The field of the invention relates generally to communication or signaling systems that can include devices that leverage various principles including how thermal or electro-magnetic energy radiation is a function of surface area. In particular, exemplary embodiments are provided that includes various functions including systems or processes to manipulate surface area to increase or decrease an amount of thermal energy transfer which can be sensed remotely.
Various embodiments of the current invention may be applicable to several commercial applications where infrared fluence is of benefit such as the following: aircraft avoidance, personnel search and rescue in maritime, arboreal, and mountainous regions, and automobile collision avoidance. Various embodiments of the invention can include designs which enable substantial reduction of power use, e.g., in thermal applications, as well as providing a capacity to modulate emission or absorption in a variety of ways which provide significant advantages over the prior art.
Existing technology utilizes activated solid structures or excited fluids to alter the state of the source to achieve imaging, illumination or absorption. Additionally, plasmas can also be used as a source but are energy inefficient for this application.
Embodiments of this disclosure improve over existing solutions or technology by utilizing a modulated or controlled pressure driven flow of a fluid to alter surface area conditions to create a system for creating a communication or signaling system. Different embodiments of this disclosure may allow for other advantages over current technology such as enhancing sensing abilities over a greater range than typical visualization allows, developing low cost sensing equipment, creating a smaller form factor over conventional technology, permitting a high emissivity versus device two dimensional projection of three-dimensions (3D) volume, allowing for flexible design capabilities (i.e., sweeping specific spectral ranges), and creating a manual emissivity by user in case of power failure power were to fail, and the capability for modular/plug and play.
Methods as well as exemplary energy emission systems are provided that can include a control system, a fluid reservoir, fluid transfer structures, a fluid pumping system, a fluid emission structure, an enclosure extending away from the fluid emission structure, a fluid recovery system, and a lens structure adapted to pass energy through the lens structure. The exemplary fluid emission structure can include a porous structure and/or structure(s) with a number of fluid emission sections that generate one or more fluid structures such as droplets or other fluid shapes which increase or decrease fluid surface area on the fluid emission structure and thereby increase or decrease energy emissions or absorption on or in relation to the fluid emission structure. The exemplary control system can include modulation control instructions or control sections which selectively modulate pressure generated by the fluid pumping system into the fluid transfer structures. Exemplary fluid transfer structures pass fluid to the fluid emission structure.
The detailed description of the drawings particularly refers to the accompanying figures in which:
Embodiments of the disclosure described herein are not intended to be exhaustive or to limit the disclosure to precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the disclosure.
Generally, one or more embodiments of the invention may be provided in a beacon or energy, e.g., thermal, emission source. An exemplary device may modify or adjust an apparent rate of energy exchange or emission by adjusting or altering surface area of a fluid with a given temperature via the use of droplet sprays or emission of the fluid from a surface or nozzle(s), etc which is a part of the beacon or energy emission source. In at least some embodiments, porous media or nozzle structures within the exemplary apparatus may be used in combination with a variety of pressure drop methods to alter flows through a droplet creation device which changes surface area of the fluid when it expands/erupts from a surface of a structure into an emittance space within the beacon or energy emission source (e.g., a space between a surface or media that exudes droplets or fluid and a lens structure).
Exemplary droplet sprays can include fluid flows that begin as a jet or slug of liquid and are expanded or erupted into a relatively smaller localized mass flow in which the density is greatly decreased. A porous media structure may any structure through which either deterministic or non-deterministic fluid flow occurs from one region of a structure at high pressure and which erupts into droplets from a different region experiencing lower pressure. A deterministic flow can include a flow path of known entry and exit points predetermined by the geometry. Deterministic flow paths examples can be analogous to simple tubes/pipes. An exemplary non-deterministic flow ca be brought about by chaotically transferring a fluid through a variety of or any combination of paths between entry and exit points. Nozzle based structures can be based upon a device having a variable cross-sectional area through which a fluid undergoes a pressure drop to create droplets or droplet spray.
Exemplary pressure drop methods can utilize high pressures at entrance points and expand into an unbound region at the exit point. Exemplary droplet creation devices may be further expanded to refer to any, all of, or a combination of the porous media, nozzle, and alternate methods. A perceived or exemplary surface area of the exemplary fluid can include an observable volumetric space occupied by droplets in an exemplary emittance space upon expansion from a surface of an exemplary droplet creation device.
Exemplary expansion, as described in relation to at least one embodiment, can refer to a decrease in fluid density by a device that has increasing cross sectional area through the flow path into the emittance space. Eruption can be defined as an ejection of droplets from a fine structure, such as a porous media, mesh, screen, etc. in which the flow is pressurized at the plenum or inlet(s) of the media, mesh, screen, etc, and a lower pressure volume at the exit or the emittance space. An emittance space defined by a space between a lens and an emissive surface from an exemplary porous media can be maintained at a lower relative pressure volume where inlet and outlet liquid mass is controlled such that droplets or droplet spray(s) are periodically modulated to expand or erupt into a volume where apparent emissivity is optimized.
An exemplary surface area can be significant to an emissive surface. An exemplary perceived surface area can be created by the formation and removal of the localized fluid droplets creates an emittance. By designing a controllable, continuously altering perceived surface area state, an exemplary device provides a variety of novel functions or capabilities.
Referring to
Referring to
Some embodiments may have a hydrophobic substance, e.g., wax, applied to surface areas surrounding pores in the emissive surface 102 which then adds to the emissive surface 102 ability to form beads or droplets and retain them in place without having the beads or droplets flow away from the pores in the emissive surface 102.
In some embodiments, the emissive surface 102 may include a drainage or fluid recovery system. The drainage or fluid recovery system may include at least one aperture (not shown) configured to collect fluid generated from the emissive surface 102. The drainage or recovery system may divert the fluid to prevent pooling of emitted liquid on the emissive surface 102. The porous media 103 may direct the fluid within the device by altering the pressure through a variety of pressure drop methods, which may include but are not limited to, nozzles, frictional forces, valves, diffuser or the like. Porous media 103 may include predetermined flow paths for the liquid such that structure enhancing thermal exchange, fluid mixing, droplet size, surface wettability, and fundamental emissivity may be easily manipulated.
Inlet and outlet valves 104A, 104B may regulate the flow of fluid into and out of the porous media 103. The valves 104A, 104B may be configured to accurately or selectively manipulate flow of fluid through the emitter by selectively increasing or decreasing fluid pressure which in turn causes fluid to exude from pores in the emissive surface 102. In an exemplary embodiment, an outlet valve 104B may be in fluid communication with the drainage or recovery system so that excess fluid may be returned from the emissive surface 102. One possible design approach of forcing fluid flow through the porous media 103 can include use of pressurization at an inlet valve 104A and relieving pressure at the outlet valve 104B. This pressurization may alter fluid flow throughout the emitter or a part of the emitter. Pressurization can also be controlled or altered to create variable, unnatural excited states in the fluid that are at the same time controllable. The exemplary fluid flow field can culminate at a surface top 101 creating an emissive source modulation event. Exemplary fluid mass flow may also be controlled to generate localized unsteady flow field that results in a varied fluid surface area in the droplets. This variable fluid surface at the emissive surface can create altered states that allow for imaging, illumination, and/or absorption that allows for relative ease in state changes and provides an efficient emissive source.
In some embodiments, valves (e.g., 104A, 104B) may be controlled by a controller operated by a user. The controller may configure the position of the values so as to generate a desired pressure in the porous volume emitter. Valves 104, 104 may also determine or produce pressure gradients, and adjust flow and amount of fluid in the porous media 103 with or without additional pressure modulation from pump.
A fluid modulation device 105 may be designed or configured to selectively move fluid through the porous volume emitter in at least some embodiments. The fluid modulation device 105 may be a pump, a compressor or any suitable device configured to modulate pressure in a fluid system that includes a porous media. In some embodiments a fluid reservoir 106 may store, collect, transfer, thermally regulate, and/or filter the fluid in the porous volume emitter. In one exemplary embodiment, the fluid modulation device 105 may also include a vibration and a pressure inducing mechanism. Fluid reservoir 106 may be connected to inlet and outlet valves 104A, 104B in some embodiments. In some embodiments, fluid modulation device 105 may act in communication with input valve 104A and output valve 104B to oscillate pressure in the exemplary porous volume emitter system. The fluid modulation device 105 may oscillate pressure from a higher pressure to a lower pressure or may reverse the direction of fluid via positive or negative pressure, pushing fluid through the porous media 103 and then sucking it back toward the fluid modulation device 105.
The exemplary fluid modulation device 105 may regulate the pressure of the fluid in the porous volume emitter to keep the fluid on the emissive surface 102. In some embodiments, the fluid modulation device 105 may be held at a steady pressure or reverse the direction of the pressure after enough fluid has traveled through the porous volume emitter so that the fluid may form beads on the emissive surface 102, rather than flow out of the emissive surface 102. In other embodiments, the fluid modulation device 105 may increase pressure in the porous volume emitter so that the fluid spews or selectively sprays out of the emissive surface 102 to generate different surface area or spray patterns.
In some embodiments, a porous volume emitter may be used as an apparent thermal source. Such a source could generate or produce different states to allow for imaging, illumination, and/or absorption. These exemplary different states can be achieved by altering a fundamental aspect to the basic physics of the energy relationship, such as changing the pressure, or, on a given emissive surface area. The exemplary porous volume emitter may alter surface area of exemplary fluid(s), and thus energy radiation, by pressure changes as the fluid is force through the porous media 103 and formed into droplets or fluid flows or bodies which emit from emissive surface 102. The exemplary fluid temperature may not significantly change within the porous media 103 but, in some embodiments, may appear to have different temperature states when changing the emissivity to increased or decreased fluid surface area. An exemplary porous volume emitter may greatly improve the quality and speed at which the source can allow for visualization by increasing differences in fluid surface area states or speed at which the different states can be achieved through manipulation of fluid or emissive surface area by forcing the fluid through predetermined paths of the porous media 103. Exemplary alternative embodiments may have a plurality of selectively and independently controlled fluid paths or conduits (not shown) to the emissive surface which can generate individually controlled fluid emissions which each produce different emission patterns.
Referring to
Various alternative embodiments of the invention may also include an external excitation instrument (not shown) which may include, but, is not limited to, a microwave, a radio frequency emitter, or optical wave machine or the like which is oriented towards droplets or fluid. External excitation instrument may cause agitation of the particles in the fluid in various flow fields. An alternate embodiment of the porous volume emitter may also include a pressurized tank 109 connected to the porous media 103 so that fluid may be distributed evenly upon entering the fluid paths or conduits of the porous media 103. The exemplary pump 105 may move fluid into the pressurized tank 109 until it reaches a predetermined pressure where the fluid will then move through the porous media 103 to the emissive surface 102.
An alternative embodiment can add a recovery reservoir (not shown) with an additional valve(s) coupling the recovery reservoir with various portions of a given embodiment the which selectively can recover fluid from different sections of an embodiment. For example, an embodiment can include a fluid conduit that couple a separate recovery reservoir with an emissive space between a lens and a surface of the porous media facing the lens. An embodiment can include a variant which returns recovered fluid to pressurized tank 109 via connection to a pump or back to an unpressurized reservoir which is coupled with pump
In some embodiments, a plurality of input valves 104 may be used to control the amount of fluid delivered to the porous media 103 or pressurized tank 109 from the pump 105. The plurality of input valves 104 can provide selective fluid communication between the pump 105, the fluid reservoir 106, the pressurized tank 109, and/or the porous media 103.
Alternative embodiments can include designs where pump and reservoir structures are provided in alternative configurations. For example, a pump may be disposed between or adjacent porous media 103 and reservoir 106 such that the pump can move fluid into or out of the porous media 103. In this embodiment, the pump draws fluid from the reservoir 106 and pumps 105 it into the porous media 103 when moving fluid into the porous media 103 in order to exude or extend fluid from the porous media's 103 pores and thereby increase surface area on the porous media's 103 surface and thereby alter infrared emissive or absorptive profiles of an emissive surface 102 of the porous media 103 with respect to an observer.
Referring to
Referring to
Exemplary pressure modulation of fluid emitted into the exemplary emittance space can be designed and controlled to achieve optimized surface areas by the pressure. Exemplary optimized pressure(s) can be designed based upon expansion method, fluid material, maximum pressure, and/or porous media 103 of the emittance space.
Methods of operation can include providing an exemplary embodiment of the invention, determining a pattern of modulation to generate emissions or absorption patterns from a fluid, then modulating pressure flow(s) of one or more fluid paths into a fluid emission structure based on the pattern of modulation by selectively controlling fluid pumping system(s) to generate fluid flows from the fluid emission structure.
In particular, referring to
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/583,450, filed on Nov. 8, 2017, entitled “VARIABLE PRESSURE ACTIVATED POROUS VOLUME EMITTER”, the disclosure of which is expressly incorporated herein by reference.
The invention described herein was made in the performance of official duties by employees of the Department of the Navy and may be manufactured, used and licensed by or for the United States Government for any governmental purpose without payment of any royalties thereon. This invention (Navy Case 200,508 and 200,007) is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Technology Transfer Office, Naval Surface Warfare Center Crane, email: Cran_CTO@navy.mil.
Number | Date | Country | |
---|---|---|---|
62583450 | Nov 2017 | US |