an open end, which extends away from the first reflector 120. Specifically, a notch 127 is formed between the first reflector 120 and the second reflector 130. The first end 141 of the first tuning element 140 is adjacent to the notch 127 and is coupled to the switch element 150. In alternative embodiments, the position of the first tuning element 140 is adjustable according to different requirements, and it is not necessarily perpendicular to the second reflector 130.
The first reflector 120, the second reflector 130, and the first tuning element 140 may all be floating. The first reflector 120, the second reflector 130, and the antenna structure 200 may be completely separate from each other. Both the first reflector 120 and the second reflector 130 are disposed adjacent to the antenna structure 200, so as to control and adjust the radiation pattern of the antenna structure 200. The first tuning element 140 is configured to fine-tune the effective length of the first reflector 120 or the second reflector 130. It should be noted that the term “adjacent” or “close” over the disclosure means that the distance (spacing) between two corresponding elements is smaller than a predetermined distance (e.g., 5 mm or the shorter), but does not mean that the two corresponding elements directly touch each other (i.e., the aforementioned distance/spacing therebetween is reduced to 0).
The switch element 150 may be implemented with an IC (Integrated Circuit) element. For example, the switch element 150 may be an SPDT (Single Pole Double Throw) switch, but it is not limited thereto. The switch element 150 is coupled to the first end 141 of the first tuning element 140. The switch element 150 is selectively enabled or disabled according to a control signal, and its switching state is also determined according to the control signal. For example, the aforementioned control signal may be generated by a processor according to a user input or an antenna measurement result. When the switch element 150 is enabled, the switch element 150 couples the first end 141 of the first tuning element 140 to either the first end 121 of the first reflector 120 or the first end 131 of the second reflector 130, such that the effective length of the corresponding one of the first reflector 120 and the second reflector 130 is increased. When the switch element 150 is disabled, the switch element 150 operates in an open-circuited state, and the first tuning element 140 is completely separate from the first reflector 120 and the second reflector 130, such that the effective lengths of the first reflector 120 and the second reflector 130 are both maintained.
In some embodiments, the element sizes of the communication device 100 are described as follows. The length of the first reflector 120 (i.e., the length from the first end 121 to the second end 122) may be longer than ½ wavelength (λ/2) of the second frequency band. The length of the second reflector 130 (i.e., the length from the first end 131 to the second end 132) may be longer than ½ wavelength (λ/2) of the second frequency band. The length of the first reflector 120 may be longer than the length of the second reflector 130. For example, the length of the first reflector 120 may be substantially 2 times the length of the second reflector 130. The distance D1 or D2 between the first reflector 120 and the antenna structure 200 may be from 1/16 to ¼ wavelength (λ/16˜λ/4) of the second frequency band (e.g., ⅛ wavelength). The distance D3 between the second reflector 130 and the antenna structure 200 may be from 1/16 to ¼ wavelength (λ/16˜λ/4) of the second frequency band (e.g., ⅛ wavelength). The length of the first tuning element 140 (i.e., the length from the first end 141 to the second end 142) may be substantially equal to ¼ wavelength (λ/4) of the second frequency band. The total length of the feeding radiation element 210 and the first radiation element 220 (i.e., the total length from the first end 211 through the first end 221 to the second end 222) may be substantially equal to ¼ wavelength (λ/4) of the first frequency band. The total length of the feeding radiation element 210 and the second radiation element 230 (i.e., the total length from the first end 211 through the first end 231 to the second end 232) may be substantially equal to ¼ wavelength (λ/4) of the second frequency band. In some embodiments, the width W2 of the second radiation element 230 may be substantially 2 times the width W1 of the first radiation element 220. The above ranges of element sizes are calculated and obtained according to many experiment results, and they help to optimize the operation bandwidth and impedance matching of the communication device 100.
In some embodiments, the communication device 100 further includes a processor, a detector, and a GPIO (General-Purpose Input/Output) interface (not shown). The switch element 150 can switch to different radiation patterns (or different operation modes) one after another. The detector is coupled to the antenna structure 200, and is configured to monitor the RSSI (Received Signal Strength Indicator) corresponding to each radiation pattern (or each operation mode). The processor compares all of the RSSIs with each other, so as to generate a control signal. The control signal is transmitted through the GPIO interface to the switch element 150. Then, the processor can control the switch element 150 to select the operation mode and radiation pattern corresponding to the largest RSSI, thereby optimizing the communication quality of the communication device 100.
In alternative embodiments, the antenna structure 600 of
The invention proposes a novel communication device. By adding two independent reflectors around a fixed antenna structure, the radiation pattern of the antenna structure is effectively modified, and the nulls of the radiation pattern structure are eliminated. Furthermore, the communication device may selectively use a switch element and a tuning element to change the resonant lengths of the reflectors and to provide different operation modes. In comparison to the conventional design, the invention has at least the advantages of minimizing the size, reducing the manufacturing cost, and maintaining the antenna communication quality, and therefore it is suitable for application in a variety of communication devices.
Note that the above element sizes, element shapes, and frequency ranges are not limitations of the invention. An antenna designer can fine-tune these settings or values according to different requirements. It should be understood that the communication device of the invention is not limited to the configurations of
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term) to distinguish the claim elements.
While the invention has been described by way of example and in terms of the preferred embodiments, it should be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
107141861 | Nov 2018 | TW | national |