The present disclosure relates to apparatus and methods of operating a communication network and, more particularly, apparatus and methods of operating a base station in communication network.
The dramatic growth in the number of smartphones, tablets, wearables, and other data-consuming devices, coupled with the advent of enhanced multimedia applications, has resulted in a tremendous increase in the volume of mobile data traffic. According to industry estimates, this increase in data traffic is expected to continue in the coming years and cellular networks might need to deliver as much as 100-1000 times the capacity of current commercial cellular systems. While 4G technologies address some of capacity demands of future mobile broadband users, a mobile broadband user expects to be seamlessly connected all the time, at any location, to any device. This poses stringent requirements on the fifth generation (5G) network, which must provide users with a uniform and seamless connectivity experience regardless of where they are and what device/network they connect to.
Existing 5G system architecture, and specifically 5G base stations, suffer from low energy efficiency and thus consume large amounts of power, when parameters such a spectral efficiency, number of users, number of radio frequency chains, are set to be equal.
In one example, a base station for a communication network is provided. The base station comprises at least one transmit planar component and at least one receive planar component. Each of the planar components includes a first end, a second end located opposite the first end, a cavity space and M number of antennas. The cavity space is bounded by B number of beam ports along a first side of the cavity space and by M number of array ports along a second side of the cavity space. The cavity space is in operative communication with the beam ports and with the array ports to form a Rotman lens. The M number of antennas are arranged in an array and are located along the second end of the planar component. Each of the antennas is in operative communication with a corresponding one of the array ports.
In general, in some aspects, the subject matter of the present disclosure encompasses a base station for a communication network, in which the base station includes at least one transmit component, and at least one receive component, each of the transmit components of the at least one transmit component and each of the receive components of the at least one receive components including a corresponding: a first end; a second end located opposite the first end; a cavity space bounded by a plurality of beam ports along a first side of the cavity space and by a plurality of array ports along a second side of the cavity space, the cavity space being in operative communication with the beam ports and with the array ports to form a Rotman lens; and multiple antennas that are arranged in an array and are located along the second end, in which each antenna of the multiple antennas is in operative communication with a different corresponding array port of the plurality of array ports.
Implementations of the base station can include one or more of the following features. For example, in some implementations, the base station includes: multiple radio frequency (RF) chains; a signal processor coupled to the plurality of RF chains; a transmit matrix switch operatively coupled to the signal processor and to the at least one transmit component; and a receive matrix switch operatively coupled to the signal processor and to the at least one receive component, in which the signal processor is in operative communication with the transmit matrix and the receive matrix through the plurality of RF chains.
The at least one RF chain of the multiple RF chains can include both a digital-to-analog converter and an up converter or both an analog-to-digital converter and a down converter.
In some implementations, a number of antennas is selected such that a half power beamwidth of each antenna of the multiple antennas is 1.5 degree or less. The half power beamwidth of each antenna of the multiple antennas can be about 1 degree.
In some implementations, the number of antennas is 88.
In some implementations, a number of beam ports for the at least one transmitting component is 88 and a number of beam ports for the at least one receiving component is 32.
In some implementations, each of the at least one transmit component and the at least one receive component further includes: a first set of waveguides extending between the first end and the beam ports; and a second set of waveguides extending between the array ports and the second end.
In some implementations, the at least one transmit component, and the at least one receive component are planar components.
In general, in another aspect, the subject matter of the present disclosure encompasses a base station for a communication network. The base station includes an analog beamforming section that includes at least one transmit component, and at least one receive component, each transmit component of the at least one transmit component and each receive component of the at least one receive component including a corresponding: a first end; a second end located opposite the first end; a cavity space bounded by multiple beam ports along a first side of the cavity space and by multiple array ports along a second side of the cavity space, the cavity space being in operative communication with the beam ports and with the array ports to form a Rotman lens; and multiple antennas that are arranged in an array and are located along the second end, in which each antenna of the multiple antennas is in operative communication with a different corresponding array port of the multiple array ports.
Implementations of the foregoing base station can include one or more of the following features. For example, in some implementations, the base station includes a digital beamforming section that includes: multiple radio frequency (RF) chains; and a signal processor coupled to the multiple RF chains. The analog beamforming section further can include: a transmit matrix switch operatively coupled to the signal processor and to the at least one transmit component, and a receive matrix switch operatively coupled to the signal processor and to the at least one receive component, in which the signal processor is in operative communication with the transmit matrix and the receive matrix through the multiple RF chains. In some implementations, the at least one RF chain of the multiple RF chains includes both a digital-to-analog converter and an up converter or both an analog-to-digital converter and a down converter.
In some implementations, a number of antennas is selected such that a half power beamwidth of each antenna of the multiple antennas is 1.5 degree or less. The half power beamwidth of each antenna of the multiple antennas can be about 1 degree.
In some implementations, the number of antennas is 88.
In some implementations, a number of beam ports for the at least one transmit component is 88 and a number of beam ports for the at least one receive component is 32.
In some implementations, each of the at least one transmit component and the at least one receive component further includes: a first set of waveguides extending between the first end and the beam ports; and a second set of waveguides extending between the array ports and the second end.
In some implementations, the at least one transmit component, and the at least one receive component are planar components.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
Range-finding systems use reflected waves to discern, for example, the presence, distance and/or velocity of objects. Radio Detection And Ranging (radar) and other rangefinding systems have been widely employed in applications, by way of non-limiting example, in autonomous vehicles such as self-driving cars, as well as in wireless communications modems of the type employed, such as in Massive-MIMO (multiple-in-multiple-out) networks, 5G wireless telecommunications, all by way of non-limiting example.
The radar system may include optimized RF front-end device(s) aiding in achieving higher resolution by improving azimuth resolution, elevation resolution, or any combination thereof. Azimuth resolution is the ability of a radar system to distinguish between objects at similar range but different bearings. Elevation resolution is the ability of a radar system to distinguish between objects at similar range but different elevation. Angular resolution characteristics of a radar are determined by the antenna beam-width represented by the −3 dB angle which is defined by the half-power (−3 dB) points. In some embodiments, radar system or phased array system disclosed herein may have a −3 dB beam-width of 1.5 degree or less in both azimuth resolution and elevation resolution. In particular, the radar system can be configured to achieve finer azimuth resolution and elevation resolution by employing an RF front-end device having two linear antennas arrays arranged perpendicularly and a Rotman lens as a phase shifting network, as will be described below.
A conventional radar system may be a radar system that uses radio waves transmitted by a transmitting antenna and received by a receiving antenna to detect objects. A phased array radar system may be a radar system that manipulates the phase of one or more radio waves transmitted by a transmitting and receiving module and uses a pattern of constructive and destructive interference created by the radio waves transmitted with different phases to steer a beam of radio waves in a desired direction.
The radar system 100 may be provided on a movable object to sense an environment surrounding the movable object. Alternatively, the radar system may be installed on a stationary object.
A movable object can be configured to move within any suitable environment, such as in air (e.g., a fixed-wing aircraft, a rotary-wing aircraft, or an aircraft having neither fixed wings nor rotary wings), in water (e.g., a ship or a submarine), on ground (e.g., a motor vehicle, such as a car, truck, bus, van, motorcycle, bicycle; a movable structure or frame such as a stick, fishing pole; or a train), under the ground (e.g., a subway), in space (e.g., a spaceplane, a satellite, or a probe), or any combination of these environments. The movable object can be a vehicle, such as a vehicle described elsewhere herein. In some embodiments, the movable object can be carried by a living subject, or taken off from a living subject, such as a human or an animal.
In some cases, the movable object can be an autonomous vehicle which may be referred to as an autonomous car, driverless car, self-driving car, robotic car, or unmanned vehicle. In some cases, an autonomous vehicle may refer to a vehicle configured to sense its environment and navigate or drive with little or no human input. As an example, an autonomous vehicle may be configured to drive to any suitable location and control or perform all safety-critical functions (e.g., driving, steering, braking, parking) for the entire trip, with the driver not expected to control the vehicle at any time. As another example, an autonomous vehicle may allow a driver to safely turn their attention away from driving tasks in particular environments (e.g., on freeways), or an autonomous vehicle may provide control of a vehicle in all but a few environments, requiring little or no input or attention from the driver.
In some instances, the radar systems may be integrated into a vehicle as part of an autonomous-vehicle driving system. For example, a radar system may provide information about the surrounding environment to a driving system of an autonomous vehicle. An autonomous-vehicle driving system may include one or more computing systems that receive information from a radar system about the surrounding environment, analyze the received information, and provide control signals to the vehicle's driving systems (e.g., steering wheel, accelerator, brake, or turn signal).
The radar system 100 that may be used on a vehicle to determine a spatial disposition or physical characteristic of one or more targets in a surrounding environment. The radar system may advantageously have a built-in predictive model for object recognition or high-level decision making. For example, the predictive model may determine one or more properties of a detected object (e.g., materials, volumetric composition, type, color, etc.) based on radar data. Alternatively or additionally, the predictive model may run on an external system such as the computing system of the vehicle.
The radar system may be mounted to any side of the vehicle, or to one or more sides of the vehicle, e.g. a front side, rear side, lateral side, top side, or bottom side of the vehicle. In some cases, the radar system may be mounted between two adjacent sides of the vehicle. In some cases, the radar system may be mounted to the top of the vehicle. The system may be oriented to detect one or more targets in front of the vehicle, behind the vehicle, or to the lateral sides of the vehicle.
A target may be any object external to the vehicle. A target may be a living being or an inanimate object. A target may be a pedestrian, an animal, a vehicle, a building, a sign post, a sidewalk, a sidewalk curb, a fence, a tree, or any object that may obstruct a vehicle travelling in any given direction. A target may be stationary, moving, or capable of movement.
A target object may be located in the front, rear, or lateral side of the vehicle. A target object may be positioned at a range of about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, or 100 meters from the vehicle. A target may be located on the ground, in the water, or in the air. A target object may be oriented in any direction relative to the vehicle. A target object may be orientated to face the vehicle or oriented to face away from the vehicle at an angle ranging from 0 to 360 degrees.
A target may have a spatial disposition or characteristic that may be measured or detected. Spatial disposition information may include information about the position, velocity, acceleration, and other kinematic properties of the target relative to the terrestrial vehicle. A characteristic of a target may include information on the size, shape, orientation, volumetric composition, and material properties, such as reflectivity, material composition, of the target or at least a part of the target.
A surrounding environment may be a location and/or setting in which the vehicle may operate. A surrounding environment may be an indoor or outdoor space. A surrounding environment may be an urban, suburban, or rural setting. A surrounding environment may be a high altitude or low altitude setting. A surrounding environment may include settings that provide poor visibility (night time, heavy precipitation, fog, particulates in the air). A surrounding environment may include targets that are on a travel path of a vehicle. A surrounding environment may include targets that are outside of a travel path of a vehicle. A surrounding environment may be an environment external to a vehicle.
Referring to
For example, the transmit logic 12 may comprise componentry of the type known in the art for use with radar systems (and particularly, for example, in pulse compression radar systems) to transmit into the environment or otherwise a pulse based on an applied analog signal. In the illustrated embodiment, this is shown as including a power amplifier 18, band pass filter 20 and transmit antenna 22, connected as shown or as otherwise known in the art.
The receive logic 14 comprises componentry of the type known in the art for use with RADAR systems (and particularly, for example, in pulse compression RADAR systems) to receive from the environment (or otherwise) incoming analog signals that represent possible reflections of a transmitted pulse. In point of fact, those signals may often include (or solely constitute) noise. In the illustrated embodiment, the receive logic includes receive antenna 24, band pass filter 26, low noise amplifier 28, and limiting amplifier 30, connected as shown or as otherwise known in the art.
The correlation logic 16 correlates the incoming signals, as received and conditioned by the receive logic 14, with the pulse transmitted by the transmit logic 12 (or, more aptly, in the illustrated embodiment, with the patterns on which that pulse is based) in order to find when, if at all, there is a high correlation between them. Illustrated correlation logic comprises serializer/deserializer (SERDES) 32, correlator 34 and waveform generator 36, coupled as shown (e.g., by logic gates of an FPGA or otherwise) or as otherwise evident in view of the teachings hereof.
As shown in
The planar component 41/43 may be embodied in the form of a rectangular substrate or plate, as shown in
The planar component 41/43 may formed from a split block assembly in that the planar component 41/43 is formed by assembling a plurality of blocks. For example, the planar component 41/43 may be formed from half blocks 48/49 that substantially mirror one another along a plane that divides the planar component 41/43 in half thereby forming two symmetrical halves.
The inner surfaces of the blocks of the planar components 41/43 are formed with recesses or cavities that form the inner structure of the planar components 41/43 as will be described below. The recesses or cavities on the blocks 41a/43a may be formed by a variety of manufacturing methods known in the art (e.g., computer numerical control (CNC) machining, injection molding, or the like) capable to achieving desired fabrication tolerances. As shown in
The planar component 41/43 may be made of metals (e.g., aluminum), metallic alloys, thermoplastics, other materials known in the art, or a combination thereof. For example, the planar component 41/43 may be made of thermoplastics primarily, and be plated or coated with metals (e.g., gold) or metallic alloys to reduce weight.
In some embodiments, a phased array module 40/42 may include a phase shifting network in the RF front-end device. In some embodiments, the phase shifting network may be implemented using a Rotman lens (e.g., see Rotman lens 23 in
The transmit antennas 22 and/or the receive antennas 24 can be any suitable type of antennas. For example, the antennas 22/24 may be a microstrip patch array, Vivaldi antennas, slot coupled patches, horns and others. In some embodiments, the antennas 22/24 may be microstrip bipodal vivaldi antennas that are fed by the Rotman lens 23. For example, the antennas array may be coupled to the array ports of the Rotman lens 23 on a one-to-one basis.
If one of the beam ports 50a is excited, the electromagnetic waves will be emitted into the cavity space 50 and will reach a corresponding one of array ports 50b. The shape of contour with the array ports 50b and the length of waveguides 52, which connect the ends 41a/41b/43a/43b of the planar component 41/43 and the ports 50a/50b, are determined so that, a progressive phase taper is created on the array antennas 22/24 and thus a beam is formed at a particular direction in the space.
In the present embodiment, the Rotman lens for the transmit front end device 40a has 63 beam ports and 72 array ports, while the Rotman lens for the receive front end device 42a has 30 beam ports and 72 array ports. Moreover, the front end 10 has an azimuth scanning angle of 50 degrees and an elevation scanning angle of 40 degrees. These values may vary depending on how the Rotman lens is embodied. Moreover, the front end 10 may include 72 transmit antennas and 72 receive antennas where the antennas 22, 24 are equidistantly spaced apart from one another.
The Rotman lens may serve as a robust and low-cost broadband phase shifting network for the disclosed RF front-end devices 40a/42a and structures. In these cases, active circuitry may be integrated with the beam ports of the Rotman lens, and the lens itself may then be optimized to provide accurate phasing. In accordance with another aspect of the disclosure, some embodiments may include a Rotman lens with enhanced focusing functionality to provide the phasing with low power loss.
The third side and the fourth side of the Rotman lens may include dummy ports or sidewall absorbers 50c, 50d, such as radio frequency absorbers, are formed to suppress reflections from the sides of the Rotman lens. The radio frequency absorbers may be made of wave absorbing materials such as Eccosorb® MCS, LS26 or BSR.
The properties of a sidewall absorber 50c/50d may be tested on a fixture 66 a simulated embodiment of which is illustrated in
As shown in
In the embodiments of
Each of the waveguides 52 may provide a hollow space through which the electromagnetic waves propagate. While
Each of the waveguides 52 of the Rotman lens 23 may further include a polarization rotator 56 to control the polarization of the waves out of and into the phased array logics.
In the iris section 56b of the polarization rotator 56 (
It should be noted that
In the second section 56c of the polarization rotator 56 (
Various dimensions of the iris section 56b (
The aforementioned dimensions of the iris section 56b may affect the performance of the antenna which may be described in terms of S-parameters (where SNM represents the power transferred from Port M to Port N in a multi-port network), as shown in the graph of
Due to the complex interaction of the tuning parameters, a systematic tuning approach to getting the needed bandwidth, central frequency and insertion loss are needed when designing the polarization rotator 56. The process for tuning should be to pick nominal values for the three aforementioned parameters. Nominal values are based on the waveguide 52 selected and are typically ¼ to 1 times the waveguide long dimension depending on the parameter. Once nominal values are chosen length for the iris section should be tuned to achieve the needed central frequency response. After central frequency response is achieved, the height of the cuboid obstruction 58b should be tuned to get the desired bandwidth and insertion loss. If bandwidth and insertion loss are not achieved, the gap of the iris section 56b can be changed to help insertion loss. The gap of the iris section should typically be 30-50% of the long dimension of the waveguide 52. Deviations from this lead to very narrow bandwidths or high insertion loss. Once the desired insertion loss and bandwidth are achieved a re-tune of the length of the iris section will shift the central frequency back to the desired position from the shift due to adjustments to parameters such as the height of the cuboid obstructions 58b and the gap 60c of the iris section 56.
As shown in
As further shown in
The electromagnetic waves propagating through the present apparatus may be in the Transverse Electric (TE) 10 mode. The polarization of the waves may be altered by the polarization rotators 56 located throughout the transmit front end device 40a and the receive front end device 42a.
Waves originating from the transmit logic 12 are polarized to be perpendicular to the plane of the Rotman lens 23 (
As shown in
The first set of waveguides 52a in the transmit planar component 41, the second set of waveguides 52b in the receive planar component 43, and the first set of waveguides 52a in the receive planar component 41 make up the three sets of waveguides 52 that include polarization rotators 56 in the present embodiment of the front end 10. Thus, the waves undergo three 90-degree polarization rotations or twists during propagation through the transmit front end device 40a and the receive front end device 42a.
However, the number of sets of waveguides 52 including polarization rotators 56 may be a different odd number such as one or seven. In an alternative embodiment of the front end 10, there could be polarization rotators 56 in the first set of waveguides 52 on the transmit planar component 41 only and none on the receive planar component 43 such that the total number of sets of waveguides including polarization rotators 56 is one, for example.
Alternatively, while each waveguide in the aforementioned sets of waveguides 52 includes a single polarization rotator 56, it is possible for one waveguide 52 to have more than one polarization rotator 56. For example, each of the first set of waveguides 52a extending between the first end 41a and the beam ports 50a in the transmit planar component 41 may include two polarization rotators 56 (e.g., a first polarization rotator 56A and a second polarization rotator 56B in order of wave propagation), each of the second set of waveguides 52b extending between the array ports 50b and the second end 41b in the transmit planar component 41 may include one polarization rotator 56 (e.g., a first polarization rotator 56A), each the second set of waveguides 52b extending between the second end 43b and the array ports 50b in the receive planar component 43 may include two polarization rotators 56 (e.g., a second polarization rotator 56B and a first polarization rotator 56A in order of wave propagation), and each the first set of waveguides 52a extending between the beam ports 50a and the first end 43a of the receive planar component 43 may include two polarization rotators 56 (e.g., a second polarization rotator 56B and a first polarization rotator 56A in order of wave propagation). In such an alternative arrangement of the polarization rotators 56, there would be a total of seven 90-degree polarization rotations or twists during propagation through the transmit front end device 40a and the receive front end device 42a.
The expression “90-degree polarization rotation” or other expressions relating to rotating the polarization of the waves by “90-degree” or “90 degrees” are meant to include rotation by 270 degrees, 630 degrees, or the like in the opposite rotational direction or rotation by 450 degrees or the like in the same rotational direction as long as the finally reached position can be reached through a rotation by 90 degrees.
In one example arrangement of the front end 10, the transmit module 40 and the receive module 42 may be configured in a bi-static manner. The bi-static configuration may refer to the working configuration where the receiving module 42 and the transmitting module 40 are separated or not co-located. The illustrated example shows that the vertically arranged receive module 42 is configured to be in a receiving mode while the horizontally arranged transmit module 40 is configured to be in a transmission mode. The bi-static Tx/Rx configuration of the two phased array modules may be fixed or switchable. In some cases, the vertical receive module 42 and horizontal transmit module 40 can be switched such that the vertical module is the transmitter and the horizontal module is the receiver.
If the radar system is in the bi-static Tx/Rx configuration, one or more parameters of the antenna arrays (e.g., gain, directivity) for the receiving and transmitting may be different. Similarly, one or more configurations of the Rotman lens or RF absorbers corresponding to one (transmit/receive) front-end device may be different from those of the perpendicularly arranged (receive/transmit) front-end device.
In alternative embodiment (
Hybrid beamforming in this type of 5G system 1000 often includes two sections, i.e., analog beamforming 1001 and digital beamforming 1003. In the embodiment of
The matrix switches 1022, 1024 connect the N number of RF chains 1020 to the B number of beams provided to the Rotman lenses 1028, 1030. The system 1000 can support an N number of beam(s) simultaneously. For example, in a 5G base station with 8 beams, the matrix switches 1022, 1024 should be able to connect each RF chain 1020 to each beam port 1026 of the Rotman lens 1028, 1030 such that the matrix switch can connect all RF chains 1020 to all beam ports 1026 of the Rotman lens. In the receiving arms 1020 of the digital beamforming portion 1003, the signals in millimeter-wave frequencies received from the matrix switch 1024 are converted to signals in lower frequencies by the down converters 1019 while the signals with frequencies lower than those in the millimeter-wave range in the transmitting arms 1020 of the digital beamforming portion 1003 are converted to signals in millimeter-wave frequencies by the up converters 1018 before being passed to matrix switch 1022. Local oscillator signals 1021 are input into the up converters 1018 and the down converters 1019 for up/down conversion of intermediate frequency (IF) signals. To convert the digital and analog signals to each other, analog-to-digital converters 1016 and digital-to-analog converters 1014 may be provided.
The signal processor 1002 may include a plurality of layers 1004, 1006, 1008, 1010 and 1012 for data transmission in accordance with conventional models such as the open system interconnections (OSI) reference model or the Internet protocol suite. Under the OSI model, the layers may include the physical layer, the data link layer including the media access control (MAC), the network layer, the transport layer, the session layer, the presentation layer, and the application layer. In the OSI model, the physical layer is the layer most closely associated with the physical connection between devices and transmits and/or receives the raw bit-stream over the physical medium. The data link layer defines the format of the data being transmitted/received and is responsible for flow control and error control in intra-network communications. A MAC sublayer within the data-link layer controls the hardware responsible for interaction with the transmission medium. The network layer facilitates data transfer between different networks. The network layer breaks data from the transport layer into packets when sending data or reassembles packets when receiving data. When transmitting, the transport layer takes data from the session layer and breaks it into segments before sending it to the network layer. When receiving, the transport layer reassembles the segments into data that the session layer can consume. The transport layer also can be configured to perform flow control for determining an optimal speed of transmission and to perform error control to ensure that the received data is complete. The session layer is configured to open and close communication between devices. The presentation layer prepares data so that it can be used by the application layer and is configured to perform encryption and compression of data. The application layer includes the protocols for manipulating data for use with user applications. Under the TCP/IP model, the layers may include the network access layer, the Internet layer, the transport layer, and the application layer.
The graph in
The graph in
Numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
The present application is a continuation-in-part of U.S. patent application Ser. No. 17/026,253, filed Sep. 20, 2020, which claims priority to U.S. Provisional Patent Application No. 63/032,999, filed Jun. 1, 2020; U.S. Provisional Patent Application No. 63/033,023, filed Jun. 1, 2020; U.S. Provisional Patent Application No. 63/034,675, filed Jun. 4, 2020; U.S. Provisional Patent Application No. 63/034,729, filed Jun. 4, 2020; U.S. Provisional Patent Application No. 63/034,751, filed Jun. 4, 2020; U.S. Provisional Patent Application No. 63/034,769, filed Jun. 4, 2020; and U.S. Provisional Patent Application No. 63/034,937, filed Jun. 4, 2020. The entire contents and disclosure of these applications are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63034937 | Jun 2020 | US | |
63034769 | Jun 2020 | US | |
63034751 | Jun 2020 | US | |
63034729 | Jun 2020 | US | |
63034675 | Jun 2020 | US | |
63033023 | Jun 2020 | US | |
63032999 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17026253 | Sep 2020 | US |
Child | 18153771 | US |