This application is a Section 371 National Stage Application of International Application No. PCT/FR2017/053202, filed Nov. 22, 2017, the content of which is incorporated herein by reference in its entirety, and published as WO 2018/104607 on Jun. 14, 2019, not in English.
The present invention relates to a communication device intended for a passenger compartment, in particular of a vehicle (for example a motor vehicle, a train, an airplane or another vehicle).
A functionality of a device of this type may be for example to perform the role of an access point to a wide area network for terminals present in the passenger compartment, or else to perform the role of a gateway between a wide area network and a local area network in the passenger compartment.
Devices of this type intended for a motor vehicle passenger compartment and capable of communicating through radiofrequency transmissions with compatible Wi-Fi terminals present in the passenger compartment in accordance with the Wi-Fi standard (as specified by the IEEE 802.11 standard) are known. These devices provide a Wi-Fi router functionality, and typically incorporate a SIM card and processing circuits, allowing them to connect to a cellular radio network (2G, 3G, 4G, 5G and evolutions), on the one hand, and to offer a Wi-Fi connection to terminals present in the passenger compartment at a bit rate that may reach 150 Mb/second, on the other hand.
However, it is observed that some clients or potential users of devices of this type choose to limit use thereof, or even choose to completely shun these devices, considering that the passenger compartment of a vehicle may form a Faraday cage, having the effect of multiplying radiofrequency waves inside the passenger compartment, thereby exhibiting the particular drawback of increasing the risk of interference for these waves inside the passenger compartment, to the detriment of the quality of service experienced by the user.
The present invention aims to improve this situation.
To this end, it proposes a communication device, comprising:
The proposed device exhibits numerous advantages, including that of offering a service allowing wireless communication in a vehicle passenger compartment without using radiofrequency waves (for example Wi-Fi radiofrequency waves).
A signal initially received by the radiofrequency communication module is thus finally emitted, for example in a passenger compartment, in the form of a (modulated) light signal, not exhibiting the abovementioned drawbacks of radiofrequency signals.
The Faraday cage phenomenon does not arise with light signals emitted inside a passenger compartment, in particular of a motor vehicle, and the possible interference with radiofrequency waves that could result therefrom does not affect the quality of reception of the light signals.
In one or more embodiments, the proposed device may furthermore comprise at least one lamp connected to the interface module. In these embodiments, the proposed device is autonomous, and then comprises the elements necessary to transmit data that the radiofrequency communication module receives into the passenger compartment.
Typically, the abovementioned light modulation may be in accordance with the Li-Fi communication protocol, for example the IEEE 802.15 protocol called “WPAN”™ (for “wireless personal area networks”), specified by the Institute of Electrical and Electronics Engineers (IEEE), regarding the project “Visible Light Communication”.
In one implementation, the proposed device furthermore comprises an electrical connection unit intended to be connected to an electric power outlet. This may advantageously be a unit intended to be connected to a cigarette-lighter outlet of a motor vehicle passenger compartment. In this case, the power supply that is provided (for example 12 volts DC via the cigarette-lighter outlet) is compatible with normal Li-Fi communication methods typically using light-emitting diodes.
In one or more embodiments, the interface module may be configured so as to deliver a signal through power line communication, thus intended to supply power to one or more lamps.
In one or more embodiments, the proposed device may comprise a current controller for controlling the supply current to the interface module. Such an implementation makes it possible to stabilize the current that the interface module delivers (in particular the maximum value of the delivered current, without modulation).
In one or more embodiments, the device comprises a photoreceptor linked to the interface module so as to receive a modulated light signal and transmit, via the radiofrequency communication module, a radiofrequency signal corresponding to the received modulated light signal. Such an implementation offers a possible return channel for the terminals present in a passenger compartment (for example for smartphones equipped with an infrared data transmission means), this therefore making it possible to provide bidirectional communication (in the downlink direction, that is to say from the device to a user terminal, and/or in the uplink direction, that is to say from a user terminal to the device) via the device of the invention.
The present invention also targets a method for installing a device as proposed herein, according to the various contemplated embodiments, in a passenger compartment including one or more lamps, the method comprising:
Thus, in this implementation, the device may advantageously use at least one pre-existing lamp of the passenger compartment to transmit the modulated light signal. As indicated above, it may be advantageous to directly use the power source for the lamps of the passenger compartment, which is normally current-controlled in particular in motor vehicle passenger compartments. However, as a variant, it may be provided for the device itself to incorporate a current controller.
Other advantages and features of the invention will become apparent from reading the following description of exemplary embodiments of the invention, and from examining the appended drawings, in which:
In the following detailed description of embodiments of the invention, numerous specific details are presented in order to provide a more complete understanding. However, those skilled in the art realize that embodiments may be put into practice without these specific details. In other cases, well-known features are not described in detail so as to avoid needlessly complicating the description.
In the passenger compartments of some currently available motor vehicles, the existing sources for connection to a network (wireless broadband access sources) may be of various types, described below:
The principle of Wi-Fi router products is that of an access point to terminals in the passenger compartment using Wi-Fi technology, coupled to a broadband module equipped with a SIM card. The broadband module may thus receive the cellular network surrounding the vehicle. The broadband module therefore provides a connection to the Internet, for example via the cellular network, to the terminals connecting to this broadband module via Wi-Fi access.
The invention proposes a different device, in particular in that it comprises a broadband module able to communicate on a radiofrequency network, for example a cellular network, such as a GSM, UMTS, CDMA, HSPA, LTE, LTE-A, etc. network, and connected to a light modulator for light-modulated data communication (for example using the technology known under the acronym “Li-Fi”, for “Light Fidelity”), via one or more lamps.
Light modulation communication technologies, and in particular Li-Fi technology, exhibit the advantage of making it possible to offer, in particular inside a passenger compartment, a wireless Internet service that does not use radiofrequency waves, and therefore in particular to limit the drawbacks linked to the use of radiofrequency waves inside a passenger compartment.
Thus, with reference to
The module MODR comprises a processor, a memory operationally coupled to the processor, and a transceiver for transmitting and receiving radiofrequency signals. In one or more embodiments, the processor may be configured so as to drive the operations and/or functions of the various elements of the module MODR, and in particular so as to generate a digital signal from radiofrequency signals received by way of the transceiver.
This module MODR thus provides a radiofrequency transceiver function, and is configured so as to be connected, for this purpose, to a radiofrequency network, such as, in the example shown, a cellular radiocommunications network (GSM, UMTS, CDMA, CDMA2000, HSPA, LTE, LTE-A or another network), in this case via a base station BS of the network serving as access point to the radiofrequency network, in order to transmit and receive radiofrequency signals. Depending on the embodiment, the module MODR may furthermore be equipped with a security module, such as a subscriber identification module for identification to the radiofrequency network, such as a SIM (subscriber identity module) card, or an equivalent integrated security module eSIM, in order to receive and transmit data via the radiofrequency network. In one or more embodiments, the module MODR may be configured so as to communicate with radio access points using various radiocommunications technologies or various types of radiocommunications network, such as for example communicate with Wi-Fi radio access points and communicate with radio access points of a cellular network and/or of an ad-hoc network.
Those skilled in the art may realize that there are numerous different types of radiocommunications network, which are cellular or not cellular, and that, depending on the embodiment, the module MODR may incorporate one or more radiofrequency modules and be configured so as to transmit and receive radiofrequency signals using one or more technologies, such as TDMA, FDMA, OFDMA, CDMA, or one or more radiocommunications standards, such as GSM, EDGE, CDMA, UMTS, HSPA, LTE, LTE-A, WiFi (IEEE 802.11) and WiMAX (IEEE 802.16), or variants or evolutions thereof, which are currently known or will be developed subsequently.
In particular, the radiofrequency communication module MODR, typically a broadband module, is (operationally) coupled to a module MODL so as to deliver a light signal into the passenger compartment of the vehicle with a modulation representative of the data received by the radiofrequency module MODR. The modulation of the light signal may be applied using Li-Fi technology. The module MODL may thus perform the role of interface between the communication module MODR and one or more lighting system lamps, thus performing the role of light modem driving the illumination of this lamp or these lamps.
In one example, the broadband module MODR thus has coupled to it a Li-Fi module MODL incorporating for example an LED (light-emitting diode) lamp, supplied with voltage or with current by the module MODL as light modulator linked to the broadband module MODR. The lamp thus supplied with electric power produces a light beam in the visible spectral domain, and flashes at a frequency higher than is perceptible to the human retina (in order to transmit binary data “0” or “1”). Specifically, the Li-Fi module MODL then delivers a modulated current signal, and transmits this signal to the lamp so that said lamp emits a modulated light signal whose changes of state and light frequency are so fast that the flash values are imperceptible to the retina of the eye or to the brain via the optic nerve. The light modem thus varies the luminous intensity of one or more lamps at a very high frequency.
Moreover, in one or more embodiments, the proposed device (incorporating the modules MODR and MODL) may be configured so as to be used for light-modulated wireless bidirectional data communications:
In the latter case, the proposed device may be equipped with a photoreceptor module in order to receive for example an infrared signal coming from a terminal in the passenger compartment in order to relay data (for example a request to access content or a website, or something else).
However, as a variant to this implementation and in a mode in which only the downlink data are transmitted through Li-Fi communications, it is already possible to transmit a single item of content, for example traffic and road safety information, or other content. As a variant to this last implementation, there may also be provision to formulate content requests via the cellular network on a terminal, using an application of the terminal for the purpose of receiving content through Li-Fi communication. Thus, by filling in an identifier of the proposed communication device and a Li-Fi connection identifier specific to the terminal in the application of the terminal, the device is able to receive the data of the requested content via the cellular network and transmit these data through Li-Fi communication. More particularly, these data are transmitted through Li-Fi communication with the identifier of the terminal that requested these data, and such that only the terminal whose application recognizes this identifier is able to retain the received data in order to use them.
By way of example,
For its part, the device DIS may comprise the radiofrequency communication module MODR, (operationally) coupled to the module MODL for Li-Fi modulated light emission, linked to a bulb (reference LED in
In the example illustrated in
Reference is now made to
Modern motor vehicles are often equipped with light-emitting diode lamps (denoted “Led” hereinafter). These lamps in particular illuminate the passenger compartment, and may typically be driven in accordance with turn-on/turn-off conditions. The proposed solution makes it possible to offer wireless communications via such Led lamps (for example of 5 watts, “w5w” type) distributed in the passenger compartment of a vehicle. These lamps are associated with the module MODL in order to transform the electrical signals that they receive into light signals, with the modulation of the illumination amplitude driven by the module MODL.
Specifically, two types of lamp are found in a motor vehicle:
The two electrical circuits respectively corresponding to these two types of lamp are independent. The internal electrical lighting system circuit connects any secondary circuit or any connector of the passenger compartment of the vehicle. In particular, the cigarette-lighter outlet is connected to the same electrical circuit as that of the internal lighting system of the vehicle (for the vast majority of motor vehicle manufacturers and motor vehicle models). The lamps may thus be connected to the electrical network using a technique similar to that of power line communication with a link to the radiofrequency module MODR, the latter being connected for example to the cigarette-lighter electrical outlet (or else in the electrical distribution circuit internal to the passenger compartment). The module MODR may thus be connected to the electrical network of the internal lighting system of the passenger compartment of the vehicle and control the illumination of the lamps LED, through operational coupling to the module MODL.
In a motor vehicle, a power supply block of the internal lighting system circuit generates a controlled current, which may be supplied at input of the light modem MODL. This module MODL, depending on the signal received from the radiofrequency module MODR, delivers the (binary) electrical signal for supplying power to the lamp LED, which then produces a modulated light signal.
The device as shown in
The voltage of the electric current flowing in this internal electrical circuit of the passenger compartment is conventionally 12 volts, thereby ensuring good use of Li-Fi technology, as normal Li-Fi light modems (corresponding for example to the module MODL) ideally operate with a minimum power supply of 12 volts. Moreover, it should be noted that new Led lamps directly incorporate a light modem, and in particular a port for connection and data reception through power line communication (CPL). It is thus possible to connect a lamp of this type to the radiofrequency module MODR delivering a signal able to be utilized directly by this lamp.
However, it may also be advantageous, for economic reasons, to have a single central light modem MODL distributing one and the same electrical signal to one or more lamps of the passenger compartment (or else, as a variant, to provide a modem MODL capable of distributing various signals on the basis of the lamps so as to respectively address these lamps with signals specific to each of them, for example on the basis of the proximity of a terminal liable to receive these data).
Reference is now made to
The interface module MODL may be configured so as to receive the digital signal SN coming from the radiofrequency communication module MODR, and so as to deliver, for the purpose of transmission through power line communication (CPL), a modulated electrical signal corresponding to the signal SN and intended to supply power to one or more lamps LE of the passenger compartment via the connection CO1 to one or more cables CA1.
Depending on the embodiment, the device DIS may furthermore comprise an electrical connection CO2 in order to receive a supply of electric power from a source of the passenger compartment (via the cable CA2 in the example of
In one particular embodiment (illustrated in dashed lines in
The passengers in the passenger compartment may use terminals that are computers, tablets, smartphones equipped with Li-Fi readers in order to access the Internet, and more generally communicate through Li-Fi/infrared. As indicated above, visible light modulated using Li-Fi technology may be used for downlink flows, and infrared may be used for uplink flows.
The invention is not limited to an implementation inside a motor vehicle, and may be implemented on any vehicle, be this a transport means on the ground (road or rail), sea, or in the air (in particular on any aircraft).
Depending on the embodiment chosen, some acts, actions, events or functions of each of the methods and processes described in the present document may be performed or take place in an order different from that in which they have been described, or may be added, combined or else may not be performed or may not take place, as the case may be. Furthermore, in some embodiments, some acts, actions or events are performed or take place concurrently and not successively.
Although they have been described through a certain number of detailed exemplary embodiments, the proposed communication device and the proposed method for installing the device comprise various variants, modifications and improvements that will become obviously apparent to those skilled in the art, it being understood that these various variants, modifications and improvements form part of the scope of the invention as defined by the following claims. In addition, various aspects and features described above may be implemented together or separately or else substituted with one another, and all of the various combinations and sub-combinations of the aspects and features form part of the scope of the invention. Furthermore, it may be the case that some systems and equipment described above do not incorporate all of the modules and functions described for the preferred embodiments.
Number | Date | Country | Kind |
---|---|---|---|
1661950 | Dec 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/053202 | 11/22/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/104607 | 6/14/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5551616 | Stitt | Sep 1996 | A |
7446671 | Giannopoulos | Nov 2008 | B2 |
8503886 | Gunasekara | Aug 2013 | B1 |
8548332 | Schmitt | Oct 2013 | B2 |
20040092156 | Arkin | May 2004 | A1 |
20040207262 | Yanagida | Oct 2004 | A1 |
20040208013 | Dalton, Jr. | Oct 2004 | A1 |
20050083183 | Cao | Apr 2005 | A1 |
20080191642 | Slot | Aug 2008 | A1 |
20090003832 | Pederson | Jan 2009 | A1 |
20090157309 | Won | Jun 2009 | A1 |
20120083975 | Miller | Apr 2012 | A1 |
20120274234 | Campbell | Nov 2012 | A1 |
20130200806 | Chobot | Aug 2013 | A1 |
20130208184 | Castor | Aug 2013 | A1 |
20130266314 | Lee | Oct 2013 | A1 |
20140226983 | Vargas | Aug 2014 | A1 |
20150319639 | Poola | Nov 2015 | A1 |
20150341113 | Krug | Nov 2015 | A1 |
20160148499 | Hicks, III | May 2016 | A1 |
20160173200 | Chaillan | Jun 2016 | A1 |
20160352100 | Cheng | Dec 2016 | A1 |
20170041997 | Wang | Feb 2017 | A1 |
20170048935 | Koo | Feb 2017 | A1 |
20170082724 | Brousard | Mar 2017 | A1 |
20170164439 | Reed | Jun 2017 | A1 |
20170230790 | Skomra | Aug 2017 | A1 |
20170265127 | Kim | Sep 2017 | A1 |
20180027630 | DeJonge | Jan 2018 | A1 |
20190132055 | Deixler | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2768162 | Aug 2014 | EP |
2846482 | Mar 2015 | EP |
2401267 | Nov 2004 | GB |
2006032221 | Mar 2006 | WO |
2011035098 | Mar 2011 | WO |
Entry |
---|
International Search Report dated Feb. 21, 2018 for corresponding International Application No. PCT/FR2017/053202, filed Nov. 22, 2017. |
Written Opinion of the International Searching Authority dated Feb. 21, 2018 for corresponding International Application No. PCT/FR2017/053202, filed Nov. 22, 2017. |
English translation of the Written Opinion of the International Searching Authority dated Jun. 11, 2019 for corresponding International Application No. PCT/FR2017/053202, filed Nov. 22, 2017. |
Number | Date | Country | |
---|---|---|---|
20200083958 A1 | Mar 2020 | US |