The present invention relates to a communication headset, and more particularly to a headset having an activation switch.
Wireless, hands-free communication headsets are known in the art. Such headsets typically include a communication base unit, an adjustable ear loop to mount the base unit proximate the operator's ear, and microphone fixed to and extending from the base (often the microphone is attached to a boom). The terms “ear loop,” “ear mount,” and “ear hook” as used in the specification and claims are intended to be synonymous and are intended to describe a portion of the headset that is hooked over the operator's ear. The headset is donned by pivoting the ear loop to an extended position and then wrapping the ear loop around the operator's ear.
After the headset is donned, the operator must perform the additional step of activating the headset by depressing an on/off button, which is often externally located on either the front or side surface of the base unit. In a similar manner, the operator must depress the on/off button after the headset is removed in order to deactivate the headset. Because such headsets are often used while the operator is walking or performing another activity, the step of depressing the on/off button can be forgotten or difficult.
In order to provide a more comfortable fit, such headsets are preferably very small and lightweight. Thus, providing a button large enough for the operator to depress consumes valuable external space on the headset housing and adversely affect the appearance of the headset.
The present invention will hereinafter be described in conjunction with the appended drawing figures wherein like numerals denote like elements.
The headset is described below with reference to the accompanying drawings wherein like elements are used throughout to designate like elements. In addition, reference numerals that are introduced in the specification in association with a particular drawing figure may be repeated in other figures without additional description in the specification in order to provide context for other features.
A wireless telephone headset in accordance with one embodiment is shown in
The embodiment of the communication base unit 14 shown in
The ear mount 12 supports the communication device 10 on the ear of an operator. The ear mount 12 has a hook portion 13 at one end and a hinge portion 15 at the other end. The hook portion 13 has a shape that compliments the external contour of the human ear. The thickness of the hook portion 13 is selected so that the hook portion can be elastically deformed and easily wrapped around the operator's ear.
Referring to
The hinge spring 28 is C-shaped and has opposed, linear end portions 29, 31 and a curved intermediate portion 17. Referring to
The hinge spring 28 is formed from any suitable material, such as a metal, that is durable and will resist failure and/or fatigue from repeated flexing. Of course, any other suitable material could also be used. As used in the specification the term “spring” simply means that the member is able to flex, thereby allowing the plungers 23, 26 to move inwardly and outwardly relative to the hinge unit 16 when the ear mount 12 is rotated.
A detent mechanism can be employed inside the hinge unit housing 24. The detent mechanism is designed to releasably hold the ear mount 12 in the open position. In the embodiment illustrated in
The detent mechanism is designed to releasably hold the ear mount 12 in a position when the ear mount 12 is at a predetermined angle A. The predetermined angle A represents the angle just beyond the angle at which the ear mount 12 transitions from the closed position to the open position. This angle A must be large enough to minimize accidental movement of the ear mount 12 into the open position, but small enough that the ear mount 12 does not move into the closed position when being used by the operator. Taking these factors into account, an angle A of about 30 degrees has been found to be advantageous, although angles from 20–40 degrees would be acceptable.
Referring to
Referring to
The first end surface 27 of the plungers 23, 26 and the first end surface 35 of the bore 32 have complimenting male and female V-shaped contours that closely align with one another when the ear mount 12 is moved to the open position shown in
As the ear mount 12 is rotated to the closed position, the plungers 23, 26 rotate within the housing 24 out of alignment with the first end surface 35 of the bore 32, thereby axially compressing the plungers 23, 26. Axial compression causes the plungers 23, 26 to exert a rotational bias in the hinge unit towards the open position. Friction preferably allows the detent mechanism to position and releasably hold the ear mount in the closed position.
The base unit 14 includes base circuit 101 which is shown schematically in
The illustrated base circuit 101 communicates with a primary communication device 111 via transceivers 100 and 113. The primary communication device 111 may a cordless or other landline telephone, a cellular or other mobile communication device, a two-way radio, dispatch device, portable, vehicle or home electronics, or the like. The primary communication device transceiver 113 includes other circuitry, not shown, that facilitate longer range communications.
The communication headset 10 includes a sensor that automatically activates the communication base unit in the open position and automatically deactivates the communication base unit 14 in the closed position. In this context, the terms “activate” and “deactivate” customarily mean to turn power on and off, respectively, to the headset 10. However, these terms could also mean to activate or deactivate the microphone 22 and/or the earphone 20, or to activate or deactivate a “power save” mode. It is envisioned that by turning off the transceiver, for example by disconnecting the battery 110 from the transceiver 100 when the activation switch 18 indicates the ear mount 12 is closed, significant power savings can be achieved. However, it may be advantageous to enter a power save mode wherein the transceiver 100 would reduce functionality, and periodically wake up to determine if the communication link with the primary communication device transceiver 113 is active. This sleep mode can be initiated automatically by moving the ear mount 12 to the closed position, and the sleep mode may terminate by fully powering up the base circuit 101 upon moving the ear mount 12 to the open position. In the embodiment illustrated in
While the principles of the invention have been described above in connection with specific embodiments, it is to be clearly understood that this description is made only by way of example and not as a limitation of the scope of the invention. For example, the sensor may comprise other proximity or contact switches known to those of ordinary skill in the art. Additionally, although the headset is disclosed including a transceiver for communicating with a proximate primary communication device, it will be recognized that the headset could be unidirectional (transmit or receive), and/or for communications with a distant source.
Number | Name | Date | Kind |
---|---|---|---|
3549831 | Fomey | Dec 1970 | A |
3621156 | Kilewer | Nov 1971 | A |
3916312 | Campbell | Oct 1975 | A |
4039765 | Tichy et al. | Aug 1977 | A |
4340972 | Heist | Jul 1982 | A |
4484029 | Kenney | Nov 1984 | A |
4845772 | Metroka et al. | Jul 1989 | A |
4882745 | Silver | Nov 1989 | A |
6421426 | Lucey | Jul 2002 | B1 |
20020021800 | Bodley et al. | Feb 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050058280 A1 | Mar 2005 | US |