Communication device, information processing device, communication method, and computer-readable storage medium

Information

  • Patent Grant
  • 12021612
  • Patent Number
    12,021,612
  • Date Filed
    Tuesday, August 24, 2021
    3 years ago
  • Date Issued
    Tuesday, June 25, 2024
    5 months ago
Abstract
A communication device transmits a radio frame including a preamble and a data field of a physical (PHY) layer. The preamble includes an L-STF, an L-LTF, an L-SIG, an EHT-SIG-A, an EHT-STF, and an EHT-LTF, the EHT-SIG-A includes a subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme), the data field includes data modulated and encoded in accordance with the modulation scheme and the code rate indicated by the subfield, and the subfield is configured to be capable of designating one of at least 2048QAM and 4096QAM as the modulation scheme.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to a communication control technique in a wireless LAN.


Background Art

The Internet usage has recently increased year by year along with the development of information communication technologies, and various communication techniques have been developed to cope with an increase in demand. In particular, wireless local area network (wireless LAN) techniques implement throughput improvement in Internet communications for packet data, audio, video, and the like by wireless LAN terminals, and various technological developments have still been conducted actively.


In the development of wireless LAN techniques, a lot of standardization works by the IEEE (Institute of Electrical and Electronics Engineers) 802, which is a standardization organization for wireless LAN techniques, play an important role. As one of the wireless LAN communication standards, the IEEE802.11 standards are known, including standards such as IEEE802.11n/a/b/g/ac and IEEE802.11 ax. For example, IEEE802.11ax implements a high peak throughput of up to 9.6 gigabits per second (Gbps) and additionally improves the communication speed under a congestion situation using OFDMA (Orthogonal frequency-division multiple access) (PTL 1).


Recently, in order to further improve throughput, a study group called IEEE802.11EHT (Extremely High Throughput) has been formed as a successor standard of IEEE802.11ax. As one of measures for throughput improvement that is a target for the IEEE802.11EHT, introducing 2048QAM or 4096QAM, which is a multi-value modulation scheme, has been examined. Note that QAM is an abbreviation of Quadrature Amplitude Modulation. According to such a multi-value modulation scheme, multiple bits can be transmitted by one symbol (11 bits/symbol in 2048QAM and 12 bits/symbol in 4096QAM), and further improvement of throughput can be implemented.


CITATION LIST
Patent Literature



  • PTL 1: Japanese Patent Laid-Open No. 2018-50133



As described above, in the IEEE802.11EHT, performing data transmission using a 2048QAM or 4096QAM modulation scheme has been examined. However, in the conventional standards for the wireless LAN, a mechanism configured to notify that 2048QAM or 4096QAM is used as the modulation scheme of data to be transmitted has not been defined.


SUMMARY OF THE INVENTION

The present invention provides a mechanism configured to notify that 2048QAM or 4096QAM is used as the modulation scheme of data to be transmitted.


A communication device according to one aspect of the present invention has the following characteristic features. That is, there is provided a communication device that transmits a radio frame including a preamble and a data field of a physical (PHY) layer, wherein the preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), an EHT-SIG-A (Extremely High Throughput Signal A Field), an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field), the EHT-SIG-A includes a subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme), the data field includes data modulated and encoded in accordance with the modulation scheme and the code rate indicated by the subfield, and the subfield is configured to be capable of designating one of at least 2048QAM and 4096QAM as the modulation scheme.


Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a view showing an example of the configuration of a network:



FIG. 2 is a block diagram showing an example of the functional configuration of an AP:



FIG. 3 is a block diagram showing an example of the hardware configuration of the AP:



FIG. 4 is a flowchart showing processing executed by the AP;



FIG. 5 is a sequence chart showing processing executed in a wireless communication network:



FIG. 6 is a view showing an example of the PHY frame structure of an EHT SU PPDU:



FIG. 7 is a view showing an example of the PHY frame structure of an EHT ER PPDU; and



FIG. 8 is a view showing an example of the PHY frame structure of an EHT MU PPDU.





DESCRIPTION OF THE EMBODIMENTS

Hereinafter, embodiments will be described in detail with reference to the attached drawings. Note, the following embodiments are not intended to limit the scope of the claimed invention. Multiple features are described in the embodiments, but limitation is not made to an invention that requires all such features, and multiple such features may be combined as appropriate. Furthermore, in the attached drawings, the same reference numerals are given to the same or similar configurations, and redundant description thereof is omitted.


(Network Configuration)



FIG. 1 shows an example of the configuration of a wireless communication network according to this embodiment. This wireless communication network is configured to include one access point (AP 102) and three STAs (STA 103, STA 104, and STA 105) as devices (EHT devices) complying with the IEEE802.11EHT (Extremely High Throughput) standard. Note that the name “IEEE802.11EHT” is provided for convenience, and can be another name when the standard was established, but this specification and the appended claims are to cover all the standards that can support the processing to be described later. The AP 102 can be considered as one form of an STA because it has the same functions as the STAs 103 to 105 except that it has a relay function. STAs located in a circle 101 representing the area where a signal transmitted from the AP 102 reaches can communicate with the AP 102. The AP 102 communicates with the STAs 103 to 105 in accordance with the wireless communication method of the IEEE802.11EHT standard. The AP 102 can establish a radio link with each of the STAs 103 to 105 via connection processing such as an association process complying with a standard of the IEEE80211 series.


Note that the configuration of the wireless communication network shown in FIG. 1 is merely an example for the description and, for example, a network including many EHT devices and legacy devices (communication devices complying with the IEEE802.11a/b/g/n/ax standards) in a wider area may be formed. Also, the arrangement of the communication devices is not limited to that shown in FIG. 1, and the following argument is applicable to various positional relationships of the various kinds of communication devices as well.


(Configuration of AP)



FIG. 2 is a block diagram showing the functional configuration of the AP 102. The AP 102 includes, as an example of its functional configuration, a wireless LAN control unit 201, a frame generation unit 202, a signal analysis unit 203, and a UI (User Interface) control unit 204.


The wireless LAN control unit 201 can be configured to include one or more antennas 205 and circuits configured to transmit/receive a radio signal (radio frame) to/from another wireless LAN device, and a program configured to control these. The wireless LAN control unit 201 executes communication control of the wireless LAN based on a frame generated by the frame generation unit 202 in accordance with the standard of the IEEE802.11 series.


The frame generation unit 202 generates a frame to be transmitted by the wireless LAN control unit 201 based on the result of analysis performed by the signal analysis unit 203 for a signal received by the wireless LAN control unit 201. The frame generation unit 202 may create a frame without depending on the analysis result of the signal analysis unit 203. The signal analysis unit 203 analyzes a signal received by the wireless LAN control unit 201. The UI control unit 204 accepts an operation by the user (not shown) of the AP 102 on an input unit 304 (FIG. 3), and performs control of transmitting a control signal corresponding to the operation to each constituent element or controls output (including display and the like) for an output unit 305 (FIG. 3).



FIG. 3 shows the hardware configuration of the AP 102 according to this embodiment. The AP 102 includes, as an example of its hardware configuration, a storage unit 301, a control unit 302, a function unit 303, the input unit 304, the output unit 305, a communication unit 306, and the one or more antennas 205.


The storage unit 301 is formed by both of a ROM and a RAM or one of them, and stores programs for performing various kinds of operations to be described later and various kinds of information such as communication parameters for wireless communication. Note that other than the memories such as a ROM and a RAM, a storage medium such as a flexible disk, a hard disk, an optical disk, a magnetooptical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, or a DVD may be used as the storage unit 301.


The control unit 302 is formed by, for example, one or more processors such as a CPU and an MPU, an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or the like. Here, CPU is an acronym of Central Processing Unit, and MPU is an acronym of Micro Processing Unit. The control unit 302 executes the programs stored in the storage unit 301, thereby controlling the entire AP 102. Note that the control unit 302 may control the entire AP 102 by cooperation of the programs stored in the storage unit 301 and an OS (Operating System).


In addition, the control unit 302 controls the function unit 303 to execute predetermined processing such as image capturing, printing, or projection. The function unit 303 is hardware used by the AP 102 to execute predetermined processing. For example, if the AP 102 is a camera, the function unit 303 is an image capturing unit and performs image capturing processing. For example, if the AP 102 is a printer, the function unit 303 is a printing unit and performs print processing. For example, if the AP 102 is a projector, the function unit 303 is a projection unit and performs projection processing. Data to be processed by the function unit 303 may be data stored in the storage unit 301, or may be data communicated with an STA or another AP via the communication unit 306 to be described later.


The input unit 304 accepts various kinds of operations from a user. The output unit 305 performs various kinds of outputs for the user. Here, the output by the output unit 305 includes at least one of display on a screen, audio output by a loudspeaker, vibration output, and the like. Note that both the input unit 304 and the output unit 305 may be implemented by one module, like a touch panel.


The communication unit 306 controls wireless communication complying with the IEEE802.11EHT standard, or controls wireless communication complying with Wi-Fi or IP (Internet Protocol) communication (including modulation and encoding processing). Also, the communication unit 306 controls the one or more antennas 205 to transmit/receive radio signals for wireless communication. In this case, MIMO (Multi Input Multi Output) communication using spatial streams is possible. The communication unit 306 is a so-called radio chip, and may itself include one or more processors and memories. The AP 102 communicates contents such as image data, document data, and video data with another communication device via the communication unit 306. Note that the functions of the constituent elements shown in FIG. 2 may partially be implemented by software.


(Configuration of STA)


The functional configuration and the hardware configuration of the STAs 103 to 105 are the same as the functional configuration (FIG. 2) and the hardware configuration (FIG. 3) of the AP 102 described above, respectively. That is, each of the STAs 103 to 105 can be configured to include, as its functional configuration, the wireless LAN control unit 201, the frame generation unit 202, the signal analysis unit 203, and the UI control unit 204 and include, as its hardware configuration, the storage unit 301, the control unit 302, the function unit 303, the input unit 304, the output unit 305, the communication unit 306, and the one or more antennas 205.


(Procedure of Processing)


Next, the procedure of processing executed by the AP 102 configured as described above and the sequence of processing executed by the wireless communication system shown in FIG. 1 will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart showing processing executed by the AP 102. The flowchart shown in FIG. 4 can be implemented when the control unit 302 of the AP 102 executes a control program stored in the storage unit 301 and executes calculation and processing of information and control of each hardware. FIG. 5 shows a sequence chart of processing executed by the wireless communication system.


The AP 102 performs connection processing complying with the standard of the IEEE802.11 series for each of the STAs 103 to 105 (step S401, F501). That is, frames such as Probe Request/Response, Association Request/Response, and Auth (authentication) are transmitted/received between the AP 102 and each of the STAs 104 and 105, thereby establishing a radio link. Next, the AP 102 decides a modulation scheme and a code rate to be used for wireless communication as a value (level) of MCS (Modulation and Coding Scheme). The MCS shows a combination of a modulation scheme and a code rate as an index. The relationship between the value of MCS used in this embodiment and a modulation scheme and a code rate corresponding to the value of MCS will be described later with reference to Table 3. The value of MCS can be decided by the signal analysis unit 203 based on the reception state in the AP 102. For example, the value of MCS can be decided based on the quality and strength (SNR (Signal-to-Noise Ratio), SINR (Signal-to-Interference Noise Ratio), RSSI (Received Signal Strength Indicator), RSSQ (Received Signal Strength Quality)) and the like of signals received from each STA. Also, the value of MCS may be set in advance in the wireless communication system. The value of MCS may be decided by an operation of a user (not shown) of the AP 102 on the input unit 304. As described above, the method of deciding the value of MCS is not limited to a specified method.


Next, the AP 102 decides communication parameters including the value of MCS decided in step S402 or F502, which are included in a radio frame to be transmitted (step S403, F503). Next, the AP 102 transmits data in a form of a radio frame including the decided transmission data communication parameters and data to the STAs 103 to 105 (step S404, F504).


(Frame Structure)



FIGS. 6 to 8 show examples of PHY (physical layer) frame structures of PPDUs defined by the IEEE802.11EHT standard and transmitted in step S404 or F504. Note that PPDU is an abbreviation of Physical Layer (PHY) Protocol Data Unit. FIG. 6 shows an example of the PHY frame structure of an EHT SU PPDU that is a PPDU for single-user (SU) communication (between an AP and a single STA). FIG. 7 shows an example of the PHY frame structure of an EHT ER PPDU that is a PPDU for communication in an extended area (communication distance) (Extended Range). The EHT ER PPDU is used in communication between an AP and a single STA. FIG. 8 shows an example of the PHY frame structure of an EHT MU PPDU that is a PPDU for multi-user (MU) communication (between an AP and a plurality of STAs).


Pieces of information commonly included in the PPDUs shown FIGS. 6 to 8 are an STF (Short Training Field), an LTF (Long Term Field), and an SIG (Signal Field). Taking FIG. 6 as an example, the PPDU head portion includes an L (Legacy)-STF 601, an L-LTF 602, and an L-SIG 603 having backward compatibility with the IEEE802.11a/b/g/n/ax standards. The L-STF 601 is used for detection of a PHY frame signal, automatic gain control (AGC), timing detection, or the like. The L-LTF 602 arranged immediately after the L-STF 601 is used for highly accurate frequency/time synchronization, obtainment of propagation channel information (CSI), or the like. The L-SIG 603 arranged immediately after the L-LTF 602 is used for transmitting control information including information such as a data transmission rate and a PHY frame length. A legacy device complying with the IEEE802.11a/b/g/n/ax standards can decode data of the above-described various kinds of legacy fields (the L-STF 601, the L-LTF 602, and the L-SIG 603). The various kinds of legacy fields are similarly included in the PPDUs shown in FIGS. 7 and 8 as well.


Next to the L-STF 601, the L-LTF 602, and the L-SIG 603 described above, the EHT SU PPDU shown in FIG. 6 includes an RL-SIG 604, an EHT-SIG-A 605, an EHT-STF 606, an EHT-LTF 607, a data field 608, and a Packet extension 609. The RL-SIG 604 may be absent. The EHT-SIG-A 605 is arranged after the L-SIG 603, the EHT-STF 606 is arranged immediately after the EHT-SIG-A 605, and the EHT-LTF 607 is arranged immediately after the EHT-STF 606. Note that the field including the L-STF 601, the L-LTF 602, the L-SIG 603, the RL-SIG 604, the EHT-SIG-A 605, the EHT-STF 606, and the EHT-LTF 607 is called a preamble. The EHT-SIG-A 605 includes Information such as EHT-SIG-A1 and EHT-SIG-A2 necessary for reception of the PPDU. Subfields that form the EHT-SIG-A1 and the EHT-SIG-A2 included in the EHT-SIG-A 605 and a description thereof are shown in Table 1 and Table 2.













TABLE 1






Bit

Bit




Position
Subfield
Count
Description







EHT-
B0
Format
1
″1″ is set for an EHT PPDU and


SIG-A1



an EHT ER PPDU to distinguish






them from an EHT TB PPDU.



B1
Beam
1
″1″ is set if the pre-EHT of the




Change

PPDU is arranged in a space






different from the first symbol






of the EHT-LTF, or ″0″ is set if






the pre-EHT is mapped similarly






to the first symbol.



B2
UL/DL
1
This subfield indicates whether






the PPDU is for UL or DL, and






has the same value as






TXVECTOR UPLINK_FLAG.



B3-B7
MCS
5
This subfield indicates the






value of the Modulation and






Coding Scheme.






In a case of an EHT SU PPDU,






n = 0, 1, 2, . . . , 11 (12 to 15






are reserved).






In a case of an EHT ER SU






PPDU and Bandwidth = 0, n = 0,






1, 2 (3 to 15 are reserved areas).






In a case of an EHT ER SU






PPDU and Bandwidth = 1, n = 0






for MCS 0 (1 to 15 are reserved






areas).



B8
DCM
1
This subfield indicates whether






Dual Carrier Modulation is






applied to the data field.






If ″0″ is set in STBC field,






″1″ is set.






(If both the DCM and STBC






fields are ″1″, neither of them is






applied)






If DCM is not applied, ″0″ is set.



 B9-B14
BSS Color
6
6-bit number for identifying the






BSS



B15-B18
Spatial
4
This subfield indicates whether




Reuse

Spatial Reuse is allowed during






transmission of this PPDU.






The value of Spatial Reuse field






encoding shown in the separate






table is set.



B19-B20
Bandwidth
2
In a case of an EHT SU PPDU:






″0″ is set for 20 MHz, ″1″ is set






for 40 MHz, ″2″ is set for 80






MHz, or ″3″ is set for 160 MHz






(80 + 80 MHz).






In a case of an EHT ER SU






PPDU:






″0″ is set for 242-tone






RU, or ″1″ is set for upper






106-tone RU of 20 MHz.



B21-B22
GI + LTF
2
This subfield indicates the Guard




Size

Interval period and the EHT-LTF






size.






″0″ is set for 1 × EHT-LTF and






0.8 μs GI, ″1″ is set for






2 × EHT-LTF and 0.8 μs GI, ″2″






is set for 2 × EHT-LTF and 1.6






μs GI, ″3″ is set if both the DCM






and STBC fields are ″1″ and for






4 × EHT-LTF and 0.8 μs GI, or






″3″ is set for 4 × EHT-LTF other






than the above case and 3.2 μs GI.



B23-B25
NSTS And
3
This subfield indicates the




Midamble

number of space-time streams




Periodicity

and the midamble period for






frame synchronization.






If the Doppler field is ″0″, ″(the






number of space-time streams) −






1″ is set.






If the Doppler field is ″1″, B23






and B24 indicate the number of






space-time streams.






B25 is ″0″ if the midamble period






is 10, or ″1″ if the midamble






period is 20.




















TABLE 2






Bit

Bit




Position
Subfield
Count
Description







EHT-
B0-B6
TXOP
7
Transmission Opportunity


SIG-A2



If TXOP_DURATION of






TXVECTOR is






UNSPECIFIED and there






is no period information,






127 is set.






If TXOP_DURATION of






TXVECTOR is smaller than






512, a value smaller than 127






is set to set NAV. At this






time, if B0 is ″0″, FLOOR






of TXOP_DURATION/8






(round down) is set in






B1 to B6. If B0 is ″1″, FLOOR






of (TXOP_DURATION −






512)/8 is set in B1 to B6.



B7 
Coding
1
″0″ is set for BCC (Binary






Convolutional Code), or ″1″ is






set for LDPC (Low Density






Parity Check).



B8 
LDPC Extra
1
This subfield indicates the




Symbol

presence/absence of an extra




Segment

OFDM symbol segment for






LDPC.



B9 
STBC
1
″1″ is set in this field if STBC






(Space-Time Block Coding) is






used and the DCM subfield is






″0″, ″1″ is also set if neither






DCM nor STBC is applied, or






″0″ is set otherwise.



B10
Beamformed
1
″1″ is set if beamforming






steering is applied to the






waveform of SU transmission.



B11-B12
Pre-FEC
2
″0″ is set if the Pre-FEC




Padding

Padding Factor is 4,




Factor

″1″ is set if the Pre-FEC






Padding Factor is 1,






″2″ is set if the Pre-FEC






Padding Factor is 2, or






″3″ is set if the Pre-FEC






Padding Factor is 3.



B13
PE
1
Disambiguity field of Packet




Disambiguity

Extension



B14
Reserved
1
Reserved field



B15
Doppler
1
″1″ is set if either of the






following conditions is met:






the number of OFDM symbols






in the data field is larger than






″the value indicated by the






midamble period + 1″, and a






midamble exists, and






the number of OFDM symbols






in the data field is equal to or






smaller than ″the value






indicated by the midamble






period + 1″, no midamble






exists, and the channel






changes rapidly.



B16-B19
CRC
4
The CRC of the EHT-SIG-A






(26 bits of A1 and 16 bits up






of B15 of A2, that is, 42 bits






in total) field up to here.



B20-B25
Tail
6
An area to set ″0″ to indicate






the end portion to a trellis






convolution decoder.









The MCS decided in step S402 or F502 is shown by 5 bits of the MCS subfield (B3-B7) in the EHT-SIG-A1 (Table 1). An example of the correspondence between a value of MCS shown in the MCS subfield and a modulation scheme and a code rate corresponding to the value of MCS is shown in Table 3. In Table 3, the MCS has values from 0 to 17, and a modulation scheme and a code rate are set in correspondence with each value of MCS. Also, as shown in Table 3, the MCS subfield is configured to designate one of at least 2048QAM and 4096QAM as a modulation scheme. The values of MCS corresponding to the 2048QAM modulation scheme are 12 to 14, and the values of MCS corresponding to the 4096QAM modulation scheme are 15 to 17. Even in the same modulation scheme, if the value of MCS changes, the code rate to be used changes. For example, if the value of MCS is 15, the code rate is 2/4. If the value of MCS is 16, the code rate is 3/4. If the value of MCS is 17, the code rate is 5/6. Note that in Table 3, three variations of code rate are prepared in correspondence with each of the 2048QAM and 409% QAM modulation schemes. However, the present invention is not limited to this, and four or more variations of code rate may be prepared. Although a 5-bit MCS subfield is prepared in this embodiment, an MCS subfield of bits more than 5 bits, for example, 6 bits may be ensured because a more multi-valued modulation scheme can be used in a successor standard of the IEEE802.11EHT standard.











TABLE 3





MCS
Modulation Scheme
Code Rate







 0
BPSK
1/2


 1
QPSK
1/2


 2
QPSK
3/4


 3
 16QAM
1/2


 4
 16QAM
3/4


 5
 64QAM
2/4


 6
 64QAM
3/4


 7
 64QAM
5/6


 8
 256QAM
3/4


 9
 256QAM
5/6


10
1024QAM
3/4


11
1024QAM
5/6


12
2048QAM
2/4


13
2048QAM
3/4


14
2048QAM
5/6


15
4096QAM
2/4


16
4096QAM
3/4


17
4096QAM
5/6









The EHT-STF 606 next to the EHT-SIG-A 605 is an abbreviation of EHT Short Training Field, and its main object is to improve automatic gain control in MIMO transmission. The EHT-LTF 607 is an abbreviation of EHT Long Training Field and provides a means for estimating a MIMO channel to a receiver. The data field 608 includes data modulated and encoded using the modulation scheme and the code rate corresponding to the value of MCS indicated by the MCS subfield of the above-described EHT-SIG-A1. The communication device (AP) on the transmitting side modulates and encodes the data in the data field 608, stores the information of the MCS (value (level) of MCS) used for the modulation and encoding in the MCS subfield of the EHT-SIG-A1, and transmits the PPDU to the communication device (STA) on the receiving side. The communication device on the receiving side can demodulate and decode the received data in the data field based on the information of the MCS included in the MCS subfield of the EHT-SIG-A1 of the received PPDU.


The EHT ER PPDU shown in FIG. 7 is a PPDU used to extend the communication distance, as described above, and is used in communication between an AP and a single STA The EHT ER PPDU includes an L-STF 701, an L-LTF 702, an L-SIG 703, an RL-SIG 704, an EHT-SIG-A 705, an EHT-STF 706, an EHT-LTF 707, a data field 708, and a Packet extension 709. The RL-SIG 704 may be absent. The L-LTF 702 is arranged immediately after the L-STF 701, the L-SIG 703 is arranged immediately after the L-LTF 702, the EHT-SIG-A 705 is arranged after the L-SIG 703, the EHT-STF 706 is arranged immediately after the EHT-SIG-A 705, and the EHT-LTF 707 is arranged immediately after the EHT-STF 706. Note that the field including the L-STF 701, the L-LTF 702, the L-SIG 703, the RL-SIG 704, the EHT-SIG-A 705, the EHT-STF 706, and the EHT-LTF 707 is called a preamble. Information included in each field has the same contents as in the EHT SU PPDU shown in FIG. 6, and a description thereof will be omitted. Note that in the EHT-SIG-A 705, the value of MCS can be set in the MCS subfield (B3-B7) of the EHT-SIG-A1, like the EHT SU PPDU shown in FIG. 6.


The EHT MU PPDU shown in FIG. 8 is a PPDU used in communication of MU, as described above. The EHT MU PPDU includes an L-STF 801, an L-LTF 802, an L-SIG 803, an RL-SIG 804, an EHT-SIG-A 805, an EHT-SIG-B 806, an EHT-STF 807, an EHT-LTF 808, a data field 809, and a Packet extension 810. The RL-SIG 804 may be absent. The L-LTF 802 is arranged immediately after the L-STF 801, the L-SIG 803 is arranged immediately after the L-LTF 802, the EHT-SIG-A 805 is arranged after the L-SIG 803, the EHT-SIG-B 806 is arranged immediately after the EHT-SIG-A 805, the EHT-STF 807 is arranged immediately after the EHT-SIG-B 806, and the EHT-LTF 808 is arranged immediately after the EHT-STF 807. Note that the field including the L-STF 801, the L-LTF 802, the L-SIG 803, the RL-SIG 804, the EHT-SIG-A 805, the EHT-SIG-B 806, the EHT-STF 807, and the EHT-LTF 808 is called a preamble. In the data field 809, data for a plurality of STAs (users) is transmitted by MIMO or OFDMA (Orthogonal Frequency-Division Multiple Access).


The EHT-SIG-A 805 includes Information such as EHT-SIG-A1 and EHT-SIG-A2 necessary for reception of the PPDU. Subfields that form the EHT-SIG-A1 and the EHT-SIG-A2 included in the EHT-SIG-A 805 and a description thereof are shown in Table 4 and Table 5.













TABLE 4






Bit

Bit




Position
Subfield
Count
Description







EHT
B0 
UL/DL
1
This subfield indicates


SIG-



whether the PPDU is for


A1



UL or DL, and has the same






value as TXVECTOR






UPLINK_FLAG.



B1-B3
SIGB MCS
3
This subfield indicates the






MCS of the EHT-SIG-B






field. ″0″ is set for MCS 0,






″1″ is set for MCS 1, ″2″ is






set for MCS 2, ″3″ is set for






MCS 3, ″4″ is set for MCS






4, or ″5″ is set for MCS 5,






″6″ and ″7″ are reserved






areas.



B4 
SIGB DCM
1
″1″ is set if the HT-SIG-B






field is modulated using






DCM.



 B5-B10
BSS Color
6
6-bit number for identifying






the BSS



B11-B14
Spatial Reuse
4
This subfield indicates






whether Spatial Reuse is






allowed during transmission






of this PPDU.






The value of Spatial Reuse






field encoding shown in the






separate table is set.



B15-B17
Bandwidth
3
″0″ is set for 20 MHz,






″1″ is set for 40 MHz, or






″3″ is set for 160 MHz,






(80 + 80 MHz).






When the SIGB






Compression field is ″0″,






″4″ is set if only the






secondary 20 MHz is






puncturing in 80 MHz






preamble puncturing,






″5″ is set if two 20 MHz of






the secondary 40 MHz are






puncturing in 80 MHz






preamble puncturing,






″6″ is set if only the






secondary 20 MHz is






puncturing in 160 (or 80 +






80) MHz preamble






puncturing, or






″7″ is set if only the






secondary 40 MHz is






puncturing in 160 (or 80 +






80) MHz preamble






puncturing.






If the SIGB field is ″1″,






the value between ″4″ to






″7″ means ″reserved″.



B18-B21
Number of
4
When the SIGB




EHT-SIG-B

Compression field is ″0″,




Symbols or

this subfield indicates the




MU-MIMO

number of OFDMA symbols




Users

in the EHT-SIG-B.






If the number of OFDM






symbols in the EHT-SIG-B






is smaller than 16, the






number obtained by






subtracting 1 from the






number of OFDM symbols






in the EHT-SIG-B is set.






If at least one receiving






terminal has set the






capability of supporting the






number of EHT SIG-B






OFDM symbols larger than






16 to ″0″, ″15″ is set to






indicate that the number of






OFDM symbols in the






EHT-SIG-B is 16. If all the






receiving terminals have set






the capability of supporting






the number of EHT SIG-B






OFDM symbols larger than






16 to ″0″ and the data rate of






the EHT-SIG-B is smaller






than MCS 4 which does not






use DCM, ″15″ is set to






indicate that the number






of OFDM symbols in the






EHT-SIG-B is equal to or






larger than 16. When the






SIGB Compression field is






″1″, the value set here means






the number obtained by






subtracting 1 from the






number of MU-MIMO






users.



B22
SIG
1
″1″ is set if a Common field




Compression

exists in the EHT-SIG-B.



B23-B24
Gi + LTF
2
This subfield indicates the




Size

Guard Interval period and






the EHT-LTF size.






″0″ is set for 4 × EHT-LTF






and 0.8 μs GI,






″1″ is set for 2 × EHT-LTF






and 0.8 μs GI, ″2″ is set for






2 × EHT-LTF and 1.6 μs GI,






or ″3″ is for 4 × EHT-LTF






and 3.2 μs GI.



B25
Doppler
1
″1″ is set if either of the






following conditions is met:






the number of OFDM






symbols in the data field is






larger than ″the value






indicated by the midamble






period + 1″, and a






midamble exists, and






the number of OFDM






symbols in the data field is






equal to or smaller than






″the value indicated by the






midamble period + 1″, no






midamble exists, and the






channel changes rapidly.




















TABLE 5






Bit

Bit




Position
Subfield
Count
Description







EHT-
B0-B6
TXOP
1
Transmission


SIG-



Opportunity


A2



If TXOP_DURATION






of TXVECTOR is






UNSPECIFIED and






there is no period






information, 127 is set.






If TXOP_DURATION






of TXVECTOR is






smaller than 512, a






value smaller than 127






is set to set NAV. At






this time, if B0 is ″0″,






FLOOR of






TXOP_DURATION/8






(round down) is set in






B1 to B6. If B0 is ″1″,






FLOOR of






(TXOP_DURATION −






512)/8 is set in B1 to






B6.



B7 
Reserved
1
Reserved field



 B8-B10
Number of
3
This subfield indicates




EHT-LTF

the number of EHT-LTFs.




Symbols And

″0″ is set for one EHT-




Midamble

LTF, ″1″ is set for two




Periodicity

EHT-LTFs, ″2″ is set for






four EHT-LTFs, ″3″ is






set for six EHT-LTFs, or






″4″ is set for eight EHT-






LTFs.






When the Doppler field






is ″1″, B8 and B9






indicate the number of






EHT-LTF symbols, and






B10 indicates the






midamble period.



B11
LDPC Extra
1
This subfield indicates




Symbol

the presence/absence of




Segment

an extra OFDM symbol






segment for LDPC.



B12
STBC
1
When the number of






users of each RU






(Resource Unit) is not






larger than 1, ″1″ is set to






indicate that STBC is






used for encoding.



B13-B14
Pre-FEC
2
″0″ is set if the Pre-FEC




Padding

Padding Factor is 4,




Factor

″1″ is set if the Pre-FEC






Padding Factor is 1,






″2″ is set if the Pre-FEC






Padding Factor is 2, or






″3″ is set if the Pre-FEC






Padding Factor is 3.



B15
PE
l
Disambiguity field of




Disambiguity

Packet Extension



B16-B19
CRC
4
The CRC of the






EHT-SIG-A (26 bits of






A1 and 16 bits up to B15






of A2, that is, 42 bits in






total) field up to here.



B20-B25
Tail
6
An area to set ″0″ to






indicate the end portion to






a trellis convolution






decoder.









The EHT-SIG-B 806 includes information such as Common field and User Block field necessary for reception of the PPDU. Subfields that form the Common field and the User Block field included in the EHT-SIG-B 806 and a description thereof are shown in Table 6 and Table 7.












TABLE 6






Subfield
Bit Count
Description







Common field
RU
N × 8
This subfield indicates RU



Allocation

allocation used in the data





portion of a freqency axis





When N = 1, EHT MU





PPDUs of 20 MHz and





40 MHz are allocated.





When N = 2, an EHT MU





PPDU of 80 MHz is





allocated.





When N = 4, an EHT MU





PPDU of 160 MHz or





80 + 80 MHz is allocated.



Center
1
This subfield is used only



26-tone

when the Bandwidth field of



RU

EHT-SIG-A field of an EHT





MU PPDU is larger than 1





(if the frequency is equal to





or higher than 80 MHz).





This subfield indicates





whether to use a 26-tone RU





at the center.



CRC
4
CRC calculation value



Tail
6
Trailer bit, which is set to 0.



















TABLE 7






Subfield
Bit Count
Description







User Block
User field
N × 21
This subfield indicates information


field


for each user.



CRC
4
CRC calculation value



Tail
6
Trailer bit, which is set to 0.









The EHT-SIG-B 806 includes Common field that is information common of all STAs (users) and User Block fields as many as the STAs to communicate. Also, the contents of the User field in the User Block field change depending on whether the AP performs MIMO communication. Table 8 shows a description of the User field in a case of Non-MIMO communication, and Table 9 shows a description of the User field in a case of MU-MIMO communication.












TABLE 8







Bit




Subfield
Count
Description


















User field
STA-ID
11
This subfield indicates the ID of an





STA or an STA group that is the





receiver of the RU of an EHT MU





PPDU



NSTS
3
This subfield indicates the number





of Space-time streams



Tx
1
When transmission Beamforming is



Beamforming

used, ″1″ is set.





When transmission Beamforming is





not used, ″0″ is set.



MCS
5
This subfield indicates the value of





Modulation and Coding Scheme



DCM
1
This subfield indicates whether Dual





Carrier Modulation is applied to the





data field.



Coding
1
When BCC (Binary Convolutional





Code) is used, ″0″ is set.





When LDPC (Low Density Parity





Check) is used, ″1″ is set.



















TABLE 9







Bit




Subfield
Count
Description


















User field
STA-ID
11
This subfield indicates the ID of an





STA or an STA group that is the





receiver of the RU of an EHT MU





PPDU



Spatial
4
This subfield indicates the number



Configuration

of Spatial Streams of an STA in





MU-MIMO Allocation



MCS
5
This subfield indicates the value of





Modulation and Coding Scheme



Reserved
1
Reserved field



Coding
1
When BCC (Binary Convolutional





Code) is used, ″0″ is set.





When LDPC (Low Density Parity





Check) is used, ″1″ is set.









In Table 8 and Table 9, the modulation scheme and the code rate (that is, the value (level) of MCS) to be used for modulation and encoding processing of the data in the data field for each STA are indicated by the 5-bit MCS subfield. An example of the correspondence between a value of MCS shown in the MCS subfield and a modulation scheme and a code rate corresponding to the value of MCS is the same as that shown in Table 3.


When the frame structures of the EHT SU PPDU, the EHT ER PPDU, and the EHT MU PPDU, which are PPDUs used in the IEEE802.11EHT standard according to this embodiment, are used in the above-described way, it is possible to notify that data transmission using the 2048QAM or 4096QAM modulation scheme is performed. Note that in addition to the AP 102 and the STAs 103 to 105, which are communication devices, an information processing device (for example, a radio chip) for generating the above-described PHY preamble can implement the present invention.


Note that FIG. 6 shows a frame structure having backward compatibility with the IEEE802.11a/b/g/n/ax standards. If backward compatibility need not be ensured, the fields of the L-STF and the L-LTG may be omitted. Instead, the EHT-STF and the EHT-LTF may be inserted. Note that the respective fields of each PPDU may not necessarily be arranged in the order shown in each of FIGS. 6 to 8, or may include a new field not shown in each of FIGS. 6 to 8.


According to the present invention, it is possible to notify that data transmission using the 2048QAM or 4096QAM modulation scheme is performed.


Other Embodiments

Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.


While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

Claims
  • 1. A communication device, comprising: at least one memory that stores a set of instructions; andat least one processing circuit,wherein the communication device is caused, by the at least one processing circuit executing the instructions and/or the at least one processing circuit itself operating, to perform operations comprising: generating an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field, andtransmitting the EHT PPDU,wherein the preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field,the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 2. The communication device according to claim 1, wherein the communication device is a printing device.
  • 3. The communication device according to claim 1, wherein the communication device is a camera device.
  • 4. The communication device according to claim 1, wherein the operations further comprise performing a projection processing.
  • 5. A communication device, comprising: at least one memory that stores a set of instructions; andat least one processing circuit,wherein the communication device is caused, by the at least one processing circuit executing the instructions and/or the at least one processing circuit itself operating, to perform operations comprising:receiving an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field, anddecoding the EHT-PPDU,wherein the preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field,the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 6. The communication device according to claim 5, wherein the communication device is a printing device.
  • 7. The communication device according to claim 5, wherein the communication device is a camera device.
  • 8. The communication device according to claim 5, the operations further comprise performing a projection processing.
  • 9. An information processing device, comprising: at least one memory that stores a set of instructions; andat least one processing circuit,wherein the information processing device is caused, by the at least one processing circuit executing the instructions and/or the at least one processing circuit itself operating, to perform operations comprising:generating an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field,wherein the preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field), the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field,the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 10. A communication method performed by a communication device, comprising: generating an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field; andtransmitting the EHT PPDU, whereinthe preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field,the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 11. A communication method performed by a communication device, comprising: receiving an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field, anddecoding the EHT-PPDU, whereinthe preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field,the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS rate indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 12. A non-transitory computer readable storage medium that stores a program for causing, when executed by a computer included in a communication device, the computer to perform operations comprising: generating an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field; andtransmitting the EHT PPDU, whereinthe preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field, the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS rate indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
  • 13. A non-transitory computer readable storage medium that stores a program for causing, when executed by a computer included in a communication device, the computer to perform operations comprising: receiving an EHT PPDU (Extremely High Throughput Physical layer Protocol Data Unit) including a preamble and a data field, anddecoding the EHT-PPDU, whereinthe preamble includes an L-STF (Legacy Short Training Field), an L-LTF (Legacy Long Training Field), an L-SIG (Legacy Signal Field), a second Signal Field, a third Signal Field, an EHT-STF (EHT Short Training Field), and an EHT-LTF (EHT Long Training Field),the second Signal Field includes a first subfield indicating information of a modulation scheme and a code rate (MCS, Modulation and Coding Scheme) of the third Signal Field, the third Signal Field includes a second subfield indicating information of a MCS of the data field,the first subfield designates a MCS from a number of MCSs where a data rate of a MCS is not greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate and the first subfield does not designate a MCS where a data rate of a MCS is greater than a data rate of MCS that is 64QAM modulation and 1/2 coding rate,the data field includes data modulated and encoded in accordance with the information of the MCS rate indicated by the second subfield, andthe second subfield is configured to be capable of designating 4096QAM as the modulation scheme.
Priority Claims (1)
Number Date Country Kind
2019-036406 Feb 2019 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of International Patent Application No. PCT/JP2020/004257, filed Feb. 5, 2020, which claims the benefit of Japanese Patent Application No. 2019-036406 filed Feb. 28, 2019, both of which are hereby incorporated by reference herein in their entirety.

US Referenced Citations (9)
Number Name Date Kind
8811320 Inohiza Aug 2014 B2
10263834 Inohiza Apr 2019 B2
20170070315 Suh Mar 2017 A1
20190041509 Jiang Feb 2019 A1
20190045461 Fang Feb 2019 A1
20190104011 Yang Apr 2019 A1
20200213933 Patil Jul 2020 A1
20200336981 Inohiza Oct 2020 A1
20210336827 Park Oct 2021 A1
Foreign Referenced Citations (7)
Number Date Country
107251472 Oct 2017 CN
107771376 Mar 2018 CN
2018-050133 Mar 2018 JP
2018-513587 May 2018 JP
2016144902 Sep 2016 WO
2018235363 Dec 2018 WO
2019070358 Apr 2019 WO
Non-Patent Literature Citations (10)
Entry
Stacey, R. et al., “Proposed draft specification” IEEE Draft doc.: IEEE802.11-16/0024r1 (Mar. 2016) pp. 1-160, XP068104773.
Chen, X. et al., “Discussions on the PHY Features for EHT” IEEE Draft doc.: IEEE802.11-18/146111 (Sep. 2018) pp. 1-21, XP068128725.
Extended European Search Report issued in corresponding EP Patent Application No. 20762685.4, dated Nov. 21, 2022, pp. 1-10.
International Search Report issued by the Japan Patent Office dated Apr. 28, 2020 in corresponding International Application No. PCT/JP2020/004257, with English translation.
Park, E. S. et al., “Overview of PHY features for EHT” IEEE 802.11-18/1967r1 (Jan. 2019) <URL:https://mentor.ieee.org/802.11/dcn/18/11-18-1967-01-Oeht-overview-of-phy-features-for-eht.pptx> pp. 1-22, particularly, slides 9, 18, 19.
Stacey, R. et al., “Proposed TGax draft specification” IEEE 802.11, Internet URL:https://mentor.ieee.org/802.11/dcn/16/11-16-0024-00-00ax-proposed-draft-specification.docx> (Jan. 2016), pp. 76-80, 117-120.
Notice of Reasons for Refusal issued by the Japanese Patent Office dated Aug. 14, 2023 in corresponding JP Patent Application No. 2019-036406, with English translation.
Chinese Office Action issued in corresponding CN Patent Application No. 202080016950.7, dated Aug. 11, 2023, with English translation.
Qualcomm Incorporated, “Evaluation results for 1024QAM”, 3GPP TSG-RAN WG1 Meeting #89, Hangzhou, China; R1-1709196 (May 2017), XP051274334, pp. 1-19, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP _SYNC/RAN1/Docs/ [retrieved on May 15, 2017].
European Office Action issued in corresponding EP Patent Application No. 20762685.4 dated Feb. 19, 2024, pp. 1-8.
Related Publications (1)
Number Date Country
20210391941 A1 Dec 2021 US
Continuations (1)
Number Date Country
Parent PCT/JP2020/004257 Feb 2020 WO
Child 17409847 US