The present disclosure relates generally to communication networks, to relay nodes for the communication networks, and/or to methods of transmitting data among a plurality of relay nodes.
It may be beneficial to transmit data along an elongate tubular body, such as a pipeline and/or a drill pipe, without utilizing wires and/or radio frequency (electromagnetic) communications devices. Examples abound where the installation of wires is technically difficult and/or economically impractical. The use of radio transmission also may be impractical, or unavailable, in cases where radio-activated blasting is occurring, and/or where the attenuation of radio waves near the elongate tubular body is significant.
Likewise, it may be desirable to collect and transmit data along the elongate tubular body in a wellbore, such as during a drilling process and/or during production of reservoir fluids via the wellbore. Such data may include temperature, pressure, rate of rock penetration, inclination, azimuth, fluid composition, and/or local geology. In the drilling of oil and gas wells, the wellbore is formed using a drill bit that is urged downwardly at a lower end of a drill string. The drill bit is rotated while force is applied through the drill string and against a rock face of a formation being drilled. In order to obtain desired data, special downhole assemblies have been developed. These downhole assemblies generally are referred to as Logging While Drilling (LWD) and/or Measurement While Drilling (MWD) assemblies.
LWD and MWD assemblies may permit more efficient drilling programs. Particularly, downhole assemblies having LWD and MWD capabilities may store and/or transmit information about subsurface conditions for review by drilling and/or production operators at the surface. LWD and MWD techniques generally seek to reduce the need for tripping the drill string and/or running wireline logs to obtain downhole data.
A variety of technologies have been proposed and/or developed for downhole communications using LWD or MWD. In one form, LWD and MWD information simply may be stored in memory, such as memory associated with a processor utilized in the LWD or MWD process. The memory may be retrieved and the information may be downloaded later when the drill string is pulled, such as when a drill bit is changed out or a new downhole assembly is installed. However, this approach does not permit the information to be utilized during the drilling operation in which the information is obtained, and thus does not enable real-time utilization of the information.
Several real time data telemetry systems also have been proposed. One involves the use of a physical cable, such as an electrical conductor or a fiber optic cable, that is secured to the elongate tubular body. The cable may be secured to an inner and/or to an outer diameter of the elongate tubular body. The cable provides a hardwire connection that allows for real-time transmission of data and the immediate evaluation of subsurface conditions. Further, the cable may permit high data transmission rates and/or the delivery of electrical power directly to downhole sensors.
However, placement of a physical cable along a drill pipe during drilling may be problematic. As an example, the cable may become tangled and/or may break if secured along a rotating drill string. This problem may be lessened when a downhole mud motor is used that allows for a generally non-rotating drill pipe. However, even in this instance, the harsh downhole environment and the considerable force of the pipe as it scrapes across the surrounding borehole may damage the cable.
It has been proposed to place a physical cable along the outside of a casing string during well completion. However, this can be difficult, as placement of wires along the casing string requires that thousands of feet of cable be carefully unspooled and fed during pipe connection and run-in. Further, the use of hard wires in a well completion requires the installation of a specially-designed well head that includes through-openings for the wires. In addition, if the wire runs outside of a casing string, it creates a potential weak spot in a cement sheath that surrounds the casing string. This may contribute to a loss of pressure isolation between subsurface intervals. Furthermore, it generally is not feasible to pass wires through a casing mandrel for subsea applications. In sum, passing cable in the annulus adds significant challenges and cost, both for equipment and for rig time, to well completions.
Mud pulse telemetry, or mud pressure pulse transmission, may be utilized during drilling to obtain real-time data from sensors at, or near, the drill bit. Mud pulse telemetry employs variations in pressure in the drilling mud to transmit signals from the downhole assembly to the surface. The variations in pressure may be sensed and analyzed by a computer at the surface.
A downside to mud pulse telemetry is that it transmits data to the surface at relatively slow rates, typically less than 20 bits per second (bps), and this data rate decreases even further as the length of the wellbore increases. Slow data transmission rates can be costly to the drilling process. For example, the time it takes to downlink instructions and uplink survey data (such as azimuth and inclination), during which the drill string is normally held stationary, can be two to seven minutes. Since many survey stations may be required, this downlink/uplink time can be very expensive, especially on deepwater rigs where daily operational rates can exceed $2 million. Similarly, the time it takes to downlink instructions and uplink data associated with many other tasks, such as setting parameters in a rotary steerable directional drilling tool and/or obtaining a pressure reading from a pore-pressure-while-drilling tool, can be very costly.
Another telemetry system that has been suggested involves electromagnetic (EM) telemetry. EM telemetry employs electromagnetic waves, or alternating current magnetic fields, to “jump” across pipe joints. In practice, a specially-milled drill pipe may be provided that has a conductor wire machined along an inner diameter thereof. The conductor wire transmits signals to an induction coil at the end of the pipe. The induction coil, in turn, transmits an EM signal to another induction coil, which sends that signal through the conductor wire in the next pipe. Thus, each threaded connection provides a pair of specially milled pipe ends for EM communication.
Faster data transmission rates with some level of clarity have been accomplished using EM telemetry; however, it is observed that the induction coils in an EM telemetry system must be precisely located in the box and pin ends of the joints of the drill string to ensure reliable data transfer. For a long (e.g., 20,000 foot) well, there can be more than 600 tool joints. This represents over 600 pipe sections threaded together, and each threaded connection is preferably tested at the drilling platform to ensure proper functioning. Thus, there are economic and functional challenges to effective utilization of EM telemetry systems.
More recently, the use of radiofrequency (RF) signals also has been suggested. While high data transmission rates can be accomplished using RF signals in a downhole environment, the transmission range typically is limited to a few meters. This, in turn, requires the use of numerous repeaters.
Thus, there exists a need for improved communication networks, for improved relay nodes for communication networks, and/or for improved methods of transmitting data among a plurality of relay nodes.
Communication networks, relay nodes for communication networks, and methods of transmitting data among a plurality of relay nodes utilizing non-dispersive guided acoustic waves are disclosed herein. The methods include inducing a first acoustic wave within an elongate tubular body with a first relay node, conveying the first acoustic wave along the elongate tubular body to a second relay node, and receiving the first acoustic wave with the second relay node. The methods further include inducing a second acoustic wave within the elongate tubular body with the second relay node, conveying the second acoustic wave along the elongate tubular body to a third relay node, and receiving the second acoustic wave with the third relay node.
The communication networks include an elongate tubular body and a wireless data transmission network including a plurality of relay nodes. The plurality of relay nodes includes a first relay node, a second relay node, and a third relay node. The communication network is programmed to transmit data among the first relay node, the second relay node, and the third relay node by performing the methods.
The relay nodes include an electro-acoustic transmitter array and an electro-acoustic receiver. The electro-acoustic transmitter array may include at least 3 electro-acoustic transmitters circumferentially spaced-apart about a perimeter of the elongate tubular body. The electro-acoustic transmitter array is configured to induce a non-dispersive guided acoustic wave within the elongate tubular body.
As illustrated in
As also illustrated in
Communication network 20 includes an elongate tubular body 30 and a wireless data transmission network 50. Wireless data transmission network 50 includes a plurality of relay nodes 100 that are spaced apart along a length, or along a longitudinal axis 31, of the elongate tubular body. In the example of
First relay node 110 includes a first electro-acoustic transmitter array 112, which is configured to induce a first acoustic wave 113 in and/or within elongate tubular body 30. The first acoustic wave may include, consist of, or consist essentially of a first non-dispersive guided acoustic wave (NDGAW). In addition, first relay node 110 also includes a first electro-acoustic receiver 114.
Second relay node 120 includes a second electro-acoustic transmitter array 122, which is configured to induce a second acoustic wave 123 in and/or within elongate tubular body 30. The second acoustic wave may include, consist of, or consist essentially of a second NDGAW. In addition, second relay node 120 also includes a second electro-acoustic receiver 124, which is configured to receive first acoustic wave 113 from elongate tubular body 30.
Third relay node 130 includes a third electro-acoustic transmitter array 132. In addition, third relay node 130 also includes a third electro-acoustic receiver 134, which is configured to receive second acoustic wave 123 from elongate tubular body 30.
Under these conditions, relay nodes 100 may be configured to induce a respective induced acoustic wave within the elongate tubular body and/or to receive a respective received acoustic wave from the elongate tubular body. As an example, relay nodes 100 may be configured to receive the respective received acoustic wave, which was induced by a first adjacent relay node on a first side thereof, from the elongate tubular body. In addition, relay nodes 100 also may be configured to induce the respective induced acoustic wave within the elongate tubular body such that the induced acoustic wave is conveyed, via the elongate tubular body, to a second adjacent relay node on a second side thereof. The second side may be opposed to the first side such that relay nodes function as intermediaries for signal transfer, or propagation, between relay nodes that are adjacent thereto.
As illustrated in dashed lines in
While not required of all embodiments, a distance, or an average distance, between a given relay node 100 of the plurality of relay nodes 100 and a closest other relay node 100 of the plurality of relay nodes 100 may be greater than an average distance between a given sensor node 170 and a closest one of the plurality of relay nodes 100. Stated another way, one or more sensor nodes 170 may be positioned, along the length of elongate tubular body 30, between adjacent relay nodes 100. As such, a given sensor node 170 may communicate, via a corresponding sense acoustic wave 172, with a corresponding relay node 100 over a shorter communication distance than a communication distance between the corresponding relay node 100 and a closest other relay node 100, and this shorter communication distance may permit and/or facilitate lower-power and/or dispersive-mode communication between the given sensor node and the corresponding relay node.
Sensor nodes 170, when present, may be configured to sense any suitable property that is related to the elongate tubular body. As examples, sensor nodes 170 may detect, quantify, and/or sense one or more of a measure of scale formation within the elongate tubular body, a measure of hydrate formation within the elongate tubular body, a measure of a viscosity of a fluid that extends within and is in contact with the elongate tubular body, a measure of a viscosity of a fluid that is external to and in contact with the elongate tubular body, a measure of a fluid composition of the fluid that extends within and is in contact with the elongate tubular body, a measure of a fluid composition of the fluid that is external to and in contact with the elongate tubular body, and/or a measure of an integrity of the elongate tubular body. Examples of structures that may be included in sensor node 170 include an acoustic transmitter, an acoustic receiver, a temperature detector, a pressure detector, and/or a chemical composition detector.
During operation of communication network 20, data may be transmitted and/or conveyed among relay nodes 100 via corresponding acoustic waves, such as first acoustic wave 113 and/or second acoustic wave 123. This may include transmitting the data in any suitable manner, such as via and/or utilizing methods 200, which are discussed in more detail herein with reference to
As an example, first electro-acoustic transmitter array 112 of first relay node 110 may induce first acoustic wave 113, which is indicative of, or encoded to represent, the data, within elongate tubular body 30. The first acoustic wave may be conveyed, by the elongate tubular body, to second relay node 120 and then may be received by second electro-acoustic receiver 124 of the second relay node. Responsive to receipt of the first acoustic wave, second electro-acoustic transmitter array 122 of second relay node 120 may induce second acoustic wave 123 within the elongate tubular body, and the second acoustic wave may be based, at least in part, on the first acoustic wave. The second acoustic wave may be conveyed, by the elongate tubular body, to third relay node 130 and then may be received by third electro-acoustic receiver 134 of the third relay node. This process may be repeated any suitable number of times to transmit any suitable data stream along any suitable portion, fraction, and/or region of the length of the elongate tubular body. In addition, this process may be reversed, with data being transmitted from third relay node 130 to second relay node 120 and/or from second relay node 120 to first relay node 110, such as to permit data transmission in both an uphole direction and in a downhole direction within hydrocarbon well 12 of
In addition, and when communication network 20 includes sensor nodes 170, a given relay node 100 also may receive a given sense acoustic wave 172 from a corresponding sensor node 170. Under these conditions, the given relay node may induce a corresponding acoustic wave, within the elongate tubular body, that is based, at least in part, on the given sense acoustic wave, thereby permitting a data stream, which is transmitted along the length of the elongate tubular body, to include information regarding the property related to the elongate tubular body that is sensed by the sensor node.
Relay nodes 100 may include any suitable structure that may be adapted, configured, designed, and/or constructed to induce corresponding acoustic waves within the elongate tubular body and/or to receive corresponding acoustic waves from the elongate tubular body.
In addition, relay nodes 100 may be powered, or energized, in any suitable manner. As examples, each relay node may include and/or be one or more of a battery-powered relay node that includes a battery 102, a self-powered relay node that includes an electrical energy generator 104, and/or a wire-powered relay node that is attached to a power cable 106.
It is within the scope of the present disclosure that relay nodes 100 may be incorporated into communication network 20 in any suitable manner. As an example, one or more of the relay nodes may be directly and/or operatively attached to elongate tubular body 30 via an attachment structure 160, which is illustrated in
It is also within the scope of the present disclosure that relay nodes 100 may be operatively attached to any suitable portion of elongate tubular body 30. As examples, one or more relay nodes 100, or portions thereof, may be operatively attached to an internal surface 34 of the elongate tubular body, may be operatively attached to an external surface 36 of the elongate tubular body, and/or may extend, at least partially, within the elongate tubular body, as discussed in more detail herein with reference to
As illustrated in dashed lines in
First electro-acoustic transmitter array 112, second electro-acoustic transmitter array 122, and third electro-acoustic transmitter array 132 collectively may be referred to herein as electro-acoustic transmitter arrays. As discussed in more detail herein with reference to
It is within the scope of the present disclosure that each electro-acoustic transmitter array may include and/or may be defined by any suitable structure. As an example, each electro-acoustic transmitter array may include at least 2, at least 3, at least 4, at least 5, at least 6, at least 8, at least 10, at least 12, at least 18, or at least 36 electro-acoustic transmitters. The number of electro-acoustic transmitters in a given electro-acoustic transmitter array may be selected based upon any suitable criteria, examples of which include a material of construction of the elongate tubular body, a diameter of the elongate tubular body, a wall thickness of the elongate tubular body, a composition of a fluid that extends within a fluid conduit defined by the elongate tubular body, and/or a composition of a material that extends in contact with an external surface of the elongate tubular body. The electro-acoustic transmitters in a given electro-acoustic transmitter array may be circumferentially spaced apart, or equally spaced apart, about the perimeter of the elongate tubular body.
As another example, each electro-acoustic transmitter array may include a transducer ring that circumferentially extends about the perimeter of the elongate tubular body, as illustrated in
First electro-acoustic receiver 114, second electro-acoustic receiver 124, and/or third electro-acoustic receiver 134 collectively may be referred to herein as electro-acoustic receivers. It is within the scope of the present disclosure that each electro-acoustic receiver may be configured to receive any suitable corresponding acoustic wave. As examples, second electro-acoustic receiver 124 may be configured to receive the first NDGAW from first electro-acoustic transmitter array 112, and third electro-acoustic receiver 134 may be configured to receive the second NDGAW from second electro-acoustic transmitter array 122. As another example, it is within the scope of the present disclosure that elongate tubular body 30 may include one or more reflection points 90, an example of which is an interface region between a given tubular segment 38 and a corresponding coupling 40. Under these conditions, acoustic waves, which are conveyed by elongate tubular body 30, may be reflected at reflection points 90 thereby generating a reflected acoustic wave. With this in mind, second electro-acoustic receiver 124 additionally may be configured to receive a first reflected acoustic wave from the elongate tubular body and/or from a first reflection point, and third electro-acoustic receiver 134 may be configured to receive a second reflected acoustic wave from the elongate tubular body and/or from a second reflection point.
It is within the scope of the present disclosure that first electro-acoustic receiver 114, second electro-acoustic receiver 124, and/or third electro-acoustic receiver 134 may be, or may be referred to herein as, an electro-acoustic receiver array that includes a plurality of individual electro-acoustic receivers circumferentially spaced apart, or equally spaced apart, about the perimeter of the elongate tubular body. This is illustrated in
Electro-acoustic transmitter arrays and/or electro-acoustic receivers disclosed herein may include and/or may be defined by any suitable structure. As examples, each electro-acoustic transmitter array may include one or more piezoelectric transmitter stacks and/or one or more electromagnetic acoustic transmitters. As additional examples, each electro-acoustic receiver may include one or more piezoelectric receiver stacks and/or one or more electromagnetic acoustic receivers.
An example of a piezoelectric element 180, which may be utilized in the piezoelectric transmitter stacks and/or in the piezoelectric receiver stacks disclosed herein, is illustrated in
It is within the scope of the present disclosure that a single element and/or device may define a given electro-acoustic transmitter array and a corresponding electro-acoustic receiver of a given relay node 100. Alternatively, it also is within the scope of the present disclosure that separate and/or distinct elements may define the given electro-acoustic transmitter array and the corresponding electro-acoustic receiver of the given relay node 100. Under these conditions, and with reference to
With continued reference to
Elongate tubular body 30 may include any suitable structure within which acoustic waves may be induced and/or conveyed. As an example, elongate tubular body 30 may include and/or be a metallic elongate tubular body. As additional examples, elongate tubular body 30 additionally or alternatively may include and/or be a pipeline 32, a drill string 42, a casing string 44, and/or production tubing 46. Stated another way, and as discussed in more detail herein with reference to
As discussed, the communication networks, relay nodes, and methods according to the present disclosure may utilize electro-acoustic transmitter arrays to induce non-dispersive guided acoustic waves (NDGAW) within the elongate tubular body. Such NDGAWs may be aligned with the elongate axis of the elongate tubular body and/or may be directional in nature. In order to induce such NDGAWs, and as also discussed, each electro-acoustic transmitter array may induce the NDGAW at a plurality of locations about the circumference of the elongate tubular body. Such a configuration, which is illustrated in
In the example of
The individual electro-acoustic transmitters 140 within relay node 100 are oriented, relative to one another, such that relay node 100 is configured to induce the NDGAW within elongate tubular body 30. This NDGAW may include, consist of, consist essentially of, or be a torsional shear wave 60 that propagates along, or parallel to, a propagation axis 62 that is parallel to longitudinal axis 31 of the elongate tubular body and that vibrates along, or parallel to, a vibration axis 64 that is perpendicular to, or rotates about, the longitudinal axis of the elongate tubular body.
Similar to
In the embodiment of
As discussed herein with reference to
It is within the scope of the present disclosure that relay node 100 of
Compressive waves 80, which are illustrated in
The communication networks, relay nodes, and methods disclosed herein preferentially transmit, induce, and/or utilize non-dispersive guided acoustic waves (NDGAW), such as in-plane torsional shear acoustic waves 60 that are illustrated in
While the communication networks, relay nodes, and methods disclosed herein preferentially utilize NDGAWs, these communication networks, relay nodes, and methods also recognize that NDGAWs may be converted into dispersive waves by the transmission medium, such as by reflection points 90 within elongate tubular body 30, which are illustrated in
Methods 200 may include sensing a property related to the elongate tubular body at 210 and include inducing a first acoustic wave at 220, conveying the first acoustic wave at 230, and receiving the first acoustic wave at 240. Methods 200 also include inducing a second acoustic wave at 250, conveying the second acoustic wave at 260, and receiving the second acoustic wave at 270. Methods 200 also may include repeating at least a portion of the methods at 280.
Sensing the property related to the elongate tubular body at 210 may include sensing any suitable property that is related to the elongate tubular body in any suitable manner. As an example, the sensing at 210 may include sensing with a sensor node, such as sensor node 170 of
As a more specific example, the sensing at 210 may include sensing with and/or via the first acoustic wave. Under these conditions, the sensor node may be configured to detect and/or determine a change in the first acoustic wave, as a function of time and/or over time, that may be indicative of the property that is related to the elongate tubular body.
As another more specific example, the sensing at 210 may include inducing, within the elongate tubular body and with a sensor electro-acoustic transmitter of the sensor node, a sense acoustic wave. The sense acoustic wave may be indicative of the property related to the elongate tubular body and may include and/or be any suitable acoustic wave, examples of which include a compressive acoustic wave, a shear acoustic wave, a non-dispersive guided acoustic wave, a longitudinal acoustic wave, and/or an in-plane torsional shear acoustic wave. The sensing at 210 further may include conveying the sense acoustic wave to a first electro-acoustic receiver of a first relay node of the plurality of relay nodes via the elongate tubular body. The sensing at 210 also may include receiving the sense acoustic wave from the elongate tubular body with the first electro-acoustic receiver.
When methods 200 include the sensing at 210, the data that is transmitted among the plurality of relay nodes may include and/or be indicative of the property related to the elongate tubular body. Stated another way, the inducing at 220 may be based, at least in part, on the sense acoustic wave and/or may be initiated responsive to receipt of the sense acoustic wave by the first electro-acoustic receiver.
Inducing the first acoustic wave at 220 may include inducing the first acoustic wave within the elongate tubular body. The inducing at 220 also may include inducing the first acoustic wave with a first electro-acoustic transmitter array of the first relay node. The first acoustic wave is indicative of the data and includes, primarily includes, includes a majority of, consists of, and/or consists essentially of a first non-dispersive guided acoustic wave (NDGAW), examples of which are disclosed herein. Stated another way, the first electro-acoustic transmitter array is specifically adapted, configured, designed, and/or constructed to preferentially generate and/or induce NDGAWs within the elongate tubular body. As discussed in more detail herein, such NDGAWs may propagate, within the elongate tubular body, over a greater distance than dispersive acoustic waves, thereby permitting the communication networks, relay nodes, and methods disclosed herein to operate with fewer relay nodes and/or with greater spacing between relay nodes when compared to prior art wireless data transmission networks that do not utilize NDGAWs for communication among the relay nodes that may be associated therewith.
It is within the scope of the present disclosure that the inducing at 220 may include inducing any suitable first acoustic wave. As an example, the inducing at 220 may include inducing a first ultrasonic wave within the elongate tubular body. As another example the inducing at 220 may include inducing an acoustic wave with a frequency of at least 20 kilohertz (kHz), at least 30 kHz, at least 40 kHz, at least 50 kHz, at least 75 kHz, at least 100 kHz, at most 200 kHz, at most 175 kHz, at most 150 kHz, at most 125 kHz, or at most 100 kHz.
As discussed in more detail herein with reference to
Conveying the first acoustic wave at 230 may include conveying the first acoustic wave via, through, within, and/or utilizing the elongate tubular body. The conveying at 230 also may include conveying the first acoustic wave to a second relay node of the plurality of relay nodes, and the second relay node may be spaced apart from the first relay node along a longitudinal axis, an elongate axis, or a length of the elongate tubular body. Stated another way, a portion, or sub-region, of the elongate tubular body may extend between, or separate, the first relay node and the second relay node; however, neither the first relay node nor the second relay node is required to intersect, or be partially coextensive with, the longitudinal axis of the elongate tubular body.
It is within the scope of the present disclosure that the first acoustic wave may be conveyed between the first relay node and the second relay node primarily by, or within, the elongate tubular body. Stated another way, the conveying at 230 may consist essentially of conveying the first acoustic wave within, or via vibration of, the elongate tubular body, such as by generating a first vibration within the elongate tubular body. This may include generating the first vibration such that the first vibration propagates along, or parallel to, the longitudinal axis of the elongate tubular body and/or generating the first vibration such that the first vibration generates motion within the elongate tubular body and along an axis that is perpendicular to, or rotates around, the longitudinal axis of the elongate tubular body.
It is within the scope of the present disclosure that the conveying at 230 may include conveying the first acoustic wave over any suitable first conveyance distance, or first distance. As examples, the first distance may be at least 1 meter (m), at least 2 m, at least 5 m, at least 10 m, at least 15 m, at least 20 m, at least 25 m, at least 30 m, at least 40 m, at least 50 m, or at least 60 m.
Receiving the first acoustic wave at 240 may include receiving the first acoustic wave with a second electro-acoustic receiver of the second relay node. Examples of the second electro-acoustic receiver are disclosed herein. The receiving at 240 may include receiving at least a portion of the first NDGAW with the second electro-acoustic receiver. Additionally or alternatively, and as discussed herein with reference to
Inducing the second acoustic wave at 250 may include inducing the second acoustic wave within the elongate tubular body and/or with a second electro-acoustic transmitter of the second relay node. The second acoustic wave may consist essentially of a second NDGAW, and the inducing at 250 may be, or may be initiated, responsive to receipt of the first acoustic wave by the second electro-acoustic receiver of the second relay node.
It is within the scope of the present disclosure that the inducing at 250 may include inducing any suitable second acoustic wave. As an example, the inducing at 250 may include inducing a second ultrasonic wave within the elongate tubular body. As another example the inducing at 250 may include inducing a second acoustic wave with a frequency of at least 20 kilohertz (kHz), at least 30 kHz, at least 40 kHz, at least 50 kHz, at least 75 kHz, at least 100 kHz, at most 200 kHz, at most 175 kHz, at most 150 kHz, at most 125 kHz, or at most 100 kHz.
As discussed in more detail herein with reference to
Conveying the second acoustic wave at 260 may include conveying the second acoustic wave via, through, within, and/or utilizing the elongate tubular body. The conveying at 260 also may include conveying the second acoustic wave to a third relay node of the plurality of relay nodes, and the third relay node may be spaced apart from both the first relay node and the second relay node along the longitudinal axis of the elongate tubular body.
It is within the scope of the present disclosure that the second acoustic wave may be conveyed between the second relay node and the third relay node primarily by, or within, the elongate tubular body. Stated another way, the conveying at 260 may consist essentially of conveying the second acoustic wave within, or via vibration of, the elongate tubular body, such as by generating a second vibration within the elongate tubular body. This may include generating the second vibration such that the second vibration propagates along, or parallel to, the longitudinal axis of the elongate tubular body and/or generating the second vibration such that the second vibration generates motion within the elongate tubular body and along an axis that is perpendicular to, or rotates around, the longitudinal axis of the elongate tubular body.
It is within the scope of the present disclosure that the conveying at 260 may include conveying the second acoustic wave over any suitable second conveyance distance, or second distance. As examples, the second distance may be at least 1 meter (m), at least 2 m, at least 5 m, at least 10 m, at least 15 m, at least 20 m, at least 25 m, or at least 30 m.
Receiving the second acoustic wave at 270 may include receiving the second acoustic wave with a third electro-acoustic receiver of the third relay node. Examples of the third electro-acoustic receiver are disclosed herein. The receiving at 270 may include receiving at least a portion of the second NDGAW with the third electro-acoustic receiver. Additionally or alternatively, and as discussed herein with reference to
Repeating at least the portion of the methods at 280 may include repeating any suitable portion of methods 200 in any suitable manner. As an example, the plurality of relay nodes may include a number of relay nodes sufficient to transmit the data along a majority, or even an entirety, of a length of the elongate tubular body. Under these conditions, the repeating at 280 may include repeating at least the inducing at 220, the conveying at 230, and the receiving at 240 with one or more subsequent, or additional, relay nodes to convey the data along the majority, or even the entirety, of the length of the elongate tubular body.
The elongate tubular body may have and/or define any suitable length. As examples, the length of the elongate tubular body may be at least 1 meter, at least 50 meters, at least 100 meters, at least 250 meters, at least 500 meters, or at least 1000 meters.
The plurality of relay nodes may include any suitable number of relay nodes. As examples, the plurality of relay nodes may include at least 3, at least 5, at least 10, at least 20, at least 30, at least 40, or at least 50 relay nodes spaced apart along the length of the elongate tubular body.
In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently. It is also within the scope of the present disclosure that the blocks, or steps, may be implemented as logic, which also may be described as implementing the blocks, or steps, as logics. In some applications, the blocks, or steps, may represent expressions and/or actions to be performed by functionally equivalent circuits or other logic devices. The illustrated blocks may, but are not required to, represent executable instructions that cause a computer, processor, and/or other logic device to respond, to perform an action, to change states, to generate an output or display, and/or to make decisions.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.
In the event that any patents, patent applications, or other references are incorporated by reference herein and (1) define a term in a manner that is inconsistent with and/or (2) are otherwise inconsistent with, either the non-incorporated portion of the present disclosure or any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was present originally.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
As used herein, the phrase, “for example,” the phrase, “as an example,” and/or simply the term “example,” when used with reference to one or more components, features, details, structures, embodiments, and/or methods according to the present disclosure, are intended to convey that the described component, feature, detail, structure, embodiment, and/or method is an illustrative, non-exclusive example of components, features, details, structures, embodiments, and/or methods according to the present disclosure. Thus, the described component, feature, detail, structure, embodiment, and/or method is not intended to be limiting, required, or exclusive/exhaustive; and other components, features, details, structures, embodiments, and/or methods, including structurally and/or functionally similar and/or equivalent components, features, details, structures, embodiments, and/or methods, are also within the scope of the present disclosure.
The communication networks, relay nodes, and methods disclosed herein are applicable to the oil and gas industries.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/381,330 filed Aug. 30, 2016, entitled “Communication Networks, Relay Nodes for Communication Networks, and Methods of Transmitting Data Among a Plurality of Relay Nodes,” U.S. Provisional Application Ser. No. 62/381,335, filed Aug. 30, 2016 entitled “Zonal Isolation Devices Including Sensing and Wireless Telemetry and Methods of Utilizing the Same,” U.S. Provisional Application Ser. No. 62/428,367, filed Nov. 30, 2016, entitled “Dual Transducer Communications Node for Downhole Acoustic Wireless Networks and Method Employing Same,” U.S. Provisional Application Ser. No. 62/428,374, filed Nov. 30, 2016, entitled “Hybrid Downhole Acoustic Wireless Network,” U.S. Provisional Application Ser. No. 62/428,385, filed Nov. 30, 2016 entitled “Methods of Acoustically Communicating And Wells That Utilize The Methods,” U.S. Provisional Application Ser. No. 62/433,491, filed Dec. 13, 2016 entitled “Methods of Acoustically Communicating And Wells That Utilize The Methods,” and U.S. Provisional Application Ser. No. 62/428,425 filed Nov. 30, 2016, entitled “Acoustic Housing for Tubulars,” the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3103643 | Kalbfell | Sep 1963 | A |
3205477 | Kalbfell | Sep 1965 | A |
3512407 | Zill | May 1970 | A |
3543231 | Cubberly, Jr. | Nov 1970 | A |
3637010 | Malay et al. | Jan 1972 | A |
3741301 | Malay et al. | Jun 1973 | A |
3781783 | Tucker | Dec 1973 | A |
3790930 | Lamel | Feb 1974 | A |
3900827 | Lamel | Aug 1975 | A |
3906434 | Lamel | Sep 1975 | A |
4001773 | Lamel | Jan 1977 | A |
4283780 | Nardi | Aug 1981 | A |
4298970 | Shawhan et al. | Nov 1981 | A |
4302826 | Kent et al. | Nov 1981 | A |
4314365 | Peterson et al. | Feb 1982 | A |
4884071 | Howard | Nov 1989 | A |
4962489 | Medlin et al. | Oct 1990 | A |
5128901 | Drumheller | Jul 1992 | A |
5136613 | Dumestre, III | Aug 1992 | A |
5166908 | Montgomery | Nov 1992 | A |
5182946 | Boughner et al. | Feb 1993 | A |
5234055 | Cornette | Aug 1993 | A |
5283768 | Rorden | Feb 1994 | A |
5373481 | Orban et al. | Dec 1994 | A |
5468025 | Adinolfe et al. | Nov 1995 | A |
5480201 | Mercer | Jan 1996 | A |
5495230 | Lian | Feb 1996 | A |
5530358 | Wisler | Jun 1996 | A |
5562240 | Campbell | Oct 1996 | A |
5592438 | Rorden et al. | Jan 1997 | A |
5667650 | Face et al. | Sep 1997 | A |
5850369 | Rorden et al. | Dec 1998 | A |
5857146 | Kido | Jan 1999 | A |
5924499 | Birchak et al. | Jul 1999 | A |
5960883 | Tubel et al. | Oct 1999 | A |
5995449 | Green et al. | Nov 1999 | A |
6047602 | Lynnworth | Apr 2000 | A |
6049508 | Deflandre | Apr 2000 | A |
6125080 | Sonnenschein et al. | Sep 2000 | A |
6128250 | Reid et al. | Oct 2000 | A |
6177882 | Ringgenberg | Jan 2001 | B1 |
6236850 | Desai | May 2001 | B1 |
6239690 | Burbidge et al. | May 2001 | B1 |
6300743 | Patino et al. | Oct 2001 | B1 |
6320820 | Gardner | Nov 2001 | B1 |
6324904 | Ishikawa et al. | Dec 2001 | B1 |
6360769 | Brisco | Mar 2002 | B1 |
6394184 | Tolman et al. | May 2002 | B2 |
6400646 | Shah et al. | Jun 2002 | B1 |
6429784 | Beique et al. | Aug 2002 | B1 |
6462672 | Besson | Oct 2002 | B1 |
6543538 | Tolman et al. | Apr 2003 | B2 |
6670880 | Hall et al. | Dec 2003 | B1 |
6679332 | Vinegar et al. | Jan 2004 | B2 |
6695277 | Gallis | Feb 2004 | B1 |
6702019 | Dusterhoft et al. | Mar 2004 | B2 |
6717501 | Hall et al. | Apr 2004 | B2 |
6727827 | Edwards et al. | Apr 2004 | B1 |
6772837 | Dusterhoft et al. | Aug 2004 | B2 |
6816082 | Laborde | Nov 2004 | B1 |
6868037 | Dasgupta et al. | Mar 2005 | B2 |
6880634 | Gardner et al. | Apr 2005 | B2 |
6883608 | Parlar et al. | Apr 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
6909667 | Shah et al. | Jun 2005 | B2 |
6912177 | Smith | Jun 2005 | B2 |
6920085 | Finke et al. | Jul 2005 | B2 |
6930616 | Tang | Aug 2005 | B2 |
6940392 | Chan et al. | Sep 2005 | B2 |
6940420 | Jenkins | Sep 2005 | B2 |
6953094 | Ross et al. | Oct 2005 | B2 |
6956791 | Dopf et al. | Oct 2005 | B2 |
6980929 | Aronstam et al. | Dec 2005 | B2 |
6987463 | Beique et al. | Jan 2006 | B2 |
7006918 | Economides et al. | Feb 2006 | B2 |
7011157 | Costley et al. | Mar 2006 | B2 |
7036601 | Berg et al. | May 2006 | B2 |
7051812 | McKee et al. | May 2006 | B2 |
7064676 | Hall et al. | Jun 2006 | B2 |
7082993 | Ayoub et al. | Aug 2006 | B2 |
7090020 | Hill et al. | Aug 2006 | B2 |
7140434 | Chouzenoux et al. | Nov 2006 | B2 |
7219762 | James et al. | May 2007 | B2 |
7224288 | Hall et al. | May 2007 | B2 |
7228902 | Oppelt | Jun 2007 | B2 |
7249636 | Ohmer | Jul 2007 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7257050 | Stewart et al. | Aug 2007 | B2 |
7261154 | Hall et al. | Aug 2007 | B2 |
7261162 | Deans et al. | Aug 2007 | B2 |
7275597 | Hall et al. | Oct 2007 | B2 |
7277026 | Hall et al. | Oct 2007 | B2 |
RE40032 | van Bokhorst et al. | Jan 2008 | E |
7317990 | Sinha et al. | Jan 2008 | B2 |
7321788 | Addy et al. | Jan 2008 | B2 |
7322416 | Burris, II et al. | Jan 2008 | B2 |
7325605 | Fripp et al. | Feb 2008 | B2 |
7339494 | Shah et al. | Mar 2008 | B2 |
7348893 | Huang et al. | Mar 2008 | B2 |
7385523 | Thomeer et al. | Jun 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7411517 | Flanagan | Aug 2008 | B2 |
7423931 | Martin | Sep 2008 | B2 |
7477160 | Lemenager et al. | Jan 2009 | B2 |
7516792 | Lonnes et al. | Apr 2009 | B2 |
7551057 | King et al. | Jun 2009 | B2 |
7590029 | Tingley | Sep 2009 | B2 |
7595737 | Fink et al. | Sep 2009 | B2 |
7602668 | Liang et al. | Oct 2009 | B2 |
7649473 | Johnson et al. | Jan 2010 | B2 |
7750808 | Masino et al. | Jul 2010 | B2 |
7775279 | Marya et al. | Aug 2010 | B2 |
7787327 | Tang et al. | Aug 2010 | B2 |
7819188 | Auzerais et al. | Oct 2010 | B2 |
7828079 | Oothoudt | Nov 2010 | B2 |
7831283 | Ogushi et al. | Nov 2010 | B2 |
7884611 | Hall | Feb 2011 | B1 |
7913773 | Li et al. | Mar 2011 | B2 |
7952487 | Montebovi | May 2011 | B2 |
7994932 | Huang et al. | Aug 2011 | B2 |
8004421 | Clark | Aug 2011 | B2 |
8044821 | Mehta | Oct 2011 | B2 |
8049506 | Lazarev | Nov 2011 | B2 |
8115651 | Camwell et al. | Feb 2012 | B2 |
8117907 | Han et al. | Feb 2012 | B2 |
8157008 | Lilley | Apr 2012 | B2 |
8162050 | Roddy et al. | Apr 2012 | B2 |
8220542 | Whitsitt et al. | Jul 2012 | B2 |
8237585 | Zimmerman | Aug 2012 | B2 |
8242923 | Prammer | Aug 2012 | B2 |
8276674 | Lopez de Cardenas et al. | Oct 2012 | B2 |
8284075 | Fincher et al. | Oct 2012 | B2 |
8284947 | Giesbrecht et al. | Oct 2012 | B2 |
8316936 | Roddy et al. | Nov 2012 | B2 |
8330617 | Chen et al. | Dec 2012 | B2 |
8347982 | Hannegan et al. | Jan 2013 | B2 |
8358220 | Savage | Jan 2013 | B2 |
8376065 | Teodorescu et al. | Feb 2013 | B2 |
8381822 | Hales et al. | Feb 2013 | B2 |
8388899 | Mitani et al. | Mar 2013 | B2 |
8411530 | Slocum et al. | Apr 2013 | B2 |
8434354 | Crow et al. | May 2013 | B2 |
8494070 | Luo et al. | Jul 2013 | B2 |
8496055 | Mootoo et al. | Jul 2013 | B2 |
8539890 | Tripp et al. | Sep 2013 | B2 |
8544564 | Moore et al. | Oct 2013 | B2 |
8552597 | Song et al. | Oct 2013 | B2 |
8556302 | Dole | Oct 2013 | B2 |
8559272 | Wang | Oct 2013 | B2 |
8596359 | Grigsby et al. | Dec 2013 | B2 |
8605548 | Froelich | Dec 2013 | B2 |
8607864 | Mcleod et al. | Dec 2013 | B2 |
8664958 | Simon | Mar 2014 | B2 |
8672875 | Vanderveen et al. | Mar 2014 | B2 |
8675779 | Zeppetelle et al. | Mar 2014 | B2 |
8683859 | Godager | Apr 2014 | B2 |
8689621 | Godager | Apr 2014 | B2 |
8701480 | Eriksen | Apr 2014 | B2 |
8750789 | Baldemair et al. | Jun 2014 | B2 |
8787840 | Srinivasan et al. | Jul 2014 | B2 |
8805632 | Coman et al. | Aug 2014 | B2 |
8826980 | Neer | Sep 2014 | B2 |
8833469 | Purkis | Sep 2014 | B2 |
8893784 | Abad | Nov 2014 | B2 |
8910716 | Newton et al. | Dec 2014 | B2 |
8994550 | Millot et al. | Mar 2015 | B2 |
8995837 | Mizuguchi et al. | Mar 2015 | B2 |
9062508 | Huval et al. | Jun 2015 | B2 |
9062531 | Jones | Jun 2015 | B2 |
9075155 | Luscombe et al. | Jul 2015 | B2 |
9078055 | Nguyen et al. | Jul 2015 | B2 |
9091153 | Yang et al. | Jul 2015 | B2 |
9133705 | Angeles Boza | Sep 2015 | B2 |
9140097 | Themig et al. | Sep 2015 | B2 |
9144894 | Barnett et al. | Sep 2015 | B2 |
9206645 | Hallundbaek | Dec 2015 | B2 |
9279301 | Lovorn et al. | Mar 2016 | B2 |
9284819 | Tolman et al. | Mar 2016 | B2 |
9284834 | Alteirac et al. | Mar 2016 | B2 |
9310510 | Godager | Apr 2016 | B2 |
9333350 | Rise et al. | May 2016 | B2 |
9334696 | Hay | May 2016 | B2 |
9359841 | Hall | Jun 2016 | B2 |
9363605 | Goodman et al. | Jun 2016 | B2 |
9376908 | Ludwig et al. | Jun 2016 | B2 |
9441470 | Guerrero et al. | Sep 2016 | B2 |
9515748 | Jeong et al. | Dec 2016 | B2 |
9557434 | Keller et al. | Jan 2017 | B2 |
9617829 | Dale et al. | Apr 2017 | B2 |
9617850 | Fripp | Apr 2017 | B2 |
9631485 | Keller et al. | Apr 2017 | B2 |
9657564 | Stolpman | May 2017 | B2 |
9664037 | Logan et al. | May 2017 | B2 |
9670773 | Croux | Jun 2017 | B2 |
9683434 | Machocki | Jun 2017 | B2 |
9686021 | Merino | Jun 2017 | B2 |
9715031 | Contant et al. | Jul 2017 | B2 |
9721448 | Wu et al. | Aug 2017 | B2 |
9759062 | Deffenbaugh | Sep 2017 | B2 |
9816373 | Howell | Nov 2017 | B2 |
9822634 | Gao | Nov 2017 | B2 |
9863222 | Morrow et al. | Jan 2018 | B2 |
9879525 | Morrow | Jan 2018 | B2 |
9945204 | Ross et al. | Apr 2018 | B2 |
9963955 | Tolman et al. | May 2018 | B2 |
10100635 | Keller et al. | Oct 2018 | B2 |
10103846 | van Zelm et al. | Oct 2018 | B2 |
10132149 | Morrow et al. | Nov 2018 | B2 |
10145228 | Yarus et al. | Dec 2018 | B2 |
10167716 | Clawson et al. | Jan 2019 | B2 |
10167717 | Deffenbaugh et al. | Jan 2019 | B2 |
10190410 | Clawson et al. | Jan 2019 | B2 |
10196862 | Li-Leger et al. | Feb 2019 | B2 |
10771326 | Zhang | Sep 2020 | B2 |
20020180613 | Shi et al. | Dec 2002 | A1 |
20030056953 | Tumlin et al. | Mar 2003 | A1 |
20030117896 | Sakuma et al. | Jun 2003 | A1 |
20040020063 | Lewis et al. | Feb 2004 | A1 |
20040200613 | Fripp et al. | Oct 2004 | A1 |
20040239521 | Zierolf | Dec 2004 | A1 |
20050024232 | Gardner | Feb 2005 | A1 |
20050269083 | Burris et al. | Dec 2005 | A1 |
20050284659 | Hall et al. | Dec 2005 | A1 |
20060002232 | Shah | Jan 2006 | A1 |
20060033638 | Hall et al. | Feb 2006 | A1 |
20060041795 | Gabelmann et al. | Feb 2006 | A1 |
20060090893 | Sheffield | May 2006 | A1 |
20070139217 | Beique et al. | Jun 2007 | A1 |
20070146351 | Katsurahira et al. | Jun 2007 | A1 |
20070156359 | Varsamis | Jul 2007 | A1 |
20070219758 | Bloomfield | Sep 2007 | A1 |
20070272411 | Lopez de Cardenas et al. | Nov 2007 | A1 |
20080030365 | Fripp et al. | Feb 2008 | A1 |
20080058597 | Arneson | Mar 2008 | A1 |
20080110644 | Howell et al. | May 2008 | A1 |
20080185144 | Lovell | Aug 2008 | A1 |
20080265892 | Snyder | Oct 2008 | A1 |
20080304360 | Mozer | Dec 2008 | A1 |
20080312839 | Mathiszik | Dec 2008 | A1 |
20090003133 | Dalton et al. | Jan 2009 | A1 |
20090030614 | Carnegie et al. | Jan 2009 | A1 |
20090034368 | Johnson | Feb 2009 | A1 |
20090045974 | Patel | Feb 2009 | A1 |
20090080291 | Tubel et al. | Mar 2009 | A1 |
20090084176 | Hassan | Apr 2009 | A1 |
20090139337 | Owens | Jun 2009 | A1 |
20090166031 | Hernandez | Jul 2009 | A1 |
20100013663 | Cavender et al. | Jan 2010 | A1 |
20100089341 | Rioufol et al. | Apr 2010 | A1 |
20100333004 | Burleson et al. | Jun 2010 | A1 |
20100182161 | Robbins | Jul 2010 | A1 |
20100212891 | Stewart et al. | Aug 2010 | A1 |
20110061862 | Loretz et al. | Mar 2011 | A1 |
20110066378 | Lerche et al. | Mar 2011 | A1 |
20110168403 | Patel | Jul 2011 | A1 |
20110188345 | Wang | Aug 2011 | A1 |
20110280102 | Wang | Nov 2011 | A1 |
20110297376 | Holderman et al. | Dec 2011 | A1 |
20110297673 | Zbat et al. | Dec 2011 | A1 |
20110301439 | Albert et al. | Dec 2011 | A1 |
20110315377 | Rioufol | Dec 2011 | A1 |
20120043079 | Wassouf et al. | Feb 2012 | A1 |
20120069708 | Swett | Mar 2012 | A1 |
20120126992 | Rodney | May 2012 | A1 |
20120135692 | Feri | May 2012 | A1 |
20120147921 | Conti | Jun 2012 | A1 |
20120152562 | Newton et al. | Jun 2012 | A1 |
20120179377 | Lie | Jul 2012 | A1 |
20120211650 | Jones | Aug 2012 | A1 |
20130000981 | Grimmer et al. | Jan 2013 | A1 |
20130003503 | L'Her et al. | Jan 2013 | A1 |
20130106615 | Prammer | May 2013 | A1 |
20130138254 | Seals et al. | May 2013 | A1 |
20130192823 | Barrilleaux et al. | Aug 2013 | A1 |
20130248172 | Angeles Boza et al. | Sep 2013 | A1 |
20130278432 | Shashoua | Oct 2013 | A1 |
20130319102 | Riggenberg et al. | Dec 2013 | A1 |
20140060840 | Hartshorne et al. | Mar 2014 | A1 |
20140062715 | Clark | Mar 2014 | A1 |
20140102708 | Purkis et al. | Apr 2014 | A1 |
20140133276 | Volker et al. | May 2014 | A1 |
20140152659 | Davidson et al. | Jun 2014 | A1 |
20140153368 | Bar-Cohen | Jun 2014 | A1 |
20140166266 | Read | Jun 2014 | A1 |
20140170025 | Weiner | Jun 2014 | A1 |
20140266769 | van Zelm | Sep 2014 | A1 |
20140278193 | Breon | Sep 2014 | A1 |
20140327552 | Filas et al. | Nov 2014 | A1 |
20140352955 | Tubel et al. | Dec 2014 | A1 |
20150003202 | Palmer et al. | Jan 2015 | A1 |
20150009040 | Bowles | Jan 2015 | A1 |
20150015413 | Gao | Jan 2015 | A1 |
20150027687 | Tubel | Jan 2015 | A1 |
20150041124 | Rodriguez | Feb 2015 | A1 |
20150041337 | Rodriguez | Feb 2015 | A1 |
20150077265 | Gao | Mar 2015 | A1 |
20150152727 | Fripp et al. | Jun 2015 | A1 |
20150159481 | Mebarkia et al. | Jun 2015 | A1 |
20150167425 | Hammer et al. | Jun 2015 | A1 |
20150176370 | Greening et al. | Jun 2015 | A1 |
20150285066 | Keller | Oct 2015 | A1 |
20150292319 | Disko | Oct 2015 | A1 |
20150292320 | Lynk et al. | Oct 2015 | A1 |
20150300159 | Stiles et al. | Oct 2015 | A1 |
20150330200 | Richard et al. | Nov 2015 | A1 |
20150337642 | Spacek | Nov 2015 | A1 |
20150354351 | Morrow | Dec 2015 | A1 |
20150377016 | Ahmad | Dec 2015 | A1 |
20160010446 | Logan et al. | Jan 2016 | A1 |
20160033664 | Cheng | Feb 2016 | A1 |
20160047230 | Livescu et al. | Feb 2016 | A1 |
20160047233 | Butner et al. | Feb 2016 | A1 |
20160047238 | Zeroug | Feb 2016 | A1 |
20160076363 | Morrow et al. | Mar 2016 | A1 |
20160090834 | Morrow et al. | Mar 2016 | A1 |
20160109606 | Market | Apr 2016 | A1 |
20160208604 | Cao | Jul 2016 | A1 |
20160208605 | Morrow | Jul 2016 | A1 |
20160215612 | Morrow | Jul 2016 | A1 |
20170138185 | Saed | May 2017 | A1 |
20170145811 | Robison et al. | May 2017 | A1 |
20170152741 | Park et al. | Jun 2017 | A1 |
20170167249 | Lee et al. | Jun 2017 | A1 |
20170204719 | Babakhani | Jul 2017 | A1 |
20170254183 | Vasques | Sep 2017 | A1 |
20170293044 | Gilstrap et al. | Oct 2017 | A1 |
20170314386 | Orban | Nov 2017 | A1 |
20180003843 | Hori | Jan 2018 | A1 |
20180010449 | Roberson et al. | Jan 2018 | A1 |
20180058191 | Romer et al. | Mar 2018 | A1 |
20180058198 | Ertas et al. | Mar 2018 | A1 |
20180058202 | Disko | Mar 2018 | A1 |
20180058203 | Clawson et al. | Mar 2018 | A1 |
20180058204 | Clawson et al. | Mar 2018 | A1 |
20180058205 | Clawson | Mar 2018 | A1 |
20180058206 | Zhang et al. | Mar 2018 | A1 |
20180058207 | Song | Mar 2018 | A1 |
20180058208 | Song et al. | Mar 2018 | A1 |
20180058209 | Song | Mar 2018 | A1 |
20180066490 | Kjos | Mar 2018 | A1 |
20180066510 | Walker et al. | Mar 2018 | A1 |
20180347345 | Dighe | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
102733799 | Jun 2014 | CN |
0636763 | Feb 1995 | EP |
1467060 | Oct 2004 | EP |
1409839 | Apr 2005 | EP |
2677698 | Dec 2013 | EP |
2236782 | Apr 1991 | GB |
WO2002027139 | Apr 2002 | WO |
WO2010074766 | Jul 2010 | WO |
WO2013079928 | Jun 2013 | WO |
WO 2013079928 | Jun 2013 | WO |
WO 2013112273 | Aug 2013 | WO |
WO2014018010 | Jan 2014 | WO |
WO 2014018010 | Jan 2014 | WO |
WO2014049360 | Apr 2014 | WO |
WO 2014049360 | Apr 2014 | WO |
WO 2014100264 | Jun 2014 | WO |
WO2014100271 | Jun 2014 | WO |
WO 2014100271 | Jun 2014 | WO |
WO 2014100276 | Jun 2014 | WO |
WO2014134741 | Sep 2014 | WO |
WO 2014134741 | Sep 2014 | WO |
WO2015117060 | Aug 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/666,334, filed Aug. 1, 2017, Walker, Katie M. et al. |
U.S. Appl. No. 16/139,373, filed Sep. 24, 2018, Yi, Xiaohua et al. |
U.S. Appl. No. 16/139,384, filed Oct. 13, 2017, Disko, Mark M. et al. |
U.S. Appl. No. 16/139,394, filed Oct. 13, 2017, Song, Limin et al. |
U.S. Appl. No. 16/139,403, filed Oct. 13, 2017, Song, Limin et al. |
U.S. Appl. No. 16/139,414, filed Oct. 13, 2017, Zhang, Yibing et al. |
U.S. Appl. No. 16/139,421, filed Oct. 13, 2017, Song, Limin et al. |
U.S. Appl. No. 16/139,427, filed Oct. 13, 2017, Disko, Mark M. et al. |
U.S. Appl. No. 16/175,418, filed Oct. 30, 2018, Kent, David K. et al. |
U.S. Appl. No. 62/588,067, filed Nov. 17, 2017, Song, Limin et al. |
U.S. Appl. No. 62/588,080, filed Nov. 17, 2017, Kinn, Timothy F. et al. |
U.S. Appl. No. 62/588,103, filed Nov. 17, 2017, Yi, Xiaohua et al. |
Arroyo, Javier et al. (2009) “Forecasting Histogram Time Series with K-Nearest Neighbours Methods,” International Journal of Forecasting, v.25, pp. 192-207. |
Arroyo, Javier et al. (2011) “Smoothing Methods for Histogram-Valued Time Seriers: An Application to Value-at-Risk,” Univ. of California, Dept. of Economics, www.wileyonlinelibrary.com, Mar. 8, 2011, 28 pages. |
Arroyo, Javier et al. (2011) “Forecasting with Interval and Histogram Data Some Financial Applications,” Univ. of California, Dept. of Economics, 46 pages. |
Emerson Process Management (2011), “Roxar downhole Wireless PT sensor system,” www.roxar.com, or downhole@roxar.com, 2 pgs. |
Gonzalez-Rivera, Gloria et al. (2012) “Time Series Modeling of Histogram-Valued Data: The Daily Histogram Time Series of S&P500 Intradaily Returns,” International Journal of Forecasting, v.28, 36 pgs. |
Gutierrez-Estevez, M. A. et al. (2013) “Acoustic Boardband Communications Over Deep Drill Strings using Adaptive OFDM”, IEEE Wireless Comm. & Networking Conf., pp. 4089-4094. |
Qu, X. et al. (2011) “Reconstruction fo Self-Sparse 20 NMR Spectra From undersampled Data In The Indirect Dimension”, pp. 8888-8909. |
U.S. Department of Defense (1999) “Interoperability and Performance Standards for Medium and High Frequency Radio Systems,” MIL-STD-188-141B, Mar. 1, 1999, 584 pages. |
Number | Date | Country | |
---|---|---|---|
20180058206 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62381330 | Aug 2016 | US | |
62381335 | Aug 2016 | US | |
62428367 | Nov 2016 | US | |
62428374 | Nov 2016 | US | |
62428385 | Nov 2016 | US | |
62433491 | Dec 2016 | US | |
62428425 | Nov 2016 | US |