Communication jack that withstands insertion of a communication plug that the jack is not specifically configured to mate with without being damaged

Information

  • Patent Application
  • 20030129880
  • Publication Number
    20030129880
  • Date Filed
    November 04, 2002
    22 years ago
  • Date Published
    July 10, 2003
    21 years ago
Abstract
A communication jack that withstands insertion of a communication plug with which the jack is not configured to mate without being damaged. The communication jack comprises a wire board and a number of contact wires that extend above the wire board and that are electrically coupled to respective contact regions on the wire board at first ends of the contact wires. The contact wires having second ends that are freely disposed for making electrical connections with corresponding contact wires of a mating communication plug. Each of the freely disposed ends of the contact wires are cantilevered from respective fist ends of the contact wires such that the contact wires are capable of being deflected when the freely disposed ends wipe against respective contact wires of the mating communication plug. Some of the freely disposed ends are deflected to a lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. The freely disposed ends that are deflected to a lesser degree than the opposing, outer freely disposed ends abut a surface of the wire board. The configuration of the wire board is such that the opposing, outer freely disposed ends avoid abutting the surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
Description


TECHNICAL FIELD OF THE INVENTION

[0002] The present invention generally relates to communication connector assemblies. More particularly, the present invention relates to a data jack, such as a RJ-45 data jack, that is configured to prevent it from being damaged by insertion of a communication plug that the jack is not specifically configured to work with, such as an RJ-11 telephone plug.



BACKGROUND OF THE INVENTION

[0003] Registered Jack-11 (RJ-11) is a wiring standard that describes wiring specifications for a four-or six-wire connector that is used primarily to connect telephone equipment in the United States. Telephones and facsimile machines are sometimes connected using local area network (LAN) wiring and jacks because an RJ-11 6-wire telephone-type plug will fit into the 8-wire RJ-45 wall jack and a telephone line can be connected to that circuit in the telecommunications closet. Registered Jack-45 (RJ-45) is a wiring standard that describes wiring specifications for an eight-wire connector that is commonly used to connect computers to a local-area networks (LAN), particularly Ethernet networks.


[0004]
FIGS. 1A and 1B illustrate perspective and top views, respectively, of the jack 2 and plug 3 of an RJ-11 connector assembly. FIGS. 2A and 2B illustrate perspective and top views, respectively, of the jack 4 and plug 5 of an RJ-45 connector assembly. As is evident from FIGS. 1A-2B, RJ-45 connector assemblies look very similar to RJ-11 connector assemblies, except they are somewhat wider than RJ-11 connector assemblies. The jack 2 and plug 3 of the RJ-11 connector assembly have three respective pairs of contact wires, which define three different signal paths. The jack 4 and plug 5 of the RJ-45 connector assembly each have four respective pairs of contact wires, which define four different signal paths.


[0005] Due to the visual similarities between the RJ-11 and RJ-45 connector assemblies, and due to the fact that the associated jacks are often located near each other in buildings, people sometimes accidentally insert RJ-11 plugs into RJ-45 jacks. Because the RJ-11 plug is narrower than the RJ-45 plug, the RJ-11 plug can be inserted into the RJ-45 jack. Also, although the RJ-45 jack is not intended to work with an RJ-11 plug, it is possible to wire an RJ-45 jack to work with an RJ-11 plug. Regardless of whether insertion is accidental or intentional, when an RJ-11 plug is inserted into an RJ-45 jack, the RJ-45 jack can be damaged. Specifically, the RJ-11 plug has raised plastic surfaces (FIG. 1B, 7 and 8) on both sides of the contacts, and when it is inserted into an RJ-45 data jack, the raised plastic surfaces 7 and 8 press against contact wires 1 and 8 and cause them to be deflected beyond their normal limit of deflection when an RJ-45 plug is inserted into the RJ-45 jack. As a result, the contacts become permanently set in this over-deflected position at times. Then, when an RJ-45 plug is coupled to the RJ-45 jack, the contact force needed to keep the contacts of the RJ-45 plug in abutment with the respective contacts of the RJ-45 jack is no longer present or is insufficient, which may result in poor performance.


[0006] Accordingly, a need exists for an RJ-45 jack that can withstand insertion of an RJ-11 plug and avoid damage to the RJ-45 jack.



SUMMARY OF THE INVENTION

[0007] In accordance with the present invention, a communication jack is provided that withstands insertion of a communication plug with which the jack is not configured to mate without being damaged. The communication jack comprises a wire board and a number of contact wires that extend above a surface of the wire board and that are electrically coupled to respective contact regions on the wire board at first ends of the contact wires. The contact wires have second ends that are freely disposed for making electrical connections with corresponding contact wires of a mating communication plug. Each of the freely disposed ends of the contact wires are cantilevered from respective first ends of the contact wires such that the contact wires are capable of being deflected toward a particular surface of the wire board when the freely disposed ends wipe against respective contact wires of the mating communication plug.


[0008] Some of the freely disposed ends are deflected toward a certain surface of the wire board to a, lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. The freely disposed ends that are deflected to a lesser degree than the opposing, outer freely disposed ends abut the particular surface of the wire board and thus are constrained from further deflection. The configuration of the wire board is such that the opposing, outer freely disposed ends avoid abutting the particular surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.


[0009] In accordance with the preferred embodiment of the present invention, the configuration of the wire board includes two openings formed in the front edge region of the wire board below the opposing, outer freely-disposed ends. The openings allow the opposing, outer freely disposed ends of the contact wires (contact wires 1 and 8) of the jack to be deflected below the particular surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug. Thus, the opposing, outer freely disposed ends of the contact wires do not come into contact with respective conductive pads on the wire board until the are deflected below the particular surface of the wire board.


[0010] The present invention also provides a method for preventing a communication jack from being damaged when it is mated with a communication plug with which the jack is not configured to mate. The method comprises the step of configuring a front edge region of the wire board of the communication jack so that freely disposed ends of at least two opposing, outer contact wires of the jack avoid abutment with a particular surface of the wire board when the freely disposed ends wipe against respective contact wires of a mating communication plug. When the freely disposed ends wipe against and are deflected by respective contact wires of the mating communication plug, all of the freely disposed ends other than the opposing, outer freely disposed ends abut the particular surface of the wire board. The opposing, outer freely disposed ends are deflected through openings formed in the wire board, thereby avoiding abutment with the particular surface of the wire board. Thus, damage to the opposing, outer freely disposed ends is avoided.


[0011] These and other features and advantages of the present invention will become apparent from the following description, drawings and claims.







BRIEF DESCRIPTION OF THE DRAWINGS

[0012]
FIGS. 1A and 1B illustrate perspective and top views, respectively, of the jack and plug of an RJ-11 connector assembly.


[0013]
FIGS. 2A and 2B illustrate perspective and top views, respectively, of the jack and plug of an RJ-45 connector assembly.


[0014]
FIG. 3 is a perspective view of a known jack that meets the RJ-45 requirements.


[0015]
FIG. 4 is a side view of the wire board of the RJ-45 jack shown in FIG. 3 that illustrates the free ends of the contact wires 1 and 8 when they are in their deflected positions and in electrical contact with respective contact pads on the wiring board.


[0016]
FIG. 5 is a side view of the wiring board of the RJ-45 jack in accordance with the present invention that illustrates the deflected positions of contact wires 1 and 8 when an RJ-11 plug is inserted into the RJ-45 jack.


[0017]
FIG. 6 is a top view of the wiring board of the present invention in accordance with the preferred embodiment wherein portions of the wire board have been removed to allow increased travel of contact wires 1 and 8.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0018] With reference again to FIGS. 1A-2A, when the RJ-11 plug shown in FIG. 1B is inserted into the RJ-45 jack shown in FIG. 2A, the top side portions 7 and 8 of the molded plastic housing of the plug 3, which are slightly raised in comparison to the height of the contacts 1-6 of plug 3, press up on contacts 1 and 8, respectively, of jack 4 and deflect contacts 1 and 8 of jack 4 beyond their normal deflected positions (i.e., beyond their deflected positions when the RJ-45 plug 5 is inserted into the RJ-45 jack 4). The contacts 1-6 of the RJ-11 plug 3 make normal contact with contacts 1-6, respectively, of the RJ-45 jack 4. As indicated above, contacts 1 and 8 of the RJ-45 jack 4 may remain permanently bent as a result of this abnormal deflection after the RJ-11 plug 3 has been removed.


[0019]
FIG. 3 is a perspective view of a known jack that meets the RJ-45 requirements and will be referred to hereinafter as the “RJ-45 jack”. This communication jack is disclosed in U.S. Pat. No. 6,186,834, which is incorporated by reference herein in its entirety. This jack is an example of the type of jack with which the present invention may be implemented. This jack will be described herein to demonstrate an example of the manner in which the present invention may be implemented. However, those skilled in the art will understand, in view of the discussion provided herein, that the present invention is not limited to use with any particular jack.


[0020] The RJ-45 jack 20 comprises a frame or housing 12 configured to receive a wiring assembly 10, which is then mounted to the housing 12. The housing 12 has a front face in which a plug opening 13 is formed for receiving an RJ-45 plug 5 (FIG. 2B). To couple the plug 5 with the jack 20, the plug 5 is inserted into the plug opening 13 along axis P and latches into a coupling position at which it is electrically connected with the wiring assembly 10. The wiring assembly 10 has an associated, generally rectangular printed wire board (PWB) 30. The wire board 30 may comprise, for example, a single or a multi-layer dielectric substrate. Eight elongated terminal contact wires 18a-18h emerge from a central portion of the printed wire board 30. The contact wires 18a-18h extend substantially parallel to one another, and are generally uniformly spaced from a top surface 15 of a two-part contact wire guide structure 16. A first support part 17 of the guide structure 16 is fixed on a front portion of the wire board 30.


[0021] A second support part 19 is fixed to a front end of the first support part 17, and projects in a forward direction from the wire board 30. The second support part 19 of the guide structure has a number of parallel channels opening in the top surface 15 thereof for pre-loading and for guiding the free end portions (not shown) of corresponding contact wires 18a-18h. Contact wires 18a-18h of the jack 20 correspond to contact wires 8-1, respectively, of the plug 5 shown in FIG. 2B.


[0022] The contact wires 18a-18h are formed and arranged to deflect resiliently toward the top surface 15 of the guide structure 16 when free end portions (not shown) of contact wires 18a-18h are engaged by the wire contacts 8-1, respectively, of a mating RJ-45 plug 5. The material forming the contact wires 18a-18h may be, for example, a copper alloy, such as, spring-tempered phosphor bronze, beryllium copper, or the like.


[0023] The wire board 30 may incorporate conductive traces, electrical circuit components or other devices, such as devices designed to compensate for connector-induced crosstalk. The terminal contact wires 18a-18h have upstanding base portions that are electrically connected to conductors associated with the wire board 30 at the end of the wire board 30 opposite the housing 12. The wire board 30 has a wire connection terminal region at which outside, insulated wire leads (not shown) are connected to an array of contact terminals (not shown) located in the terminal region. Such terminals may be so-called insulation displacing connector (IDC) terminals having respective leg parts connected to respective conductive traces on the board 30, each trace being associated with one of the terminal contact wires 18a-18h. The wire connection terminal region may be enclosed by a terminal housing (not shown) on the top side of the board 30, and a cover (not shown) on the bottom side of the board 30.


[0024] The free end portions of contact wires 18a-18h are disposed beneath the surface 15 of the wire board 30 and are supported in cantilevered fashion by the connections between the contact wires 18a-18h and the wire board 30 at the ends of the contact wires 18a-18h opposite the face 13 of the housing 12. The free end portions of the contact wires 18a-18h are deflected by pins 8-1 of the plug 5 (FIG. 2B), respectively, and make electrical contact with electrical contacts (not shown) on the wiring board 30 when the plug 5 (FIG. 2B) is inserted into the opening 13 in the housing 12. The manner in which this occurs will now be described with reference to FIG. 4.


[0025]
FIG. 4 is a side view of a portion of the jack 20 shown in FIG. 3 that illustrates the free ends of the contact wires 18a and 18h when they are in their deflected positions and in electrical contact with respective contact pads on the wire board 30. Only the free end of contact wire 18a can be seen in FIG. 4 at location 37. Certain pairs of the terminal contact wires cross over at location 31. The manner in which the contact wires 18a-18h cross over can also be seen from the top perspective view of FIG. 3. As seen in FIG. 2, the terminal contact wires 18a-18h curve arcuately. When in the undeflected position, the free ends of the terminal contact wires 18a-18h abut an upper inside surface 32 of the guideway 33. A predetermined pre-load force is thus established, which is applied against the wire contacts of the plug 4 (FIG. 2B) when the wire contacts of the plug 5 wipe against the free ends 37 of the contact wires 18a-18h at position 34 and urge them downward into the deflected position 37 shown in FIG. 4 at which the free end is immediately adjacent the surface 15 of the wire board 30.


[0026] The deflected position shown in FIG. 4 is the normal deflected position when an RJ-45 plug is inserted into the RJ-45 jack 20. However, as stated above, when an RJ-11 plug (FIG. 1B) is inserted into RJ-45 jack 20, the raised plastic on the RJ-11 housing deflects contact wires 18a and 18h more than they are supposed to be deflected, which may result in permanent damage to contact wires 18a and 18h. In accordance with the present invention, the wire board 30 is configured to allow more deflection of the contact wires 18a and 18h so that the contact wires 18a and 18h will not be bent out of shape when an RJ-11 plug is inserted into the jack 20. However, the configuration is also such that when an RJ-45 plug is inserted into the RJ-45 jack 20, the contact wires 18a and 18h are deflected to the proper position 37 shown in FIG. 4.


[0027]
FIG. 5 is a side view of a portion of the RJ-45 jack 20 that illustrates the deflected positions of contact wires 18a and 18h when an RJ-11 plug is inserted into the jack 20. In accordance with the preferred embodiment of the present invention, a portion of the wire board 30 has been removed at the locations 37 on each side of the wire board 30 where the contact wires 18a and 18h would normally abut when an RJ-45 plug is inserted into the jack 20. By removing portions of the wire board 30 at these locations, the contact wires 18a and 18h are allowed to travel farther in the direction indicated by arrow 36 before they come into contact with respective contact pads on the wire board 30 when an RJ-11 plug is inserted into the jack 20. This prevents the contact wires 18a and 18h from being damaged.


[0028] As seen in FIG. 5, the free end 37 of contact wire 18a is deflected below the surface 15 of the wire board 30. This is also the case with the free end of contact wire 18h, but only contact wire 18a can be seen in the view provided by FIG. 5. FIG. 6 is a top view of the wire board 30 of the present invention in accordance with the preferred embodiment wherein portions 40 and 50 have been removed therefrom to allow increased travel of the free ends of contact wires 18a and 18h, respectively. FIG. 6 also illustrates the contact pads 41 on the surface 15 of the wire board 30, which contact wires 18b-1g abut when a plug is inserted into the jack 20. At the locations at which the contact pads 41 would normally be for connecting with contact wires 18a and 18h, openings 40 and 50 have been formed in the wire board 30. Therefore, when contact wires 18a and 18h are deflected, they will move a distance through these openings such that they are deflected beyond their normal deflected positions before they come into contact with respective contact pads (not shown) on the wire board 30. Because the contact wires 18a and 18h move through these openings 40 and 50 instead of impinging on the surface 15 of the wire board 30, over-deflection of the contact wires 18a and 18h is prevented, and damage to contact wires 18a and 18h is avoided.


[0029] Although the openings are shown as being breakout holes 40 and 50 at the front edge of the wire board 30 where contacts 18a and 18h would normally touch the board when deflected, this is merely one of many possible configurations for achieving the goals of the present invention. For example, rather than forming breakout holes 40 and 50 in the wire board 30, indentations could be formed in the wire board 30 that would serve the same purpose. Those skilled in the art will understand, in view of the discussion provided herein, that a variety of configurations are suitable for this purpose. Essentially, the present invention provides for increased travel of the contact wires 18a and 18h in order to avoid bending of contact wires 18a and 18h. The scope of the present invention covers any and all techniques and/or mechanisms for achieving this goal.


[0030] It should also be noted that the present invention is not limited to being implemented only in connection with an RJ-45 communication jack to prevent damage thereto when an RJ-11 communication plug is inserted into the jack. The present invention applies equally to other types of jacks that may be susceptible to damage caused by insertion of a plug with which the jack is not configured to mate.


[0031] It should be noted that the present invention has been described with reference to the preferred embodiments and that it is not limited to these embodiments. Modifications, additions and/or deletions can be made to the embodiments described herein without deviating from the spirit and scope of the present invention. Those skilled in the art will understand in view of the discussion provided herein that all such modifications, deletions and additions are within the scope of the present invention.


Claims
  • 1. A communication jack comprising: a wire board having a front edge region; and a number of contact wires extending above the wire board and electrically coupled to respective contact regions on the wire board at first ends of the contact wires, the contact wires having second ends that are freely disposed for making electrical connections with corresponding contact wires of a mating communication plug, each of the freely disposed ends of the contact wires being cantilevered from respective first ends of the contact wires such that the contact wires are capable of being deflected toward a surface of the wire board when the freely disposed ends wipe against respective contact wires of the mating communication plug, and wherein the wire board is configured such that some of the freely disposed ends are deflected to a lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected toward said surface of the wire board by respective contact wires of a mating communication plug, and wherein the freely disposed ends that are deflected to a lesser degree than said at least two opposing, outer freely disposed ends abut said surface of the wire board, and wherein the configuration of the wire board is such that said at least two opposing, outer freely disposed ends avoid abutting said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
  • 2. The communication jack of claim 1, wherein the configuration of the wire board includes at least two openings formed in the front edge region of the wire board below said at least two opposing, outer freely disposed ends, said openings preventing said at least two opposing, outer freely disposed ends from abutting said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
  • 3. The communication jack of claim 1, wherein the communication jack is an RJ-45 communication jack configured to mate with an RJ-45 communication plug.
  • 4. The communication jack of claim 3, wherein when the communication jack is coupled to an RJ-45 communication plug, all of the freely disposed ends wipe against and are deflected to approximately the same degree by respective contact wires of the RJ-45 communication plug, and wherein when the RJ-45 communication jack is mated with an RJ-11 communication plug, some of the freely disposed ends are deflected to a lesser degree than exactly two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of the RJ-11 communication plug, the lesser degree of deflection being due to abutment of all but the two opposing, outer freely disposed ends with said surface of the wire board.
  • 5. An communications interconnection system comprising: a communication plug comprising: a dielectric housing; and a plurality of contact wires disposed adjacent one another within the housing; and a communication jack comprising: a dielectric housing; a wire board disposed within the dielectric housing of the communication jack, the wire board having a front edge region; and a number of contact wires extending above the wire board and electrically coupled to respective contact regions on the wire board at first ends of the contact wires of the jack, the contact wires of the jack having second ends that are freely disposed for making electrical connections with corresponding contact wires of the communication plug, each of the freely disposed ends of the contact wires of the jack being cantilevered from respective first ends of the contact wires of the jack such that the contact wires of the jack are capable of being deflected when the freely disposed ends wipe against respective contact wires of the communication plug, and wherein the wire board is configured such that some of the freely disposed ends are deflected to a lesser degree than at least two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of the communication plug, and wherein the freely disposed ends that are deflected to a lesser degree than said at least two opposing, outer freely disposed ends abut a surface of the wire board, the configuration of the wire board being such that said at least two opposing, outer freely disposed ends avoid abutting said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of the communication plug.
  • 6. The system of claim 5, wherein the configuration of the wire board includes at least two openings formed in the front edge region of the wire board below said at least two opposing, outer freely disposed ends, said openings preventing said at least two opposing, outer freely disposed ends from abutting said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
  • 7. The system of claim 5, wherein the communication jack is an RJ-45 communication jack.
  • 8. The system of claim 7, wherein the communication plug is an RJ-11 communication plug, and wherein when the RJ-45 communication jack is mated with the RJ-11 communication plug, some of the freely disposed ends are deflected to a lesser degree than exactly two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of the RJ-11 communication plug, the lesser degree of deflection being due to abutment of all but the two opposing, outer freely disposed ends with said surface of the wire board.
  • 9. A method for preventing a communication jack from being damaged when it is mated with a communication plug, the method comprising: configuring a front edge region of a wire board of the communication jack so that freely disposed ends of at least two opposing, outer contact wires of the jack avoid abutment with a surface of the wire board when the freely disposed ends wipe against respective contact wires of a mating communication plug, and wherein all of the freely disposed ends other than said at least two opposing, outer freely disposed ends abut said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of the mating communication plug.
  • 10. The method of claim 9, wherein the step of configuring includes forming at least two openings in the front edge region of the wire board below said at least two opposing, outer freely disposed ends, wherein said openings prevent said at least two opposing, outer freely disposed ends from abutting said surface of the wire board when the freely disposed ends wipe against and are deflected by respective contact wires of a mating communication plug.
  • 11. The method of claim 9, wherein the communication jack is an RJ-45 communication jack configured to mate with an RJ-45 communication plug.
  • 12. The method of claim 11, wherein when the communication jack is coupled to an RJ-45 communication plug, all of the freely disposed ends wipe against and are deflected to approximately the same degree by respective contact wires of the RJ-45 communication plug, and wherein when the RJ-45 communication jack is mated with an RJ-11 communication plug, some of the freely disposed ends are deflected to a lesser degree than exactly two opposing, outer freely disposed ends when the freely disposed ends wipe against and are deflected by respective contact wires of the RJ-11 communication plug, the lesser degree of deflection being due to abutment of all but the two opposing, outer freely disposed ends with said surface of the wire board.
CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to copending U.S. provisional application entitled, “High Performance RJ45 Data Jack That Withstands Insertion of RJ11 Telephone Plug,” having Ser. No. 60/346,223, filed Jan. 4, 2002, which is entirely incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60346223 Jan 2002 US