Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network

Information

  • Patent Grant
  • 8564400
  • Patent Number
    8,564,400
  • Date Filed
    Wednesday, October 21, 2009
    15 years ago
  • Date Issued
    Tuesday, October 22, 2013
    11 years ago
Abstract
The disclosure provides an HVAC data processing and communication network and a method of manufacturing the same. In an embodiment, the network includes a user interface and a system device. The user interface is configured to publish a privilege request message to a data bus. The system device is configured to receive messages via the data bus and to store configuration data in nonvolatile memory. The system device is further configured to enable a privileged operating mode not normally available to a user of the network in response to the privilege request message.
Description
TECHNICAL FIELD

This application is directed, in general, to HVAC networks and, more specifically, to systems and methods for logical manipulation of system features.


BACKGROUND

Climate control systems, also referred to as HVAC systems (the two terms will be used herein interchangeably), are employed to regulate the temperature, humidity and air quality of premises, such as a residence, office, store, warehouse, vehicle, trailer, or commercial or entertainment venue. The most basic climate control systems either move air (typically by means of an air handler having a fan or blower), heat air (typically by means of a furnace) or cool air (typically by means of a compressor-driven refrigerant loop). A thermostat is typically included in a conventional climate control system to provide some level of automatic temperature and humidity control. In its simplest form, a thermostat turns the climate control system on or off as a function of a detected temperature. In a more complex form, the thermostat may take other factors, such as humidity or time, into consideration. Still, however, the operation of a thermostat remains turning the climate control system on or off in an attempt to maintain the temperature of the premises as close as possible to a desired set point temperature. Climate control systems as described above have been in wide use since the middle of the twentieth century and have, to date, generally provided adequate temperature management.


SUMMARY

One aspect provides an HVAC data processing and communication network. In an embodiment, the network includes a user interface and a system device. The user interface is configured to publish a privilege request message to a data bus. The system device is configured to receive messages via the data bus and to store configuration data in nonvolatile memory. The system device is further configured to enable a privileged operating mode not normally available to a user of the network in response to the privilege request message.


Another aspect provides a method of manufacturing a device networkable in an HVAC data processing and communication network. In an embodiment, the method includes configuring a physical layer interface to interface to a network. A communication module is configured to send and receive messages over the network via the physical layer interface. A non-volatile memory is configured to store configuration data. A functional block is configured to respond to a privilege request message received by the communication module thereby enabling a privileged operating mode not normally available to a user of the network.


Yet another aspect provides a system device of an HVAC data processing and communication network. In an embodiment, the system device includes a physical layer interface and a communication module. The physical layer interface is configured to interface to the network. The communication module is configured to send and receive messages over the network via the physical layer interface. The system device also includes a non-volatile memory and a functional block. The non-volatile memory is configured to store configuration data. The functional block is adapted to respond to a privilege request message received by the communication module thereby enabling a privileged operating mode not normally available to a user of the network.





BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a high-level block diagram of an HVAC system according to various embodiments of the disclosure;



FIG. 2 is an embodiment of the disclosure of a network layer associated with the HVAC system;



FIG. 3 is a block diagram of a local controller of the disclosure;



FIG. 4 is a block diagram of a system device of the disclosure;



FIG. 5 illustrates an example grouping of devices on an RSBus subnet;



FIG. 6A is an embodiment of an HVAC data processing and communication network having two subnets;



FIG. 6B illustrates an embodiment of selectively isolating subnets;



FIG. 7 illustrates field definitions of an example message frame of the disclosure;



FIG. 8 illustrates an error frame of the disclosure;



FIG. 9 illustrates an embodiment of a Class 1 message format of the disclosure;



FIG. 10A illustrates an embodiment of a Class 3 device status message format of the disclosure;



FIG. 10B illustrates an embodiment of a Class 3 alarm message format of the disclosure;



FIG. 11 illustrates an embodiment of a Class 5 subnet controller message format of the disclosure;



FIG. 12 is a method of the disclosure illustrating startup of a local controller;


FIGS. 13A and 13B-1 to 13B-5 are methods of the disclosure illustrating startup of a subnet controller;



FIGS. 13C-1
a to 13C-1f and 13C-2 to 13C-5 are example embodiments of states of a state machine implementing a method of starting up a subnet controller;



FIG. 14 is a method of the disclosure illustrating an algorithm that may be employed by a subnet controller to assign Equipment Type to a device;



FIG. 15 is a method of the disclosure of conducting a dialog between a subnet controller and a demand unit according to the disclosure; and



FIGS. 16-24 illustrate various methods of the disclosure.





DETAILED DESCRIPTION

As stated above, conventional climate control systems have been in wide use since the middle of the twentieth century and have, to date, generally provided adequate temperature management. However, it has been realized that more sophisticated control and data acquisition and processing techniques may be developed and employed to improve the installation, operation and maintenance of climate control systems.


Described herein are various embodiments of an improved climate control, or HVAC, system in which at least multiple components thereof communicate with one another via a data bus. The communication allows identity, capability, status and operational data to be shared among the components. In some embodiments, the communication also allows commands to be given. As a result, the climate control system may be more flexible in terms of the number of different premises in which it may be installed, may be easier for an installer to install and configure, may be easier for a user to operate, may provide superior temperature and/or relative humidity (RH) control, may be more energy efficient, may be easier to diagnose, may require fewer, simpler repairs and may have a longer service life.



FIG. 1 is a high-level block diagram of a networked HVAC system, generally designated 100. The HVAC system 100 may be referred to herein simply as “system 100” for brevity. In one embodiment, the system 100 is configured to provide ventilation and therefore includes one or more air handlers 110. In an alternative embodiment, the ventilation includes one or more dampers 115 to control air flow through air ducts (not shown.) Such control may be used in various embodiments in which the system 100 is a zoned system. In an alternative embodiment, the system 100 is configured to provide heating and therefore includes one or more furnaces 120, typically associated with the one or more air handlers 110. In an alternative embodiment, the system 100 is configured to provide cooling and therefore includes one or more refrigerant evaporator coils 130, typically associated with the one or more air handlers 110. Such embodiment of the system 100 also includes one or more compressors 140 and associated condenser coils 142, which are typically associated with one or more so-called “outdoor units” 144. The one or more compressors 140 and associated condenser coils 142 are typically connected to an associated evaporator coil 130 by a refrigerant line 146. In an alternative embodiment, the system 100 is configured to provide ventilation, heating and cooling, in which case the one or more air handlers 110, furnaces 120 and evaporator coils 130 are associated with one or more “indoor units” 148, e.g., basement or attic units that may also include an air handler.


For convenience in the following discussion, a demand unit 155 is representative of the various units exemplified by the air handler 110, furnace 120, and compressor 140, and more generally includes an HVAC component that provides a service in response to control by the control unit 150. The service may be, e.g., heating, cooling, humidification, dehumidification, or air circulation. A demand unit 155 may provide more than one service, and if so, one service may be a primary service, and another service may be an ancillary service. For example, for a heating unit that also circulates air, the primary service may be heating, and the ancillary service may be air circulation (e.g. by a blower).


The demand unit 155 may have a maximum service capacity associated therewith. For example, the furnace 120 may have a maximum heat output (often expressed in terms of British Thermal Units (BTU) or Joules), or a blower may have a maximum airflow capacity (often expressed in terms of cubic feet per minute (CFM) or cubic meters per minute (CMM)). In some cases, the demand unit 155 may be configured to provide a primary or ancillary service in staged portions. For example, blower may have two or more motor speeds, with a CFM value associated with each motor speed.


One or more control units 150 control one or more of the one or more air handlers 110, the one or more furnaces 120 and/or the one or more compressors 140 to regulate the temperature of the premises, at least approximately. In various embodiments to be described, the one or more displays 170 provide additional functions such as operational, diagnostic and status message display and an attractive, visual interface that allows an installer, user or repairman to perform actions with respect to the system 100 more intuitively. Herein, the term “operator” will be used to refer collectively to any of the installer, the user and the repairman unless clarity is served by greater specificity.


One or more separate comfort sensors 160 may be associated with the one or more control units 150 and may also optionally be associated with one or more displays 170. The one or more comfort sensors 160 provide environmental data, e.g. temperature and/or humidity, to the one or more control units 150. An individual comfort sensor 160 may be physically located within a same enclosure or housing as the control unit 150, in a manner analogous with a conventional HVAC thermostat. In such cases, the commonly housed comfort sensor 160 may be addressed independently. However, the one or more comfort sensors 160 may be located separately and physically remote from the one or more control units 150. Also, an individual control unit 150 may be physically located within a same enclosure or housing as a display 170, again analogously with a conventional HVAC thermostat. In such embodiments, the commonly housed control unit 150 and display 170 may each be addressed independently. However, one or more of the displays 170 may be located within the system 100 separately from and/or physically remote to the control units 150. The one or more displays 170 may include a screen such as a liquid crystal or OLED display (not shown).


Although not shown in FIG. 1, the HVAC system 100 may include one or more heat pumps in lieu of or in addition to the one or more furnaces 120, and one or more compressors 140. One or more humidifiers or dehumidifiers may be employed to increase or decrease humidity. One or more dampers may be used to modulate air flow through ducts (not shown). Air cleaners and lights may be used to reduce air pollution. Air quality sensors may be used to determine overall air quality.


Finally, a data bus 180, which in the illustrated embodiment is a serial bus, couples the one or more air handlers 110, the one or more furnaces 120, the one or more evaporator condenser coils 142 and compressors 140, the one or more control units 150, the one or more remote comfort sensors 160 and the one or more displays 170 such that data may be communicated therebetween or thereamong. As will be understood, the data bus 180 may be advantageously employed to convey one or more alarm messages or one or more diagnostic messages. All or some parts of the data bus 180 may be implemented as a wired or wireless network.


The data bus 180 in some embodiments is implemented using the Bosch CAN (Controller Area Network) specification, revision 2, and may be synonymously referred to herein as a residential serial bus (RSBus) 180. The data bus 180 provides communication between or among the aforementioned elements of the network 200. It should be understood that the use of the term “residential” is nonlimiting; the network 200 may be employed in any premises whatsoever, fixed or mobile. Other embodiments of the data bus 180 are also contemplated, including e.g., a wireless bus, as mentioned previously, and 2-, 3- or 4-wire networks, including IEEE-1394 (Firewire™, i.LINK™, Lynx™), Ethernet, Universal Serial Bus (e.g., USB 1.x, 2.x, 3.x), or similar standards. In wireless embodiments, the data bus 180 may be implemented, e.g., using Bluetooth™, Zibgee or a similar wireless standard.



FIG. 2 is a high-level block diagram of one embodiment of an HVAC data processing and communication network 200 that may be employed in the HVAC system 100 of FIG. 1. One or more air handler controllers (AHCs) 210 may be associated with the one or more air handlers 110 of FIG. 1. One or more integrated furnace controllers (IFCs) 220 may be associated with the one or more furnaces 120. One or more damper controller modules 215, also referred to herein as a zone controller module 215, may be associated with the one or more dampers 115. One or more unitary controllers 225 may be associated with one or more evaporator coils 130 and one or more condenser coils 142 and compressors 140 of FIG. 1. The network 200 includes an active subnet controller (aSC) 230a and an inactive subnet controller (iSC) 230i. The aSC 230a may act as a network controller of the system 100. The aSC 230a is responsible for configuring and monitoring the system 100 and for implementation of heating, cooling, humidification, dehumidification, air quality, ventilation or any other functional algorithms therein. Two or more aSCs 230a may also be employed to divide the network 200 into subnetworks, or subnets, simplifying network configuration, communication and control. Each subnet typically contains one indoor unit, one outdoor unit, a number of different accessories including humidifier, dehumidifier, electronic air cleaner, filter, etc., and a number of comfort sensors, subnet controllers and user interfaces. The iSC 230i is a subnet controller that does not actively control the network 200. In some embodiments, the iSC 230i listens to all messages broadcast over the data bus 180, and updates its internal memory to match that of the aSC 230a. In this manner, the iSC 230i may backup parameters stored by the aSC 230a, and may be used as an active subnet controller if the aSC 230a malfunctions. Typically there is only one aSC 230a in a subnet, but there may be multiple iSCs therein, or no iSC at all. Herein, where the distinction between an active or a passive SC is not germane the subnet controller is referred to generally as an SC 230.


A user interface (UI) 240 provides a means by which an operator may communicate with the remainder of the network 200. In an alternative embodiment, a user interface/gateway (UI/G) 250 provides a means by which a remote operator or remote equipment may communicate with the remainder of the network 200. Such a remote operator or equipment is referred to generally as a remote entity. A comfort sensor interface 260, referred to herein interchangeably as a comfort sensor (CS) 260, may provide an interface between the data bus 180 and each of the one or more comfort sensors 160. The comfort sensor 260 may provide the aSC 230a with current information about environmental conditions inside of the conditioned space, such as temperature, humidity and air quality.


For ease of description, any of the networked components of the HVAC system 100, e.g., the air handler 110, the damper 115, the furnace 120, the outdoor unit 144, the control unit 150, the comfort sensor 160, the display 170, may be described in the following discussion as having a local controller 290. The local controller 290 may be configured to provide a physical interface to the data bus 180 and to provide various functionality related to network communication. The SC 230 may be regarded as a special case of the local controller 290, in which the SC 230 has additional functionality enabling it to control operation of the various networked components, to manage aspects of communication among the networked components, or to arbitrate conflicting requests for network services among these components. While the local controller 290 is illustrated as a stand-alone networked entity in FIG. 2, it is typically physically associated with one of the networked components illustrated in FIG. 1.



FIG. 3 illustrates a high-level block diagram of the local controller 290. The local controller 290 includes a physical layer interface (PLI) 310, a non-volatile memory (NVM) 320, a RAM 330, a communication module 340 and a functional block 350 that may be specific to the demand unit 155, e.g., with which the local controller 290 is associated. The PLI 310 provides an interface between a data network, e.g., the data bus 180, and the remaining components of the local controller 290. The communication module 340 is configured to broadcast and receive messages over the data network via the PLI 310. The functional block 350 may include one or more of various components, including without limitation a microprocessor, a state machine, volatile and nonvolatile memory, a power transistor, a monochrome or color display, a touch panel, a button, a keypad and a backup battery. The local controller 290 may be associated with a demand unit 155, and may provide control thereof via the functional block 350, e.g. The NVM 320 provides local persistent storage of certain data, such as various configuration parameters, as described further below. The RAM 330 may provide local storage of values that do not need to be retained when the local controller 290 is disconnected from power, such as results from calculations performed by control algorithms. Use of the RAM 330 advantageously reduces use of the NVM cells that may degrade with write cycles.


In some embodiments, the data bus 180 is implemented over a 4-wire cable, in which the individual conductors are assigned as follows:


R—the “hot”—a voltage source, 24 VAC, e.g.


C—the “common”—a return to the voltage source.


i+—RSBus High connection.


i−—RSBus Low connection.


The disclosure recognizes that various innovative system management solutions are needed to implement a flexible, distributed-architecture HVAC system, such as the system 100. More specifically, cooperative operation of devices in the system 100, such as the air handler 110, outdoor unit 144, or UI 240 is improved by various embodiments presented herein. More specifically still, embodiments are presented of communications protocols among networked HVAC devices that provide a robust means of communicating within an installation site, and simplified configuration of the system relative to conventional systems.



FIG. 4 illustrates a device 410 according to the disclosure. The following description pertains to the HVAC data processing and communication network 200 that is made up of a number of system devices 410 operating cooperatively to provide HVAC functions. Herein after the system device 410 is referred to more briefly as the device 410 without any loss of generality. The term “device” applies to any component of the system 100 that is configured to communicate with other components of the system 100 over a wired or wireless network. Thus, the device 410 may be, e.g., the air handler 110 in combination with its AHC 210, or the furnace 120 in combination with its IFC 220. This discussion may refer to a generic device 410 or to a device 410 with a specific recited function as appropriate. An appropriate signaling protocol may be used to govern communication of one device with another device. While the function of various devices 410 in the network 200 may differ, each device 410 shares a common architecture for interfacing with other devices, e.g. the local controller 290 appropriately configured for the HVAC component 420 with which the local controller 290 is associated. The microprocessor or state machine in the functional block 350 may operate to perform any task for which the device 410 is responsible, including, without limitation, sending and responding to messages via the data bus 180, controlling a motor or actuator, or performing calculations. A system status display 430 is described below.


In various embodiments, signaling between devices 410 relies on messages. Messages are data strings that convey information from one device 410 to another device 410. The purpose of various substrings or bits in the messages may vary depending on the context of the message. Generally, specifics regarding message protocols are beyond the scope of the present description. However, aspects of messages and messaging are described when needed to provide context for the various embodiments described herein.



FIG. 5 illustrates an embodiment of the disclosure of a network of the disclosure generally designated 500. The network 500 includes an aSC 510, a user interface 520, a comfort sensor 530 and a furnace 540 configured to communicate over a data bus 550. In some embodiments these devices form a minimum HVAC network. In addition, the network 500 is illustrated as including an outdoor unit 560, an outdoor sensor 570, and a gateway 580. The furnace 540 and outdoor unit 560 are provided by way of example only and not limited to any particular demand units. The aSC 510 is configured to control the furnace 540 and the outdoor unit 560 using, e.g., command messages sent via the data bus 550. The aSC 510 receives environmental data, e.g. temperature and/or humidity, from the comfort sensor 530, the furnace 540, the outdoor sensor 570 and the outdoor unit 560. The data may be transmitted over the data bus 550 by way of messages formatted for this purpose. The user interface 520 may include a display and input means to communicate information to, and accept input from, an operator of the network 500. The display and input means may be, e.g., a touch-sensitive display screen, though embodiments of the disclosure are not limited to any particular method of display and input.


The aSC 510, comfort sensor 530 and user interface 520 may optionally be physically located within a control unit 590. The control unit 590 provides a convenient terminal to the operator to effect operator control of the system 100. In this sense, the control unit is similar to the thermostat used in conventional HVAC systems. However, the control unit 590 may only include the user interface 520, with the aSC 510 and comfort sensor 530 remotely located from the control unit 590.


As described previously, the aSC 510 may control HVAC functionality, store configurations, and assign addresses during system auto configuration. The user interface 520 provides a communication interface to provide information to and receive commands from a user. The comfort sensor 530 may measure one or more environmental attributes that affect user comfort, e.g., ambient temperature, RH and pressure. The three logical devices 510, 520, 530 each send and receive messages over the data bus 550 to other devices attached thereto, and have their own addresses on the network 500. In many cases, this design feature facilitates future system expansion and allows for seamless addition of multiple sensors or user interfaces on the same subnet. The aSC 510 may be upgraded, e.g., via a firmware revision. The aSC 510 may also be configured to release control of the network 500 and effectively switch off should another SC present on the data bus 550 request it.


Configuring the control unit 590 as logical blocks advantageously provides flexibility in the configuration of the network 500. System control functions provided by a subnet controller may be placed in any desired device, in this example the control unit 590. The location of these functions therein need not affect other aspects of the network 500. This abstraction provides for seamless upgrades to the network 500 and ensures a high degree of backward compatibility of the system devices 410 present in the network. The approach provides for centralized control of the system, without sacrificing flexibility or incurring large system upgrade costs.


For example, the use of the logical aSC 510 provides a flexible means of including control units on a same network in a same conditioned space. The system, e.g., the system 100, may be easily expanded. The system retains backward compatibility, meaning the network 500 may be updated with a completely new type of equipment without the need to reconfigure the system, other than substituting a new control unit 590, e.g. Moreover, the functions provided by the subnet controller may be logically placed in any physical device, not just the control unit 590. Thus, the manufacturer has greater flexibility in selecting devices, e.g., control units or UIs, from various suppliers.


In various embodiments, each individual subnet, e.g., the network 500, is configured to be wired as a star network, with all connections to the local controller 290 tied at the furnace 120 or the air handler 110. Thus, each indoor unit, e.g., the furnace 120, may include three separate connectors configured to accept a connection to the data bus 180. Two connectors may be 4-pin connectors: one 4-pin connector may be dedicated for connecting to an outdoor unit, and one may be used to connect to equipment other than the outdoor unit. The third connector may be a 2-pin connector configured to connect the subnet of which the indoor unit is a member to other subnets via the i+/i− signals. As described previously, a 24 VAC transformer associated with the furnace 120 or air handler 110 may provide power to the system devices 410 within the local subnet via, e.g., the R and C lines. The C line may be locally grounded.



FIG. 6A illustrates a detailed connection diagram of components of a network 600A according to one embodiment of the disclosure. The network 600A includes a zone 605 and a zone 610. The zones 605, 610 are illustrated without limitation as being configured as subnets 615, 620, respectively. The subnet 615 includes an air conditioning (AC) unit 630, a UI/G 640, an outdoor sensor (OS) 650, a control unit 660, and a furnace 670. The control unit 660 includes an SC 662, a UI 664 and a comfort sensor 666, each of which is independently addressable via a data bus 180a. The subnet 620 includes a control unit 680, a heat pump 690 and a furnace 695. The control unit 680 houses an SC 682, a UI 684 and a comfort sensor 686, each of which is independently addressable via a data bus 180b. In various embodiments and in the illustrated embodiment each individual subnet, e.g., the subnets 615, 620 are each configured to be wired as a star network, with connections to all devices therein made at a furnace or air handler associated with that subnet. Thus, e.g., each of the devices 630, 640, 650, 660 is connected to the data bus 180a at the furnace 670. Similarly, each device 680, 690 is connected to the subnet 620 at the furnace 695. Each furnace 670, 695, generally representative of the indoor unit 148, may include a connection block configured to accept a connection to the RSBus 180. For example, two terminals of the connection block may be 4-pin connectors. In one embodiment, one 4-pin connector is dedicated to connecting to an outdoor unit, for example the connection from the furnace 670 to the AC unit 630. Another 4-pin connector is used to connect to equipment other than the outdoor unit, e.g., from the furnace 670 to the UI/G 640, the OS 650, and the control unit 660. A third connector may be a 2-pin connector configured to connect one subnet to another subnet. In the network 600A, e.g., the subnet 615 is connected to the subnet 620 via a wire pair 698 that carries the i+/i− signals of the serial bus. As described previously with respect to the furnace 120, a transformer located at the furnace 670 may provide power to the various components of the subnet 615, and a transformer located at the furnace 695 may provide power to the various components of the subnet 620 via R and C lines. As illustrated, the C line may be locally grounded.


This approach differs from conventional practice, in which sometimes a master controller has the ability to see or send commands to multiple controllers in a single location, e.g., a house. Instead, in embodiments of which FIG. 6A is representative there is no master controller. Any controller (e.g. the SCs 662, 682) may communicate with any device, including other controllers, to make changes, read data, etc. Thus, e.g., a user located on a first floor of a residence zoned by floor may monitor and control the state of a zone conditioning a second floor of the residence without having to travel to the thermostat located on the second floor. This provides a significant convenience to the user, who may be a resident, installer or technician.



FIG. 7 illustrates an example embodiment of a message frame generally designated 700. The message frame 700 is configurable to send messages between one local controller 290 and another local controller 290, e.g., between the UI 240 and the AHC 210. It is to be understood that the message frame 700 is but one of several possible schemes to communicate between local controllers 290. Those of skill in the pertinent arts will recognize that other equivalent schemes are within the scope of the disclosure.


Messages may be communicated in a manner compatible with a two-wire bus architecture. In some cases, a controller-area network is an appropriate communication standard. In an example embodiment, messages follow a format based on the Bosch CAN2.0B (hereinafter “CAN”) standard. The following aspects of the CAN standard are described by way of example, with no implied limitation on messaging formats otherwise within the scope of the disclosure.


As will be appreciated by those skilled in the pertinent art, the bus in the CAN standard can have one of two complementary logical values: “dominant” or “recessive”. During simultaneous transmission of dominant and recessive bits, the resulting bus value will be dominant. For example, in case of a wired-AND implementation of the bus, the dominant level would be represented by a logical 0 and the recessive level by a logical 1. In this context a dominant bit is a bit that “wins” when a dominant and a recessive bit are simultaneously asserted on the CAN bus.


As illustrated in FIG. 7, a single message frame may include a Start of Frame (SOF) bit 710, an Arbitration Field (AF) 720, a Control Field (CF) 730, a Data Field (DF) 740, a CRC Field 750, an ACK Field 760 and an End of Frame (EOF) Field 770.


Each message frame starts with a dominant SOF bit 710, e.g., a logical 0. At least some of the local controllers 290 on the network 200 that are ready to transmit messages synchronize to the SOF bit 710 generated by the local controller 290 that initializes the transmission. In some cases, the SC 230 performs the initialization. This aspect is discussed in greater detail below. It may be preferable in some cases that all of the local controllers 290 on the network 200 synchronize in this manner.


The AF 720 may include a number of bits as identifier (ID) bits. The illustrated embodiment includes two subfields. A first subfield 722 includes, e.g., 11 base ID bits, while a second subfield 724 includes, e.g., 18 extended ID bits. This configuration is an example of a CAN extended format. Those skilled in the pertinent art will appreciate that in other embodiments, a standard format message frame 700 may be used. An SRR bit and an IDE bit separate the first subfield 722 and the second subfield 724, and a RTR bit ends the AF 720. In some embodiments the SRR bit and IDE bit are always set to 1 and the RTR bit is always set to 0.


In the message frame 700 the CF 730 is illustrated as including, e.g., two reserved bits R0 and R1 and a 4-bit Data Length Code (DLC) Field. The reserve bits are always sent as recessive, but the receivers should accept them without any errors regardless if they are recessive or dominant. The DLC Field determines the number of bytes in the DF 740.


The DF 740 may range from 0 to 64 bits. The case of 0 bits, of course, represents the special case that no data is send by the message frame 700. In all but this special case, data may be segmented into multiples of 8 bits (bytes) with maximum of 8 bytes.


The CRC Field 750 contains a checksum calculated on the SOF bit 710, the AF 720, CF 730 and DF 740. The CRC field 750 is illustrated in this example embodiment of the CAN standard as being 15 bits wide. Of course other CRC widths may be used where appropriate for other communication standards. The computation of the CRC may be determined as per the CAN2.0 standard, e.g. The CRC field 750 is terminated in a suitable manner, e.g., by a Delimiter Bit that is always recessive.


The ACK field 760 is two bits long and contains an ACK SLOT (ACK) and an ACK delimiter (Del). A transmitting local controller 290, e.g., the SC 230, sends two recessive bits. A receiving local controller 290, e.g., the AHC 210, reports the correct receipt of a message to the transmitting local controller 290 by asserting a dominant bit during the ACK slot. Thus the transmitting local controller 290 can detect that another local controller 290 is present on the network to receive the message. However, the acknowledgement by the receiving local controller 290 does not confirm the validity of the message data.


The EOF field 770 is delimited by a flag sequence of seven consecutive recessive bits.


The CAN standard prohibits the occurrence of more than five consecutive bits of a same value in the SOF bit 710, the AF 720, the CF 730, the DF 740, and the CRC field 750. Whenever a transmitting local controller 290 detects five consecutive bits of identical value in the bit stream to be transmitted it automatically inserts a complementary bit in the actual transmitted bit stream.


The CAN standard defines five types of errors that are not mutually exclusive:


Bit Error—while sending any bits on the bus, the transmitting local controller 290 also monitors the bus. When the state of the bus is detected to be different from the intended state, a bit error normally occurs. Exceptions to this general case include when a recessive bit is sent in an AF 720 and a dominant bit is read back. This event signifies a case of lost arbitration rather than a bit error. The ACK field 760 is sent as a recessive bit. When at least one other active local controller 290 is present on the bus, in routine operation the local controller 290 sets the field to the dominant state. Note that a local controller 290 sending a Passive Error Flag and detecting a dominant bit does not interpret this as a Bit Error. A bit error may indicate in some circumstances a collision between a message the local controller 290 is attempting to publish to the data bus 180 and a message published to the data bus 180 by another local controller.


Bit Stuffing Error: this error occurs when a 6th consecutive equal bit level is detected in the message field comprising the SOF bit 710, the AF 720, the CF 730, the DF 740 and the CRC field 750.


CRC Error: each receiving local controller 290 calculates the CRC in the same manner as the transmitting local controller 290. The CRC error is generated when the calculated value is different from the value received on the RSBus bus 180.


Form Error: this error occurs when a fixed-form bit field (a delimiter, EOF Field or inter-frame space) contains one or more illegal bits. For the receiving local controller 290, a dominant bit received in the EOF bit should not be considered an error.


Acknowledgment Error: this error represents the condition that the transmitting local controller 290 determines that no receiving local controller 290 has asserted a dominant bit during the ACK transmission as described above.



FIG. 8 illustrates an embodiment of an error frame, generally designated 800. The RSBus 180 may provide active and passive error frames in conformity with the CAN standard. The error frame 800 includes an error flag field 810 and an error delimiter 820. The error flag field 810 may be superimposed. In an active error frame, the superposed flags are dominant, whereas in a passive error frame, the flags are recessive.


The majority of transmission errors may be addressed by retransmitting the message according to the CAN2.0 standard. More specifically, each error type listed above may be handled as follows:


Bit Error: An Error Frame may be generated which starts with the next bit-time.


Bit Stuffing Error: A node that detects a violation of bit stuffing (e.g., more than 5 bits of the same state) may generate an Error Frame, which causes the sending local controller 290 to resend the message.


CRC Error: CRC may be calculated by both the receiving local controller 290 and the sending local controller 290. The sending local controller 290 includes the CRC in the message. If the CRC of the receiving local controller 290 fails to match the CRC in the message then an error frame is generated. The sending local controller 290 may resend the message in response to the error frame.


Form Error: A sending local controller 290 that detects a dominant bit in the Delimiter, End of Frame (EOF) field or Inter-frame Space may generate an Active Error Frame. The sending local controller 290 may resend the message in response to the Active Error Frame.


Acknowledge Error: At least one receiving local controller 290 is expected to set the acknowledge bit to dominant after the message is sent by the transmitting local controller 290. If the acknowledge bit is not set to dominant, the sending local controller 290 may resend the message.


Under certain conditions, a local controller 290 may be placed in a fault confinement condition to limit the operation thereof. Each local controller 290 keeps a count of detected transmit and receive errors. Under some conditions, the local controller 290 may enter one of three error states: error active, error passive, and bus off.


A local controller 290 is normally in the error active state. In this state the local controller 290 can interrupt a current message in progress by signaling an error via an active error frame 800. The transmitting local controller 290 detects the active error frame 800 and resends the message as described above. Each local controller 290 may keep a separate count of transmit errors and receive errors. The local controller 290 remains in the error active state until an error count exceeds a lower limit value. The limit value 127 may be chosen for convenience, but any desired number may be used. In some embodiments, the error value is 2n−1, n being an integer.


A local controller 290 enters the error passive state when either the transmit or receive error count exceeds 127. In the event that one of the error counts exceeds 127, the local controller 290 may generate an alarm condition alerting the SC 230 to the error state. An alarm condition may be signified by a DEVICE Communications Problem alarm. The alarm may be cleared when the local controller 290 enters the error active state. In the error passive state, a local controller 290 is configured to refrain from interrupting a message in progress. The local controller 290 may, however, generate passive error frames 800.


The local controller 290 enters the bus off state when the transmit error count exceeds an upper limit value. In some embodiments, the upper limit value is 2n+1−1, where n is the integer selected for the lower limit value described above. Thus, in one example, if the lower limit value is 127, the upper limit value may be 255.


When the error count exceeds the upper limit value, the affected local controller 290 is configured to refrain from sending messages on the RSBus 180. However, the local controller 290 may continue to monitor activity on the RSBus 180. A local controller 290 which is in bus off state may enter the error active state after a reset. The device reset condition may be the expiration of a timer that starts upon the local controller 290 entering the bus-off state. In an example embodiment, the timer expires after 5 minutes. When the local controller 290 is reset by any means, the local controller 290 may reset its transmit error count.


Referring back to FIG. 7, each message frame 700 may be limited in the amount of data that may be sent thereby. When implemented using the CAN2.0 standard, for example, the DF 740 can contain a maximum of eight bytes. In some cases, it may be desirable to send more than eight bytes of data from one local controller 290 to another local controller 290. In such cases, the sending local controller 290 may send a message longer than eight bytes by partitioning the message into multiple message frames 700. A mechanism referred to as “transport protocol” is provided by some embodiments to enable sending such messages. In some embodiments, this mechanism is based on the ISO/DIS Standard 15765-2, incorporated herein by reference as if reproduced in its entirety. Herein after, this standard is referred to as the “15765-2 standard” for brevity. The 15765-2 standard provides for message sequences that include up to 4095 bytes.


The 15765-2 standard uses the addressing format as described below with respect to the message addressing scheme. Thus transport protocol messages may follow the same format as other messages broadcast over the RSBus 180. However, transport protocol messages may be distinguished from non-transport protocol messages at the appropriate layer of the protocol stack based on the ID of the message in question.


Referring to FIG. 7, the DF 740 may include from 0 to eight bytes of data, where each byte comprises 8 bits. In some cases, a local controller 290 may need to convey more than eight bytes of data to another local controller 290.


In various embodiments the local controllers 290 are configured to implement full-duplex transport protocol communication. Such communication is defined, e.g., in Section 6.7.3 of the 15765-2 standard. All local controllers 290, except the SC 230 and the UI/G 250, are single session transfer protocol devices. The SC 230 and the UI/G 250 support up to 4 concurrent transport protocol sessions. When single session devices are engaged in a transport protocol receive session, they are not required to respond to a new transport protocol receive session request.


In such cases the SC 230 and the UI/G 250 may ignore incoming first frames. The transmitting local controller 290 may then retry sending the first frame a number of times. In some embodiments, the requesting local controller 290 retries twice, each time after a one-second timeout. If three consecutive attempts fail, the local controller 290 may issue an alarm signifying that the receiving local controller 290 is unresponsive and may abort the communication attempt. Analogously, the same single-session transport protocol device will not request another transport protocol send session unless the currently ongoing send session is completed. In some embodiments, all single frame transport protocol messages are sent and received regardless of the state of the multi-frame send or receive sessions.


In some embodiments, a transport protocol block size is eight, and a separation time may be 5 ms. However, the local controllers 290 may be configured to use other values, or to override default values, when necessary for effective communication.


In some cases, one or more errors may be encountered during a transfer protocol session. Various embodiments provide error handling consistent with those described by the 15765-2 standard.


Each logical local controller 290 on the RSBus 180 may be identified by an Equipment Type (ET) number. The Equipment Type number serves as an identifier of a class of logical local controllers 290. In some cases, there may be multiple Equipment Type numbers for a same device class. Table I below lists an example embodiment of Equipment Type numbers for various classes of equipment. The values presented in Table I apply to this example embodiment, and are provided without limitation for illustration purposes. Those skilled in the pertinent art will recognize that various equivalents may be implemented within the scope of the disclosure.









TABLE I







RSBus Equipment Types












Equipment Type Number




Number
(in binary form)



















Equipment Type
Range
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Comments





Subnet Controllers
0h-Fh
0
0
0
0
0
x
x
x
x
Active













Subnet













Controller =













0h


Furnace
10h
0
0
0
0
1
0
0
0
0



Air Handler
11h
0
0
0
0
1
0
0
0
1



Air Conditioner
12h
0
0
0
0
1
0
0
1
0



Heat Pump
13h
0
0
0
0
1
0
0
1
1



Humidifier
14h
0
0
0
0
1
0
1
0
0



Dehumidifier
15h
0
0
0
0
1
0
1
0
1



Damper Control
16h-17h
0
0
0
0
1
0
1
1
X



Modules













ERV
18h
0
0
0
0
1
1
0
0
0



HRV
19h
0
0
0
0
1
1
0
0
1



Dual Fuel Module
1Ah
0
0
0
0
1
1
0
1
0



UV Light
1Bh
0
0
0
0
1
1
0
1
1



Media Air Cleaner
1Ch
0
0
0
0
1
1
1
0
0



Electronic Air
1Dh
0
0
0
0
1
1
1
0
1



Cleaner













IAQ Analyzer
1Eh
0
0
0
0
1
1
1
1
0



Twinning Module
1Fh
0
0
0
0
1
1
1
1
1



Wireless Comfort
20h-3Fh
0
0
0
1
x
x
x
x
x
Wireless


Sensors










Gateways













may be













configured













at 20h













or at













30h.













Individual













sensors













may then













be added













from that













address













on until













a maximum













number is













reached,













e.g., 32.


Comfort Sensors
40h-4Fh
0
0
1
0
0
x
x
x
x



Wireless Outdoor
50h-5Fh
0
0
1
0
1
x
x
x
x
A


Sensor










Wireless













Gateway













may be













configured













at 50h.













Individual













addresses













are added













to this













base













address













to a













maximum













number of













sensors,













e.g., 16.


Outdoor Sensors
60h-63h
0
0
1
1
0
0
0
x
x
The













number of













sensors













on each













subnet













may be













limited,













e.g., to













4.


Not Used
64h-6Fh
0
0
1
1
0
?
?
?
?
Expansion


User
70h-7Fh
0
0
1
1
1
x
x
x
x
User


Interfaces/Gateways










Interfaces













are 70h-7Bh.













Gateways













are 7Ch-7Fh


Not Used
80h-1DFh
1
?
?
?
?
?
?
?
?
Expansion


Reserved
1E0h-1FF
1
1
1
1
x
x
x
x
x
Reserved













for NVM













Flashing









In various embodiments, a local controller 290 may be configured to notify the aSC 230a that it cannot be configured as commanded. The notification may take the form of an appropriately configured message sequence from the local controller 290 to the aSC 230a.


Table II below illustrates an embodiment of a message addressing scheme of the disclosure. A message ID of this embodiment includes 29 bits, providing a pool of more than 5E8 different messages. This message pool is divided into eight message classes identified by the three most significant bits of the Message ID, bits 26-28. Each message class may be designated for a different purpose, as indicate. In the illustrated embodiment, classes 0, 2, 4 and 7 are not currently defined.









TABLE II





RSBus Message Classes
















Message
CAN extended 29-bit message ID

















Class
28
27
26
25
24
23
22
21
20
19





Class 0
0
0
0









Class 1
0
0
1
C1MID8
C1MID7
C1MID6
C1MID5
C1MID4
C1MID3
C1MID2


UI/G












messages












Class 2
0
1
0









Class 3
0
1
1
AL
C3MID12/PR0
C3MID11/PR1
C3MID10/S/C
C3MID9
C3MID8
C3MID7


Broadcast












messages












Class 4
1
0
0









Class 5
1
0
1
C5MID12
C5MID11
C5MID10
C5MID9
C5MID8
C5MID7
C5MID6


SC












messages












Class 6
1
1
0
C6MID9
C6MID8
C6MID7
C6MID6
C6MID5
C6MID4
C6MID3


Diagnostic












messages












Class 7
1
1
1











Message
CAN extended 29-bit message ID

















Class
18
17
16
15
14
13
12
11
10
9





Class 0




















Class 1
C1MID1
C1MID0/TP
Destination or


UI/G


Source


messages


Equipment Type


Class 2



















Class 3
C3MID6
C3MID5
C3MID4
C3MID3
C3MID2
C3MID1
C3MID0
AS
Source


Broadcast








Equipment


messages








Type


Class 4























Class 5
C5MID5
C5MID4
C5MID3
C5MID2
C5MID1
C5MID0/TP
Destination or


SC






Source


messages






Equipment Type

















Class 6
C6MID2
C6MID1
C6MID0
DD9
DD8
DD7
DD6
DD5
DD4
DD3


Diagnostic












messages












Class 7













Message
CAN extended 29-bit message ID


















Class
8
7
6
5
4
3
2
1
0






Class 0












Class 1
Destination or
UIID3
UIID2
UIID1
UIID0
SS1
SS0
DS1
DS0



UI/G
Source











messages
Equipment Type











Class 2





















Class 3
Source
SS1
SS0



Broadcast
Equipment Type





messages






Class 4

















Class 5
Destination or
SS1
SS0
DS1
DS0



SC
Source







messages
Equipment Type






















Class 6
DD2
DD1
DD0
UIID3
UIID2
UIID1
UIID0
S/DS1
S/DS0



Diagnostic












messages












Class 7









In various embodiments, all message IDs on the RSBus 180 follow the described encoding, with one exception. For a transfer protocol flow control frame, the message ID may duplicate the message ID of the frame of the received transfer protocol First Frame.


The various message classes of Table II are now described. Message Class 1 includes User Interface and Gateway messages, e.g., those sent by the UI/G 250. These messages serve to communicate with the user during normal system operation. They include messages sent from the user interface or the gateway, as well as some messages explicitly and implicitly addressed to them.



FIG. 9 illustrates an embodiment of the disclosure of the AF 720 (FIG. 7) for Class 1 messages. The control bits in the AF 720 are encoded as follows:









TABLE III







Class 1 Message Arbitration Field Breakdown









Sub-Field
Description
Purpose





DSI0-DSI1
Destination
Indicate the subnet



Subnet Identifier
the message is sent to


SSI0-SSI1
Source Subnet
Indicate the subnet



Identifier
the message originated




in


UIID0-UIID3
User Interface ID
Indicate the address




of the UI or G the




message is sent to or




from, values 0-11




denote User




Interfaces, values 12-15




identify Gateways;




it is equivalent to




the UI/Gs Equipment




Type numbers, offset




by 70h - e.g. if the




UI has the ET = 72h,




its UIID = 2


Equipment Type
Equipment Type
As defined in Table I



Number



C1MID0 = ID17/TP
Class 1 Message
Least significant bit



ID LSb/Transfer
of the Class 1 Message



Protocol
ID. This bit indicates




if the message is a




Transfer Protocol




message (TP = 1) or




not (TP = 0)


C1MID0-C1MID8 =
Class 1 Message
Unique 9-bit message


ID17-ID25
ID
identifier within




Class 1










FIG. 10A illustrates an embodiment of the disclosure of the AF 720 (FIG. 7) for Class 3, System Broadcast messages. System Broadcast Messages are broadcasted from one subnet, such as the subnet 400, but all local controllers 290 from all subnets can listen and respond to a Class 3 message. System Broadcast messages include DEVICE_Status and Alarms messages. There are 8,192 (213) System Broadcast messages possible in the illustrated embodiment. The number of alarms is limited to a subset of the total possible number of message, e.g. 1024)(210). The control bits in the AF 720 are encoded as follows for this message class:









TABLE IV







Class 3 Message Arbitration Field Breakdown:


System Broadcast Messages









Sub-Field
Description
Purpose





SSI0-SSI1
Source Subnet
Indicate the subnet



Identifier
the message originated




from


AL
Alarms
AL = 0 indicates that




the message is a




system broadcast




message.




AL = 1 indicates an




alarm


AS
All subnets
AS = 0 indicates that




the message is




broadcast on all




subnets.




AS = 1 indicates that




the destination subnet




is identical to the




source subnet


Equipment Type
Equipment Type
As defined in Table I



Number



C3MID0-C3MID12 =
Class 3 Message
Unique 13-bit message


ID12-ID24
ID
identifier within




Class 3










FIG. 10B illustrates an embodiment of Class 3 messages for the case that the message is an Alarm message. In various embodiments, all Alarm messages are Class 3 messages. An Alarm message includes additional information about the alarm priority encoded in the PR0-PR1 bits. The control fields in the AF 720 are encoded as indicated in Table V.









TABLE V







Class 3 Message Arbitration Field Breakdown:


Alarm Messages











Sub-Field
Description
Purpose






SSI0-SSI1
Source Subnet
Indicate the subnet




Identifier
the message originated





from



AL
Alarms
Set to 1 to indicate





an alarm



PR0-PR1
Alarm Priority
Encodes alarm





priority, e.g., minor,





moderate and critical



SC
Set/Clear
Set to 0 when the





alarm is set and set





to 1 when the alarm is





being cleared



ID12-ID21
Alarm Number
The exact





representation of the





alarm number



AS
All Subnets
AS = 0 indicates that





the message is





broadcast on all





subnets.





AS = 1 indicates that





the destination subnet





is identical to the





source subnet



Equipment Type
Equipment Type
As defined in Table I




Number










FIG. 11 illustrates an embodiment of the disclosure of the AF 720 for Class 5, Subnet Controller messages. Messages in this class may be used primarily when a local controller 290 is in a COMMISSION state or a CONFIGURATION mode. In some embodiments, all messages in class 5 are used for communication to or from the Subnet Controller, e.g., the SC 230. The format of messages in Class 5 may be constrained to be as defined in Table II. In FIG. 10B, ID14-ID25 identify a unique message resulting in total of 4096 (212) messages in this class. Table VI describes the bit assignments in the AF 720 for Class 5 messages.


The Equipment Type and the Destination Subnet Identifier denote the specific device and the specific HVAC system (network subnet) to which the message is addressed when sent from the SC 230. If the message is sent to the SC 230, the Equipment Type identifies the device sending the message and the SSI bits identify the subnet of the device. The SC 230 being addressed is identified by the Destination Subnet Identifier bits.


During normal operation, a Subnet Identifier in device messages would typically not change unless the particular local controller 290 to which the device messages pertain is reconfigured to work on a different subnet. The Equipment Type designator assigned to a local controller 290 typically does not change, but may be reassigned if the local controller 290 is reconfigured. Generally, local controllers 290 other than Subnet Controllers respond only to class 5 messages containing their Equipment Type and Subnet ID in the destination field.









TABLE VI







Class 5 Message Arbitration Field Breakdown:


Subnet Controller Messages









Sub-Field
Description
Purpose





DSI0-DSI1
Destination
Indicate the subnet



Subnet Identifier
the message is sent to


SSI0-SSI1
Source Subnet
indicate the subnet



Identifier
the message originated




in


Equipment Type
Equipment Type
As defined in Table I



Number



C1MID0 = ID13/TP
Class 5 Message
Least significant bit



ID LSb/Transfer
of the Class 5 Message



Protocol
ID. If 1, indicates




the message is a




Transfer Protocol




message


C5MID0-C5MID12 =
Class 5 Message
Unique 13-bit message


ID13-ID25
ID
identifier within




Class 5









Diagnostic messages are categorized as Class 6 messages. Class 6 messages use Device Designator bits to identify the destination device. Even when the local controller 290 is not configured, or is disabled as described below, the local controller 290 can still send or receive Class 6 messages. In various embodiments, the local controller 290 can send and receive Class 6 messages before being configured or while disabled. The control bits in the AF 720 are encoded as described in Table II, and further detailed in Table VII.









TABLE VII







Class 6 Basic Diagnostic Messages









Sub-Field
Description
Purpose





UIID0-UIID3
User Interface ID
Indicate the address of




the UI/G the message is




sent to or from. Values




0-11 may denote User




Interfaces; values 12-15




may identify Gateways.




The User Interface ID is




equivalent to the UI/G




Equipment Type numbers,




offset by 70h. E.g., if




the Equipment Type of




the UI is 72h, its UIID




is 2


DD0-DD9
Device Designator
Indicate the device's 10




least significant Device




Designator bits


S/DSI0-S/DSI1
Source/Destination
Indicate the subnet of



Subnet Identifier
the UI/G that diagnoses




the device


C6MID0-C6MID9 =
Class 5 Message ID
reserved for a total of


ID16-ID25
LSb/Transfer
1024 possible message



Protocol
IDs in this class









Some messages sent over the RSBus 180 may expect a response. In some cases, the sender expects the response immediately, meaning as soon as the hardware and communication protocol allow the transmission of the response. Such messages are referred to herein as queries. Queries generally have various timing constraints associated therewith. One embodiment of a set of rules is described below that may apply to query messages for most purposes.


Message Response Time: Generally messages are to be sent without delay by the sending local controller 290. In many cases it is preferable if a response to a query is generated in 100 ms or less. This means that upon receipt of a query, the responding local controller 290 should within 100 ms place a response into its CAN transmit buffer. In many cases the response will not be sent within 100 ms, as the response timing is generally dependent on the traffic conditions on the bus and the message's priority.


In one exception to this general rule, in the SUBNET_STARTUP state the local controller 290 is generally configured to wait 100 ms before it attempts to respond to the SC_Coordinator message. Thus, the response will be placed in the transmit buffer at a time greater than 100 ms after receipt of the query. Other exceptions to the general response timing rule may be made as desired.


Message Resend: A local controller 290 may be configured to resend a message when a correct reply to the message is not received within the expected timeout period. The timeout period may be set to any non-zero value, e.g., about 1 second. If the message is resent after an initial message, and no response is received within the timeout period after the subsequent message, the local controller 290 may attempt to resend the message again. If a response to the third attempt is not received within the timeout period, the local controller 290 may be configured to cease further resending of the message. Of course, more or fewer attempts may be made before ceasing to send the message. In some embodiments, the local controller 290 may send an alarm message identifying the Equipment Type of the unresponsive device, or act in any other way desired.


Subnet Controller Monitoring: In some embodiments, the aSC 230a sends a periodic message to other devices on the RSBus 180 that indicates the aSC 230a is present and functioning normally. This message is referred to for convenience as a “Heartbeat” message, e.g., aSC_Heartbeat. Each enabled local controller 290 may listen to the aSC_Heartbeat message and, when the message is not detected for a specified listening period, may take a specified action. In one embodiment, the local controller 290 may issue an alarm when the Heartbeat message is absent for more than three times its usual send period, e.g., three messages are missed. In some embodiments, the local controller 290 also ceases operation and returns to a default state.


Timing Accuracy: Each local controller 290 typically includes an oscillator to provide a timing reference. Each oscillator is preferred to conform to the accuracy for systems with bus speed of up to 125 kbaud, as defined in section 9.1 of the Bosch CAN 2.0B specification. This specification defines resonator accuracy over the entire temperature range and all environmental conditions, including aging, to be 1.58%. In some embodiments, a maximum additional ±200 μs tolerance may be accommodated without notable system degradation. In some cases, the tolerance of the device oscillator may be made more stringent when real-time clock functions are provided.


RSBus IDs Header File: The local controllers 290 may be provided by numerous manufacturing suppliers. To promote uniformity of configuration of the various local controllers 290, a system integrator may provide a uniform header file that the suppliers include in firmware controlling the operation of the local controller 290. It is generally preferable that the suppliers use the uniform header file without modification in furtherance of the objective of uniformity of the integrated devices. In an embodiment, the uniform header file contains all RSBus Message IDs for all messages, including the class of each message. In an embodiment, the file also contains the most current parameter and feature numbers as well as the system wide alarms. In some cases, the alarms, features, parameters and messages are identified by their string names in all caps format, with a prefix according to the type. Thus, e.g., alarm names may be prefixed with a lower-case letter “a”, feature names may be prefixed with “f”, parameter names with “p” and message names with “mIDx_” when defining the message ID from a class x and “mc” when defining the message class.


In a specific example for illustration purposes only, a class 3 message FOO with a message ID of 0x100 may be defined as follows:


















#define
mcDEVICE_FOO
3



#define
mID3_DEVICE_FOO
0x100









The file may include the following sections:

    • Own Alarm IDs—includes Alarm IDs for all Alarms generated by the device
    • Parameter IDs—includes Parameter IDs for all parameters sent (owned) and received by the device
    • Feature IDs—includes Feature IDs for all parameters sent (owned) and received by the device
    • Own User Text IDs—includes all User Text IDs stored by the device
    • Sent/Received Message IDs—includes message IDs for all messages sent and received by the device
    • Sent/Received Message Classes—includes message classes for all messages sent and received by the device
    • Own Alarm Texts—includes installer text in all device supported languages for all alarms owned by the device
    • Own Feature Texts—includes installer text in all device supported languages for all features owned by the device
    • Own Parameter Texts—includes installer text in all device supported languages for all parameters owned by the device
    • Own Feature Send/Receive Matrix—defines whether the particular Feature is sent and/or received by the device
    • Own Parameter Send/Receive Matrix—defines whether the particular Parameter is sent and/or received by the device
    • Own Message Send/Receive Matrix—defines what states each message is sent and/or received by the device


Message Bit Timing: Bit timing of the local controllers 290 may be specified for uniformity of operation. In an embodiment, the local controllers 290 configure the CAN bit timing as follows. The local controller 290 timing oscillator produces a periodic signal with a period referred to as a time quantum (TQ). In some embodiments, one bit has a period of 25 TQ. Thus for a timing oscillator having a period, or TQ, of about 1 μs, the bit rate is about 40 kBaud. A local controller 290 may sample the data on the RSBus at a time related to the TQ. In an embodiment, there the local controller 290 uses a delay time of 8 TQ. The bit is sampled between the 17th and 18th TQ of the bit. If multiple sample points are selected, they may be centered on the transition from 17th to 18th TQ.


If the chosen CAN platform does not support the clock divider that allows 25 TQ per bit timing, it may be preferred to use a setting with the highest number of TQs per bit, preferably not greater than 25. Delay time should be adjusted to 32% of the bit duration, and the sample points at or centered on 68% of the bit duration.


Any of the local controllers 290 in the network 200 may be reset by cycling the power thereof. The local controller 290 is typically configured to execute a power-up routine that places the local controller 290 in a state ready to be configured via messages and thereby begin normal operation.


However, among the many advantages of the communication protocol of the disclosure is the ability to implement an efficient method of resetting the local controllers 290 on the RSBus 180 without cycling power to the devices. In an embodiment, a software reset may be issued upon a timeout when a local controller 290 enters the bus off state as described earlier.


In another embodiment, the SC 230 resets a local controller 290 using a combination of two messages. A first reset message commands the local controller 290 to prepare for a reset. Optionally, the local controller 290 may respond to the first message with a message, e.g., DEVICE_Waiting_for_Reset, indicating that the local controller 290 is waiting for a reset message. The SC 230 sends a second reset message instructing the local controller 290 to reset. The local controller 290 may be configured to only reset in response to the second message if the second message is received within a predetermined time period after the first message, e.g., one minute. If the second message is not received within the predetermined time period, the local controller 290 may resume normal operation and ignore any reset messages received before another message to prepare to reset. In some cases the first and second messages may respectively instruct multiple local controllers 290 to prepare for reset, and to reset.


In another embodiment, the local controller 290 is configured to be placed in a “HARD_DISABLED” and a “SOFT_DISABLED” state. The HARD_DISABLED state may be initiated by a user via a message from the UI/G 250. In some cases, this aspect provides the ability to enable or disable a local controller 290 without physically locating the local controller 290. This may be particularly advantageous when the local controller 290 is a logical device, the location of which may be difficult to immediately determine, when expedient disabling of the local controller 290 is desired.


While in the HARD_DISABLED state, the local controller 290 may be configured to monitor the RSBus 180 without transmitting messages thereover. However, while in this state the local controller 290 may not send messages to other device, nor may the local controller 290 perform any control of an associated demand unit 155. The UI/G 250 may send an appropriately configured message to the local controller 290 instructing the local controller 290 to enter or exit the HARD_DISABLED state. These messages may be, e.g., class 6 messages. When the local controller 290 receives a message altering its HARD_DISABLED state, it may respond by issuing an acknowledgment over the RSBus 180, e.g., via a DEVICE_UI/G_Enable_Acknowledge message. Subnet controllers 230 may monitor these messages to track the state of enablement of the various local controllers 290 on the RSBus 180. When the local controller 290 is hard enabled, it may reset itself and enter a CRC check mode.


The HARD_DISABLED state is persistent, meaning that the local controller 290 remains in the HARD_DISABLED state until the user takes an action to send an enable message. In various embodiments the state of enablement is logged in the NVM 320 associated with each physical or logical local controller 290. Thus, the state of enablement, including the condition of being disabled, is remembered by the local controller 290 after reset.


In the SOFT_DISABLED state, the local controller 290 may continue to respond to messages from the SC 230, but may not execute any control functions. The message may be of a reserved type that instructs one or more local controllers 290 to proceed to a startup state. The local controller 290 may respond in such cases by issuing a message alerting the SC 230 that the local controller 290 is starting up. In various embodiments the state of enablement in the SOFT_RESET state is stored in the RAM 320. Thus, the state of disablement in the SOFT_RESET state may be cleared upon reset of the system 100.


The SOFT_DISABLED state may be cleared when the local controller 290 is reset. The aSC 230a may implement a soft-disable of a local controller 290 when the local controller 290 is “alien” to the subnet, e.g., unrecognized as a properly initiated local controller 290. The aSC 230a may also soft-disable a local controller 290 that is determined to be malfunctioning.


In some embodiments, entry of the local controller 290 to a privileged operating mode may be controlled by messages issued by a special-purpose command interface. One such mode is an OEM programming mode. The OEM programming mode may be used to download configuration data to the local controller 290. Configuration data may include, e.g., serial and model numbers, unit capacity, etc. Such information may be stored in non-volatile memory of the local controller 290, e.g., the NVM 320.


Another privileged operating mode is an OEM functional test mode. This mode may provide the ability to test the local controller 290 using, in addition to the messaging protocol, a special data sequence input to a test port that may be separate from the communication capability of the controller 290. For example, the command interface may send a demand message to and receiving status information from the local controller 290 over the RSBus 180, as discussed more fully below.


In some embodiments, a special command sequence from a standard UI/G 250 may be used to implement either privileged operation mode. Use of these modes may be restricted by password protection if desired.


When the HVAC system 100 is reset or powered up, the local controllers 290 on the subnet are configured in various embodiments to establish an initial operating state of the system 100. One aspect includes configuration of one or more SCs 230 of the subnet of the network 200, e.g. As described further below, each SC 230 enters a SUBNET_STARTUP state upon power-up. During the SUBNET_STARTUP state, the one or more SCs 230 negotiate for the control of the subnet. This negotiation is based on a set of features and parameters of each SC 230, and is designed to ensure that the best SC 230 available controls the subnet. After this negotiation is completed, the SC 230 that is selected by the negotiation process becomes active, or in other words, becomes an aSC that thereafter takes firm control of the subnet. At that point the SC 230 places the subnet in a CONFIGURATION mode or a VERIFICATION mode, and proceeds to assign or reassign Equipment Types and Subnet IDs to the local controllers 290 on the subnet.


In the CONFIGURATION mode, a SUBNET_STARTUP process serves to configure the subnet to an operational state. In the VERIFICATION mode, the SUBNET_STARTUP process verifies that a current subnet configuration matches a subnet configuration set up previously during an initial configuration. It is possible to add new devices to the subnet during a Configuration routine executed only when in the CONFIGURATION mode. The VERIFICATION mode may be similar to the CONFIGURATION mode, with two differences as follows. First, in some embodiments the aSC 230a reassigns the same Equipment Types and Subnet ID numbers to the local controllers 290 as were assigned thereto during the last initial configuration. Second, the VERIFICATION mode may be configured to exclude the registration of new devices on the network. As described further below, the CONFIGURATION mode or the VERIFICATION mode may be indicated by values of a CF0 and a CF1 flag, defined below, of the one or more SCs 230 present in the subnet.



FIG. 12 illustrates a state diagram of an embodiment of a SUBNET_STARTUP process, generally designated 1200, that is configured to run on a local controller 290. In various embodiments the process 1200 is implemented as a finite state machine (FSM). In some embodiments the FSM is only implemented on local controllers 290 that are not a subnet controller during the process 1200. In some embodiments, every local controller 290 that is not an SC 230 runs a FSM machine consistent with the process 1200. The process 1200 may execute in response to messages sent by the SC 230.


The process 1200 begins with a reset state 1210. As mentioned previously, the reset state may be reached from a power-up condition, another device state (such as a check of the NVM 320) or a reset command from a controller, e.g. the aSC 230a. The process 1200 advances to a state 1220, designated DEVICE_PRE_STARTUP. In an illustrative embodiment, the state 1220 includes a plurality of configuration events that ends with the local controller 290 sending a message over the RSBus 180 indicating the local controller 290 is ready to start. This message is referred to for convenience as DEVICE_Startup. After the state 1220, the process 1200 advances to a state 1230, designated WAIT_TO_BE_ASSIGNED. The state 1230 includes a plurality of configuration events that ends with the local controller 290 receiving a message from the aSC 230a commanding a change to an operational state, referred for convenience as aSC_Change_State. Upon receiving the aSC_Change_State message, the process 1200 advances to a state 1240 and exits.


Note that in all states the local controller 290 can still respond to a Class 6 diagnostic message. Thus, from any state, a message may force the process 1200 to the HARD_DISABLED state 1250 or to the reset state 1210. The process 1200 illustrates an example in which the process 1200 enters the HARD_DISABLED state 1250 from the sate 1220. The process 1200 remains in the state 1250 until the local controller 290 receives an appropriate message as described previously. The process 1200 may then advance to the state 1210, from which the local controller 290 may begin the initialization process again.


The process 1200 also illustrates an example in which the process 1200 enters a state 1260 SOFT_DISABLED state from the state 1230. The process 1200 may remain in the state 1260 until the local controller 290 is reset as previously described. The process 1200 may then advance to the state 1220.


In some embodiments, the local controller 290 is configured to remain, during the state 1220, in a listen-only mode for a predetermined period, e.g., at least about 5000 ms. In the listen-only mode, the local controller 290 monitors messages sent over the RSBus 180, but does not initiate any messages. After the listen-only period expires, the local controller 290 may optionally wait an additional startup delay period. After the optional additional delay, the local controller 290 may send a DEVICE_Startup message over the RSBus 180, and may then monitor the RSBus 180 for any messages that indicate other devices on the RSBus 180 failed to receive the startup message correctly.


In some cases, the local controller 290 may initiate its startup message before the end of the 5000 ms listen-only period. In one embodiment, the local controller 290 receives an SC_Coordinator message. In this case, the local controller 290 sends a startup message immediately after powering up. In this context, immediately means after about 100 ms plus an additional delay derived from the Device Designator. In some such cases, the message is not received successfully by at least one other local controller 290, resulting in a Bit Error event on the RSBus 180. If the Bit Error is detected, then the device may wait a specified period, after which it resends the startup message. A specific resend delay period may be selected for a particular local controller 290. In various embodiments the resend delay reduces the probability of message collision on the data bus 180. An algorithm that determines this resend delay time as a function of the Device Designator may compute the resend delay period as described further below.


In various embodiments the system 100 is configured to allow multiple devices of the same type to start communicating on the network 200. These embodiments allow seamless plug-and-play configuration even when the bandwidth of the data bus 180 is limited. The following example illustrates principles of these embodiments, and is presented by way of illustration without limitation.


In one embodiment the Device_Startup message ID is unique to each type of device. The message data field of the Device_Startup message may be identical to the data field of the Device_Designator message. These messages may be Class 5 messages, and in such cases they may have RSBus message IDs that include an offset number and a five bit order number shifted left by one, so as not to interfere with the CAN ID bit ID13 used to indicate the transport protocol. In these messages the order number is defined for a particular system device 410 as the five least significant bits of the Device Designator (DD) of that system device 410. In some embodiments using a Class 3 message that includes the 5-bit order number, the position of the order number in the message ID is not shifted by one. For the case of the aSC 230a, the order number can also be a number calculated from the number of other subnet controllers, typically one or more instances of the iSC 230i, detected on the subnet.


In a nonlimiting example, the Device_Startup message is 0x180, and the last byte of the DD is 0x45, then the message ID of the Device_Startup message is 0x180+(0x45 & 0x1F)=0x180+0x0A=0x18A.


As described further below, a base delay time may be scaled by the value of the order number. The occurrence of a bit error when a system device 410 sends a Device_Startup message indicates that two devices 290 simultaneously attempted to publish a message on the data bus 180, referred to herein as a message collision, or more briefly, a collision. When a collision occurs, the devices delay resending the Device_Startup message for a unique period derived from the order number.


Thus in various embodiments the presence of the order number advantageously reduces the probability of collisions by the factor 2b, where b is the number of bits of the order number. In the embodiments described above, the collision probability is reduced to about 3% of the collision probability that would otherwise be present.


After the local controller 290 successfully sends its startup message, the local controller 290 may wait for a Startup Response message from the aSC 230a. The Startup Response may be configured to provide a node assignment to the local controller 290. A node assignment message is referred to for discussion purposes as an aSC_DEVICE_Assignment message. The aSC_DEVICE_Assignment message may be sent by the aSC 230a from its subnet. This message may contain information regarding the subnet that the local controller 290 may need to operate properly. Information conveyed by aSC DEVICE Assignment may additionally include the Equipment Type assigned to local controller 290, and other flags. After the local controller 290 receives the aSC_DEVICE message, the local controller 290 may send an acknowledgement message over the subnet of the network 200 it has been assigned to. The message may include, e.g., the Equipment Type of the local controller 290.


If a local controller 290 does not detect a startup response message addressed to it within 5 minutes after it is initiated, the local controller 290 may repeat its startup message. In some embodiments, the local controller 290 repeats the startup message every 5 minutes until the local controller 290 successfully receives an Equipment Type and Subnet ID assignment, e.g., via a aSC_DEVICE_Assignment message. The local controller 290 may send an acknowledgement message indicating it is configured and ready to operate normally. In some embodiments, all local controllers 290 are required to receive an aSC_DEVICE_Assignment message before sending an acknowledgement. In some cases, exceptions may be made to this requirement where system design considerations warrant.


In some cases, the local controller 290 was assigned an Equipment Type and a Subnet ID in a previous system startup. In some embodiments, the local controller 290 retains the previously assigned values. In other cases, the local controller 290 was not previously assigned an Equipment Type and a Subnet ID, such as when the local controller 290 is initially added to the system 100. In some embodiments, a local controller 290 that has not previously been assigned an Equipment Type and a Subnet ID are assigned a default value. The default value of the Equipment Type may be a lowest Equipment Type for the specific device. The default Subnet ID may be, e.g., 0.


When a subnet starts up, an SC 230 may publish an SC_Coordinator message to the data bus 180 to coordinate control of the subnet with any other instances of the SC 230 on the subnet. When the local controller 290 receives the SC_Coordinator message it may respond with a DEVICE_Startup message if the local controller 290 is in the SUBNET_STARTUP or SOFT_DISABLED states, or in an OEM Test state described above. Otherwise the local controller 290 may respond with the DEVICE_Device_Designator message.


For example, if the local controller 290 sees the SC_Coordinator message after powering up, it may respond with the DEVICE_Startup message. Then, the local controller 290 may be assigned an Equipment Type and Subnet ID by an aSC_DEVICE_Assignment message, and may then receive an aSC_Heartbeat message. If the local controller 290 receives another SC_Coordinator message, the local controller 290 may again respond with the DEVICE_Startup message, because it has not cleared the SUBNET_STARTUP state since the last reset. If the local controller 290 is assigned and changes state to, e.g. a COMMISSIONING state and then receives another SC_Coordinator message, the local controller 290 may respond with a DEVICE_Device_Designator message. If the local controller 290 is assigned for the second time, but remains in the SUBNET_STARTUP state when yet another SC_Coordinator message arrives, it may respond with a DEVICE_Startup message, as it is no longer necessary to remember the previous state.


Restated from the perspective of the aSC 230a, if the aSC 230a receives a DEVICE_Device_Designator message, it knows that the local controller 290 has not recently been reset. If the aSC 230a receives the DEVICE_Startup message, it knows that the local controller 290 has not been assigned and has not changed state since last hardware or software reset of the local controller 290.



FIG. 6B illustrates an embodiment in which a link relay is used to selectively isolate the subnet 615 from the subnet 620. In a conventional communicating HVAC system all devices share a common communicating bus. During system installation and configuration special care must be taken to ensure that corresponding equipment from same HVAC system is matched. Installation becomes more cumbersome and prone to error as the number of connected systems increases, and as the number of components in the total system increase. Moreover, if a bus error occurs, such as a short circuit between bus wires, the entire network may be disabled.


In the embodiment of FIG. 6B, the subnet 615 and the subnet 620 may be selectively isolated from each other using a switch 699 such as a relay. Two systems, one corresponding to each subnet 615, 620 may be installed, configured and tested separately. At a proper time the aSC 230a in each subnet 615, 620, for example the SC 662 and the SC 682, may link its subnet to another subnet by actuating the switch 699. Advantageously, and in contrast to conventional HVAC systems, if a communication bus failure is detected, the aSC 230a may disconnect its subnet from the network 200 to localize the problem. The aSC 230a may put the switch 699 in a local mode (e.g., isolating its subnet) as soon as immediately upon receiving a SC_Coordinator message from any subnet, or upon receiving an SC_Startup message from an aSC 230a on the same subnet. After repair, the aSC 230a may be instructed via an appropriately configured message to reconnect to the network 200. Thus, at least some HVAC services may be maintained even if one subnet is rendered inoperable by a failure of the data bus 180.


Turning now to FIGS. 13A and 13B, illustrated is a method generally designated 1300A that may run on a subnet controller, e.g., the SC 230, during subnet startup, e.g., during the SUBNET_STARTUP state. FIG. 13A, presenting a summary view of the method 1300A, is described first. FIG. 13B, described afterward, presents a more detailed flow chart 1300B of the method.


First addressing FIG. 13A, the method 1300A begins with a reset state 1301. The state 1301 may result from power-up or an appropriately configured reset command. A state 1303 provides pre-startup activity, e.g., startup messages to system devices 410 in the network 200. A state 1309 provides post-startup activity, e.g., arbitrating the aSC 230a. In some cases a system device 410 will be placed in a hard disable state 1307, for example when pre-startup activity indicates that the system device 410 is not functioning properly. After the post-startup state 1309, an SC 230 that is assigned the role of the aSC 230a during arbitration during the state 1309 proceeds to an active-coordinator state 1313. The aSC 230a may perform system administrative tasks in the state 1313. After the aSC 230a performs such administrative tasks the method 1300A proceeds to state 1379 at which point the aSC 230a broadcasts an aSC_heartbeat message, indicating that the aSC 230a has asserted control over its subnet. The method 1300A terminates with a state 1399, from which the aSC 230a continues with system control functions.


An SC 230 that does not become the aSC 230a advances in the method 1300A to a passive-coordinator state 1315. The SC 230 entering the state 1315 is assigned the role of iSC 230i. The iSC 230i performs various tasks in the state 1315 and may then advance to an inactive state 1355. In various embodiments the iSC 230i continues to receive messages in the inactive state 1355, and may perform some functions such as storing backup parameters from other system devices 410, but does not exert control over the subnet. In some cases the iSC 230i may advance to a soft disable state 1351, e.g. if commanded to do so by a suitable formatted message.


As described, FIG. 13B presents a more detailed flow chart of the method 1300A, generally designated in FIG. 13B as a method 1300B. During the pre-startup state 1303, the SC 230 may execute a step 1305, in which it may send several SC_startup messages according to the various embodiments described herein. In the post-startup state 1309, the SC 230 may perform the previously describe arbitration in a step 1311. If the SC 230 becomes the aSC 230a, it may in various embodiments be the first of multiple instances of the SC 230 on the subnet to broadcast an SC_coordinator message. In a step 1317, the SC 230 determines if it is indeed the first to broadcast the SC_coordinator message. If so, the SC 230 enters the active-coordinator state 1313, wherein it performs various administrative tasks 1357-1375. The SC 230 then advances to the heartbeat-out state, wherein it may broadcast the aSC_heartbeat message in a step 1377. The SC 230, now referred to as the aSC 230a, may perform various configuration steps 1381-1391 before exiting the method 1300B with an exit state 1399.


If in the step 1317 the SC 230 determines it is not the first SC 230 to send an SC_coordinator message, it branches to the passive-coordinator state 1315 described previously. The SC 230 may perform various configuration steps 1319-1347. In a step 1349, the SC 230 may determine that it is disabled. If so, the SC 230 may enter the soft-disabled state 1351 and remain therein until a reset. If the SC 230 is not disabled, it may enter the inactive state 1355, at which point it is referred to as the iSC 230i. The method 1300B exits with an exit state 1398.



FIG. 13C presents without limitation an example embodiment of states of a state machine configured to implement a subnet controller startup process. Those skilled in the pertinent art will appreciate that the illustrated embodiment is one of many that may be used, and that such others are included in the scope of the disclosure.


In an advantageous embodiment, the controllers SC 230 do not queue inbound or outbound messages. Configuration times discussed below are presented without limitation for this case. Moreover, if a message is scheduled to be sent out at a specified time, in some embodiments only one attempt to send the message is made. The SC 230 does not automatically attempt to resend the message in such embodiments. However, the SC 230 may attempt to resend the message when a new specific time is scheduled to send the message after the send failure.


In an embodiment, the Subnet Controller startup sequence begins with the SC 230 issuing a SC_Startup message. The message may be sent at a consistent period after the SC 230 emerges from a reset state. In an example embodiment, the period is about 3000 ms plus a supplemental delay period derived from the Device Designator.


After performing a functional test of local NVM, e.g. the NVM 320, each SC 230 on the RSBus 180 listens for startup messages from other local controllers 290. The SC 230 records all Device Designators and configurations, e.g. Equipment Types and Subnet IDs, for all local controllers 290 on the network that send their startup messages.


After the supplemental delay period, e.g., about 1000 ms, the first SC 230 may attempt to send a second message, e.g., a SC_Coordinator message. In an example case in which there is no other traffic on the RSBus 180, the SC_Coordinator message appears on the RSBus 180 after about 1000 ms plus the time required to send the SC_Startup message onto the RSBus 180. Of course such timing is subject to imprecision determined by system-level design consideration. If the first SC 230 successfully broadcasts the SC_Startup message, it becomes the active coordinator, e.g., the aSC 230a, and proceeds to coordinate the system configuration. If the first SC 230 fails to send the SC_Startup message, or a second SC 230 successfully sends a message first, then the second SC 230 becomes the aSC 230a and the first SC 230 enters a PASSIVE_COORDINATOR state and becomes an inactive subnet controller, e.g. the iSC 230i.


The SC 230 may determine that it is a best subnet coordinator, e.g., has priority over other available instances of the SC 230 on the subnet 200, by querying such other instances to determine relative capability and features. The SC 230 may additionally take into account factors unrelated to features and capability. Such determination may include the following factors, presented by way of example without limitation:


1) Subnet Priority Level (SPL) (akin to a user selectable override)—the operator can chose to use a particular SC 230, even if it is deemed less advanced than others on the subnet


2) Device Product Level (DPL) (such as different tiers of capability based on cost)—an SC 230 with greater features or capability may be indicated by a product level number, with a greater number indicating a more capable SC 230


3) Its Protocol Revision Number (PRN)—a recent design revision of the SC 230 may be indicated by a higher revision number


4) Its Device Designator or Serial Number (DD/SN)—a greater number of the Device Designator or serial number may be generally associated with a more recently produced SC 230, which may be presumed to be more capable


In some embodiments, the determination is made considering the above-listed factors in the order indicated. Thus, a first SC 230 with a greater DPL than a second SC 230 may take priority even if the second SC 230 have a greater PRN or DD/SN. In some embodiments, the SPL overrides all other factors. In some embodiments if all factors are otherwise equal, then the SC 230 with a greater Device Designator will take priority over any SC 230 with a lower Device Designator.


If the SC 230 determines that it is the most qualified SC 230 on the subnet 200, it proceeds to assume control of the subnet 200 by first issuing a SC_Ready_To_Take_Over message. After a predetermined period, e.g. about 1000 ms, the aSC 230a issues the aSC_Heartbeat message. Alternatively, if the aSC 230a determines it is not the most qualified SC 230 on the subnet 200, it will pass a token to the SC 230 that is determined to be the most qualified SC 230. The SC 230 passing the token becomes an inactive iSC 230i, and the SC 230 receiving the token becomes the aSC 230a.


When the aSC 230a assumes control of the subnet of the network 200, it determines if the subnet of the network 200 is in the CONFIGURATION mode or in the VERIFICATION mode and proceeds to configure the system accordingly. If the subnet of the network 200 is in the VERIFICATION mode, the aSC 230a issues alarms for all missing and new local controllers 290. New local controllers 290 will be excluded from the subnet of the network 200 and placed in the SOFT_DISABLED state. The aSC 230a may also check the validity of the configuration of the subnet of the network 200 and issue appropriate alarms if needed. If the subnet of the network 200 is configured correctly, the aSC 230a concludes the SUBNET_STARTUP process by issuing an aSC_Change_State message.


In some cases there may be more than one SC 230 on a single subnet of the network 200 capable of controlling the subnet. In this case, an arbitration algorithm may arbitrate among the eligible SCs 230 to determine which SC 230 will assume the role of the aSC 230a. The algorithm may consider various factors, including, e.g., for each eligible SC 230 the CF1 flag setting, defined below, a Subnet Priority Level, a Device Product Level, and a hardware revision number. A Subnet Priority Level may be, e.g., an identifier that allows for overwriting the priority level of an SC 230. In some embodiments the Subnet Priority Level of each SC 230 is set to 0 in the factory and can only be changed by a specific sequence of messages sent by the Interface/Gateway 250. The Device Product Level may be, e.g., a designation of a level of feature configuration, such as Signature, Elite or Merit product lines. After the system 100 is configured, all aSCs 230a run the normal operation of their respective network subnets.


In various embodiments each SC 230 in the system 100 stores the Device Designators of all other configured SCs 230 in the system 100. Each SC 230 may also store its last active, inactive or disabled state.


Recalling that each message includes a message ID, the ID of the DEVICE_Startup message is unique to the message being sent. The message data field of the local controller 290 may be identical to the data field of DEVICE_Device_Designator messages sent by that local controller 290. Since these messages may be Class 3 messages, as described previously, they may have RSBus Message IDs that are formed from an offset number and a 5-bit Order Number. In an example embodiment, the Order Number of a particular local controller 290 is the 5 least significant bits of the Device Designator of that local controller 290.


For example, if the DEVICE_Startup message is 0x700 and the last byte of Device Designator is 0x45 then the message ID of the DEVICE_Startup message may be 0x700+(0x45 & 0x1F)=0x700+0x05=0x705.


For Class 5 messages that include the 5-bit Order Number, the position of the Order Number in the message ID may be shifted left by one position so as to prevent interference with the position of the Transport Protocol bit C5MID0/TP. The Order Number of the SC 230 may also be a number calculated from the number of other SCs detected on the subnet. For details, see the device message document.


All startup messages, e.g., DEVICE_Device_Designator and SC_Coordinator messages, can contain seven Configuration Flags, CF0-CF6. The encoding of these flags may vary depending on the device type. For example, the flags of the SCs 230 may be encoded differently than other local controllers 290.


In some embodiments, for the local controllers 290 that are not an SC 230 the flags may be encoded as follows:

    • CF0: 0 if the local controller 290 has not been configured (e.g. is a new device)
      • 1 if Installer Test Mode tests complete successfully, or upon receipt of an aSC_Change_State message indicating transition to Normal Operation
    • CF1: 0 if the control is intended for permanent use
      • 1 if it is attached temporarily
    • CF2: 0 if the local controller 290 cannot be flashed over the RSBus 180
      • 1 otherwise
    • CF3: 0 if the local controller 290 is hard disabled/not-communicating
      • 1 if the device is hard enabled/communicating
    • CF4: 0 if the local controller 290 is soft disabled, or was soft disabled immediately prior to sending this message, when this message is sent in the Subnet Startup state
      • 1 otherwise
    • CF5 0 if the local controller 290 is a factory installed part
      • 1 if the local controller 290 is a replacement part
    • CF6: 0 if the local controller 290 has failed the Data CRC check
      • 1 otherwise


In some embodiments, for the local controllers 290 that are an SC 230 the flags may be encoded as follows:

    • CF0: 0 if the SC 230 has not been configured, e.g. is a new device
      • 1 upon successful completion of Installer Test Mode tests
    • CF1 0 if the SC 230 does not recognize any indoor units on the subnet
      • 1 if the SC 230 recognizes at least one indoor unit on the subnet
    • CF2 0 if the SC 230 cannot be flashed over RSBus 180,
      • 1 otherwise
    • CF3 0 if the SC 230 is hard disabled/not-communicating
      • 1 if the SC 230 is hard enabled/communicating,
    • CF4 0 if the Subnet Controller is soft disabled, or was soft disabled immediately prior to sending this message
      • 1 otherwise


As described above, the CF0 flag may be used as an indication of the whether an associated local controller 290 has been configured. The CF0 flag may be cleared (0) in all local controllers 290 under the following circumstances, e.g.:

    • When all device parameters revert to default values, such as via a specific diagnostic inquiry/command.
    • When the device is restored to factory defaults via a specific diagnostic inquiry/command.
    • When the device loses its internal NVM settings, as described below.


At any time and regardless of the CF0 flag setting, if the local controller 290 enters the COMMISSIONING state and either the UI/G 250 or the aSC 230a attempt to change settings on the local controller 290, the local controller 290 complies with the changes.


In various embodiments, the system 100 enters the CONFIGURATION mode or the VERIFICATION mode described previously. In an embodiment the system 100 may only enter the CONFIGURATION mode when the CF0 flag is reset (0) for all native SCs 230 on the subnet. A non-native SC 230 may enter the CONFIGURATION mode when either its CF0 bit or the CF1 bit is reset. As used herein a native SC 230 is an SC 230 that was present in the subnet during the most recent subnet configuration. A non-native SC 230 is an SC 230 that was not present, and was this not detected and is not remembered by other instances of the SC 230 in the subnet. As described above, the CF1 flag is set when it recognizes a configured indoor unit on its subnet 200. If these conditions for entering the CONFIGURATION mode are not present, the system 100 may be placed in the VERIFICATION mode by a SC 230 on the subnet 200.


If a Bit Error is detected when sending the startup message, e.g., DEVICE_Startup, the message is resent after a predetermined delay time in various embodiments. The delay time may be computed by an algorithm that employs the Device Designator. In one embodiment, the Device Designator field is parsed into 4-bit portions, each being a contiguous subset of bits of the Device Designator. If the Device Designator field is 32 bits, e.g., eight successive portions are thereby obtained. For brevity the bits of the Device Designator field are represented as DD[0]-DD[31]. In an example, the value of each 4-bit portion is incremented by 1, with the result being multiplied by 4 ms to determine a delay time associated with that portion. In an embodiment, the eight successive portions are associated with delay times as indicated below:

    • DD[0]-DD[3]: Startup Delay
    • DD[4]-DD[7]: First Resend Delay
    • DD[8]-DD[11]: Second Resend Delay
    • DD[12]-DD[15]: Third Resend Delay
    • DD[16]-DD[19]: Fourth Resend Delay
    • DD[20]-DD[23]: Fifth Resend Delay
    • DD[24]-DD[28]: Sixth Resend Delay
    • DD[29]-DD[31]: Seventh Resend Delay


If the message is not successfully sent after the eight attempts, subsequent delivery attempts may continue to be made repeating the eight resend delays. In some cases, the message may be resent up to a predetermined maximum, e.g. 255. If the message is not successfully sent within the predetermined maximum, the local controller 290 may be configured to disengage from the subnet 200, e.g. enter a passive state. The local controller 290 may further be configured to execute the message send/retry cycle again after a predetermined delay period, e.g., about 5 minutes.


As described previously with respect to FIG. 5, in some embodiments a single physical device may include multiple logical devices. In cases in which a physical device contains more than one logical device, it may be preferable to limit all logical devices to be configured to the same subnet 200. Generally each logical device, e.g., the aSC 470, the user interface 480 and the comfort sensor 490, sends out its own DEVICE_Startup messages.


Generally, logical devices are configured separately by messages sent by the aSC 230a. In the case of a system device 410 that includes multiple logical devices, the aSC 230a assigns the same Subnet Identifier to each logical device. Taking the thermostat 590 (FIG. 5) as an example, the aSC 230a may assign the Equipment Type and the Subnet Identifier to the aSC 510. The aSC 230a may then also assign the same Subnet Identifier to the user interface 520 and the comfort sensor 530 via instances of an assignment message, e.g., aSC_DEVICE_Assignment. Each logical device may also respond with its own message acknowledging the assignment message, e.g., a DEVICE_Assignment_Acknowledge message.


As described previously, each local controller 290 may have an associated NVM, e.g., the NVM 320 (FIG. 3). In some cases, the NVM may become corrupted. In various embodiments the contents of the NVM of each local controller 290 are archived by each SC 230 on the subnet of the network 200. Each SC 230 may also archive the last active, inactive and disabled state of each local controller 290. The contents of a corrupted NVM may then be restored using archival copies of the contents stored on any SC 230. Additionally, in some cases a local controller 290 may archive application-specific data on one or more of the SCs 230. For example, a local controller 290 may have associated data values that represent special parameters. During the COMMISSIONING state, the local controller 290 may archive the parameters on the one or more SCs 230. Then, in various embodiments the SC 230 is configured to restore the contents of the NVM on a local controller 290 that has determined the contents thereof are corrupt.


In some embodiments a local controller 290 maintains a local copy of the NVM data. The local controller 290 so configured may recover its NVM data without intervention from an SC 230. The local controller 290 may be configured to restore the contents of its NVM without changing its apparent behavior to other local controllers 290 in the system 100. The local controller 290 may be further configured to verify the integrity of the NVM contents before sending a DEVICE_Startup message.


In an embodiment, when participation by an SC 230 is needed to recover NVM data, the recovery process may be performed by the device itself in conjunction with the aSC 230a, Four example failure modes are described without limitation to demonstrate various features of the embodiment.


In a first case, the data stored on the local controller 290 NVM is corrupt, but a locally archived copy is valid. In this case, the device may recover the data from its internal backup in a manner that does not affect its apparent operation as viewed by the other local controllers 290. In an advantageous embodiment, no indication is given to the other local controllers 290, and control of the affected local controller 290 is unaffected.


In a second case, the data stored on the local controller 290 NVM is corrupt, but a locally archived copy is not valid, or no copy is locally stored. However, the aSC 230a stores correct values for the device. In this case, the local controller 290 may send a message, e.g., the DEVICE_Startup message, sent on Subnet 0, using the default Equipment Type for that local controller 290, with the CF6 flag cleared. It responds to all SC_Coordinator messages using the same message until a new Equipment Type and Subnet ID are assigned to it. As long as the NVM data are not recovered the CF6 flag remains reset. Once an aSC 230a takes over, it proceeds to assign the Equipment Type and Subnet ID to the local controller 290 as usual, which the local controller 290 stores internally. The aSC 230a recognizes the local controller 290 using its Device Designator and may assign the same Equipment Type and Subnet ID as previously assigned thereto. The local controller 290 may initially restore NVM data to default values stored in the device flash. The aSC 230a may in parallel enter the COMMISSIONING state to reprogram the local controller 290 with the data from its backup. The local controller 290 will typically replace any default values it may have placed in the NVM with data provided by the aSC 230a.


In a third case, the archival data stored on the aSC 230a is corrupt. In this case, the aSC 230a may enter the VERIFICATION mode. In this state, the aSC 230a may obtain all data from associated local controller 290 as is normally obtained during verification. In some embodiments, the aSC 230a may instruct the local controller 290 to provide more data than is normally provided during the verification.


Finally, in a fourth case, the data stored on the local controller 290 and the archival data stored on the aSC 230a is corrupt. In this case the local controller 290 may restore the NVM to default values. The aSC 230a may obtain the default data as described for the third case.


Turning now to FIG. 14, illustrated is a method, generally denoted 1400, of an algorithm that may be employed by the aSC 230a to assign the Equipment Type to such a local controller 290. The method 1400 is representative of cases in which a device has an Equipment Type unknown to the aSC 230a.


In step 1405, the aSC 230a receives a startup message, e.g. DEVICE_Startup, from a local controller 290 having an unknown Equipment Type. In a branching step 1410, the aSC 230a determines if another unknown local controller 290, that has the same Equipment Type as the current unknown Equipment Type, has previously sent a startup message. If not, the method 1400 advances to a step 1415. In the step 1415, the aSC 230a assigns to the local controller 290 the Equipment Type provided by the local controller 290 in its startup message, and then ends with a step 1420.


If in the step 1410 the aSC 230a determines in the affirmative, then the method 1400 advances to a step 1425. In the step 1425, a variable startET is set equal to the value of the Equipment Type received from the unknown local controller 290 in the startup message. A variable newET is set equal to the value of startET. A variable Increment is set to +1. The method 1400 advances to a step 1430, in which the value of Increment, presently +1, is added to newET.


In a decisional step 1435, if it is determined that there is another local controller 290 that has already been assigned the Equipment Type value currently stored by newET, the method returns to the step 1430, where newET is again incremented. If instead it is determined in the step 1435 that there is not a local controller 290 with the Equipment Type held by newET, the method 1400 advances to a step 1440, in which the aSC 230a assigns the value of newET to the Equipment Type of the unknown local controller 290.


In a decisional step 1445, the aSC 230a waits for an acknowledgement from the unknown local controller 290, e.g., via a DEVICE_Assignment_Ack message. When the acknowledgement is received, the method 1400 advances to a decisional step 1450, in which it is determined whether the assignment was successful. If the assignment was successful, the method 1400 ends at the step 1420.


If in the step 1450 it is determined that the assignment was not successful, the method 1400 advances to a decisional step 1455. If it is determined that the Equipment Type was rejected as being too high, the method 1400 advances to a step 1460, in which newET is set equal to startET and the value of Increment is set to −1. The method then returns to the step 1430.


If instead in the step 1455 it is determined that the Equipment Type is not rejected as too high, the method 1400 advances to a decisional step 1465 where it is determined if the Equipment Type is rejected for being too low. If the Equipment Type is not rejected as being too low, this condition represents the case, e.g., that there is another device already assigned the Equipment Type value. The method 1400 returns to the 1430 where newET is again incremented. If, on the other hand, it is determined in the step 1465 that the Equipment Type was rejected for being too high, the method advances to a step 1470. The step 1470 establishes that the maximum number of devices is present in the system 100. The unknown local controller 290 is set to a SOFT_DISABLED state, and the method 1400 ends with the step 1420.


In one advantageous embodiment, the disclosure provides for a method of replacing controls in an HVAC system. In some circumstances, a controller, e.g., the UI/G 250, may need to be replaced in an installed and configured HVAC system, e.g., the system 100. Manual configuration and calibration of the new controller by the installer would be time consuming and expensive to the user of the system 100.


In an embodiment, settings for the SC 230 are provided by an archived copy by another SC 230 as described previously. Each subnet controller, e.g., the SC 230, stores the Device Designator and equipment serial and part numbers for each device in the network, e.g., the network 200. The Device Designator and equipment serial and part numbers of an original local controller 290 may be assigned and stored on the local controller 290 at a manufacturing or assembly facility, e.g. However, the equipment serial and part numbers may be left blank for a replacement local controller 290. The missing equipment serial and part numbers and a set CF5 flag, as describe above, identify the replacement local controller 290 as such to the SCs 230 on the network 200. The CF5 flag may be provided by the replacement local controller 290 via a DEVICE_Startup message, e.g. Thus, the aSC 230a may configure the replacement local controller 290 with all pertinent parameter values, as well as the equipment serial and part numbers, all previously archived from the replaced local controller 290. This approach significantly simplifies the replacement of local controllers 290 on the network 200.


In an example embodiment, the aSC 230a categorizes the replacement local controller 290 based on the Device Designator actually stored thereon, rather than based on the archived Device Designator of the replaced local controller 290. The aSC 230a determines that the replacement local controller 290 is a replacement part by the presence of the set CF5 flag, as described previously, and the lack of a local controller 290 on the subnet 200 that corresponds to the replacement local controller 290. In the VERIFICATION mode, the replacement local controller 290 is placed in a SOFT_DISABLED state. The configuration of the replacement local controller 290 with the archived data from the replaced local controller 290 is performed during the COMMISSIONING state. Optionally, an alarm may be generated by the aSC 230a indicating that the replaced local controller 290 is missing.


In an embodiment, during the COMMISSIONING state the aSC 230a may verify that the replacement local controller 290 is compatible with the replaced local controller 290 with the participation of a user or installer. For example, the aSC 230a may prompt the user to automatically configure the replacement local controller 290 by listing a set of equipment serial and part numbers for each of the replacement local controller 290 and the replaced local controller 290. The user may then be prompted to copy the archived values of all data, including all pertinent parameters and the equipment serial and part numbers onto the replacement local controller 290. If the user accepts, then the configuration data are automatically copied to the replacement local controller 290. In another embodiment, the user declines to automatically overwrite the configuration data of the replacement local controller 290, and may enter desired configuration data via a UI/G 250.


When a new local controller 290 is added to the subnet of the network 200, this condition may be determined by the aSC 230a by the presence of a reset CF5 flag, and a Device Designator that does not match a local controller 290 already present on the subnet. In such a case, the equipment serial and part numbers are undisturbed in the COMMISSIONING state. However, as before the new local controller 290 may be placed in the SOFT_DISABLED state in the VERIFICATION mode. The CF5 flag may be protected against casual change. In some cases, the CF5 flag may only be changed in a privileged mode, e.g., an OEM test.


In various embodiments of the system 100 normal operation involves the delivery of DEVICE_Status messages and service demand messages by the aSC 230a. A demand message may be expressed in terms of a percent of a full capacity of a demand unit 155. A staged demand unit 155 may round off a percent of demand communicated to it to a value associated with a nearest stage capacity. In some embodiment the aSC 230a is configured to know values associated with the stages of a particular staged demand unit 155, and may provide demand messages consistent with these values. In some embodiments a demand message targeting a demand unit 155 that includes a blower or similar device contain a blower override value. The demand unit 155 may change a blower speed from a default value associated with the requested demand level in response to the override value. An override value of 0 may indicate that the default may be used.


In some embodiments, a heating demand is mutually exclusive of a cooling demand. In cases of simultaneous demands that are not prohibited, a blower speed may default to a highest CFM value of the demands associated with the multiple demands. In one example, the configuration of the system 100 is changed from cool plus blower to blower only. A blower demand message may be sent with a desired blower level, followed by a cooling demand message that causes a compressor to cease operation.


In various embodiments, the aSC 230a tracks the availability of capacity of the demand units 155. If for some reason a service, e.g., cooling, provided by a demand unit 155 becomes unavailable, the aSC 230a may clear demand messages that request that service.


Each local controller 290 is configured to transmit its own status on the RSBus 180 using the DEVICE_Status message. In various embodiments all DEVICE_Status messages share the same first two bytes regardless of equipment type. These two bytes may contain alarm and service status information. Each bit in the service status byte (service bits) will be ‘1’ if the service provided by the demand unit 155 associated with the local controller 290 is available, or if the local controller 290 sending the message does not know status of the service. The following device status table illustrates the principle:























Heat







Gas
Electric
Pump





Device
Fan
Heat
Heat
Heat
Cooling
Humidification
Dehumidification







Comfort
1
1
1
1
1
1
1


Sensor









Furnace
1
1
1
1
1
1
1


Heat Pump
1
1
1
1
1
1
1


Dehumidifier
1
1
1
1
1
1
1


Logical AND
1
1
1
1
1
1
1









Each row of the table represents a device status vector maintained by the corresponding system device. Each column of the table represents a potential service provided by the corresponding system device. A potential service is a service that may be provided by the system 100 when the system 100 is appropriately configured. The system 100 need not actually be configured to provide the service. Also, each system device typically only provides a subset of the potential services, and may only provide a single service.


If the service is not available the bits of the service status byte are set to ‘0’. The aSC 230a receives the service bytes from all the various system devices 410 on the subnet 200 and performs a logical AND (any device sending a ‘0’ will result in the service being unavailable). In an embodiment, each alarm associated with a status bit modifies the status bit when the alarm is active. Thus, for example, an alarm condition of the furnace 120 may result in the associated status bit of the furnace 120 being set to “0” to indicate the furnace is unavailable. The following device status table illustrates the principle:























Heat







Gas
Electric
Pump





Device
Fan
Heat
Heat
Heat
Cooling
Humidification
Dehumidification







Comfort
1
1
1
1
1
1
1


Sensor









Furnace
1
0
1
1
1
1
1


Heat Pump
1
1
1
1
1
1
1


Dehumidifier
1
1
1
1
1
1
1


Logical AND
1
0
1
1
1
1
1









Each bit that indicates the unavailability of a service, e.g. “0”, may be reset to a state indicating the service is available, e.g., “1” when an alarm condition related the unavailable service clears. The alarm may clear after the expiration of a predetermined interval, e.g. an “alarm timeout”, or the alarm may clear if reset by intervention of an operator, e.g., via the UI 240.


This method advantageously simplifies maintenance of the system 100 by rendering it unnecessary to modify the device status in many cases when a system device is replaced. The method also eases system expansion by the manufacturer.


Each alarm may be an event-type alarm or a continuous-type alarm. An event-type alarm has a timeout associated with it, while a continuous alarm is active as long as the alarm condition persists.


The aSC 230a may then transmit its DEVICE_Status message including the combined results of all other local controllers 290 and the service byte of the aSC 230a. The aSC 230a may then stop the demand corresponding to the service bit set to ‘0’. The demand may not be restarted until all devices restore the service bit and the resulting AND is equal to ‘1’. The demands from the same demand group (e.g. heating) can be substituted. In an embodiment if a heat pump service is not available and the system requires heating, gas heating or auxiliary electric heating may be used instead. In such a case, the aSC 230a may issue appropriate gas heating or electric heating demands.


The service bits may be set in all DEVICE_Status messages in all possible device states. In an embodiment of a routine VERIFICATION mode startup, the service bits are published by a particular local controller 290 on the RSbus 180 upon receipt by that local controller 290 of the first aSC_Change_State message after reset. Alternatively, the service bits may be published upon receipt by the publishing local controller 290 of an aSC_Assignment message after an asynchronous device reset. The service bits may be continuously updated to match the state of the service as determined by the local controller 290.



FIG. 15 illustrates without limitation a method generally designated 1500 that is illustrative of a dialog between the aSC 230a and a demand unit 155, e.g., an Integrated Furnace Control (IFC) or an Air Handler Control (AHC). Command messages are represented by underlined text. The method 1500 should not be considered a programming model or all-inclusive, but only as example to illustrate various principles of the disclosure.


The method 1500 begins with a step 1510. In a step 1520 the aSC 230a determines if blower service is needed. If yes, the method advances to a step 1530, in which the aSC 230a determines if blower service is available. If the blower service is available, the method advances to a step 1540. In the step 1540 the aSC 230a sends a Blower_Demand message to the IFC or AHC, as appropriate. The method 1500 then advances to a step 1550. In the step 1550, the IFC or AHC transmits a DEVICE_Status message to the aSC 230a that includes the status of the blower. In a step 1560 the aSC 230a then sends a SC_UI_Zone_Status message to the UI 240 to provide feedback to the user/operator. If in the step 1530 the aSC 230a determines that blower service is not available, the method 1500 advances directly to the step 1550 without issuing a Blower_Demand message. The method 1500 ends with a step 1570.


Messages between any UI 240 and the aSC 230a may be sent as a Class 1 message. In various embodiments Class 1 messages have priority over other messages, thus potentially reducing message latency. In most cases a display screen of the UI 240 is not updated with data directly from user input, but with data returned from the aSC 230a in response to the messages generated by the UI 240 in response to the user input. Exceptions to this general rule include cases in which a user selection results in altered equipment operation, such as a mode change. In that case, the user input may be buffered at the UI 240 until the selection is finalized, which may be either explicit or by timeout. Once the user selection is finalized, the UI 240 may send a message to the aSC 230a in response to the selection.


Local controllers 290 may be configured to promptly reply to a demand message. In an example embodiment, the local controller 290 acknowledges receipt of the demand message within about 100 ms by broadcasting a DEVICE_Status message. The DEVICE_Status message may have the Acknowledge bits set to 01b (ACK) if the message is positively acknowledged. Other aspects of the message may be otherwise unchanged from the case that no acknowledgment is made. A 0% demand is typically acknowledged in the same manner as non-zero demands. For a staged demand unit 155, a demand below its minimum range may be treated as a 0% demand. In general, a demand message above 100% may be treated as a 100% demand.


Turning now to FIG. 16, illustrated is a method of the disclosure generally designated 1600 of manufacturing a subnet controller of an HVAC data processing and communication network. The method 1600 begins with an entry state 1610. In a step 1620, a bus interface device, e.g., the local controller 290, is configured to receive a message from a subnet controller over the network. The subnet controller may be, e.g., the aSC 230a. In a step 1630, the bus interface device is configured to control a demand unit in response to the message. The method 1600 ends with an exit state 1640.



FIG. 17 illustrates another method of the disclosure generally designated 1700 of a method of manufacturing a bus interface device networkable in an HVAC data processing and communication network. The method 1700 begins with an entry state 1710. In a step 1720, a physical layer interface, e.g., the PLI 310, is configured to interface to a data network, e.g., the RSBus 180. The physical layer interface may be located, e.g., on an active subnet controller such as the aSC 230a. In a step 1730 a communication module, e.g. the communication module 340, is configured to send and receive messages over the data network via the physical layer interface. The communication module may be located, e.g., on a bus interface local controller 290. In a step 1740 a functional block, e.g., the functional block 350, is configured to reset in response to a message received by the communication module. The functional block may be located on the same bus interface device as the communication module. The method 1700 ends with an exit state 1750.



FIG. 18 illustrates another method of the disclosure generally designated 1800 of a method of manufacturing a subnet controller of an HVAC data processing and communication network. The method 1800 begins with an entry state 1810. In a step 1820, a physical layer interface, e.g., the PLI 310, is configured to electrically interface to the network. In a step 1830, a communication module, e.g., the communication module 340, is configured to send and receive messages over the network via the physical layer interface. In a step 1840, a functional block, e.g., the functional block 350, is configured to respond to a message received by the communication module. The functional block thereby enters a disabled state in which the functional block does not execute control functions, but the communication module may receive messages over the network. The method 1800 ends with an exit state 1850.



FIG. 19 illustrates a method generally designated 1900 of manufacturing a device networkable in an HVAC data processing and communication network. The method 1900 begins with an entry state 1910. In a step 1920, a physical layer interface is configured to interface to a network. The physical layer interface may be, e.g., the PLI 310. In a step 1930, a communication module, e.g. the communication module 340, is configured to send and receive messages over the network via the physical layer interface. In a step 1940, a non-volatile memory is configured to store configuration data. The non-volatile memory may be, e.g., the NVM 320. In a step 1950, a functional block, e.g., the functional block 350, is configured to respond to a message received by the communication module thereby enabling a privileged operating mode not normally available to a user of the network. The method 1900 ends with an exit state 1960.



FIG. 20 illustrates a method generally designated 2000 of manufacturing a device networkable in an HVAC data processing and communication network. The method 2000 begins with an entry state 2010. In a step 2020, a physical layer interface is configured to interface to the network. The physical layer interface may be, e.g., the PLI 310. In a step 2030, a communication module, e.g. the communication module 340, is configured to send and receive messages over the network via the physical layer interface. In a step 2040, a non-volatile memory, e.g., the NVM 320, is configured to store configuration data. In a step 2050, a plurality of logical devices is configured to be addressable via the communication module. Each logical device is thereby capable of being independently disabled. The method 2000 ends with an exit state 2060.



FIG. 21 illustrates a method of manufacturing a device networkable in an HVAC data processing and communication network. The method 2100 begins with an entry state 2110. In a step 2120, a physical layer interface is configured to interface to a data network. The physical layer interface may be, e.g., the PLI 310. In a step 2130, a communication module, e.g., the communication module 340, is configured to send and receive messages over the data network via the physical layer interface. In a step 2140, a non-volatile memory, e.g., the NVM 320, is configured to store device configuration data. The messages include a first class of messages that address the device using only a Device Designator of the device, and a second class of messages that address the device using a message ID formed from a portion of the Device Designator and an offset. The method 2100 ends with an exit state 2150.



FIG. 22 illustrates a method of manufacturing an HVAC data processing and communication network. The method 2200 begins with an entry state 2210. In a step 2220, a first subnet controller, e.g., a first aSC 230a, is placed in communication with a first bus interface device over a data bus. The bus interface device may be, e.g., the local controller 290. In a step 2230, a second subnet controller, e.g., a second aSC 230a or an iSC 230i, is configured to archive configuration data of the first subnet controller and the bus interface device. The method 2200 ends with an exit state 2240.



FIG. 23 illustrates a method of manufacturing an HVAC data processing and communication network. The method 2300 begins with an entry state 2310. In a step 2320, a demand unit is configured to provide a service having a maximum service capacity. In a step 2330, a subnet controller is configured to send a message to the demand unit instructing the demand unit to provide a portion of the maximum. The method 2300 ends with an exit state 2340.



FIG. 24 illustrates a method of manufacturing an HVAC data processing and communication network. The method 2400 begins with an entry state 2410. In a step 2420, a first subnet controller and a second subnet controller are configured to communicate over the network. In a step 2430, the second subnet controller is configured to employ an arbitration algorithm to assert control over the network and the first subnet controller. The method 2400 ends with an exit state 2440.


Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.

Claims
  • 1. An HVAC data processing and communication network, comprising: an active subnet controller configured to act as a network controller;an inactive subnet controller configured to back up parameters stored in said active controller and to act as the network controller when said active controller malfunctions;a user interface configured to publish a privilege request message to a data bus;a system device configured to: receive messages via said data bus;store configuration data in nonvolatile memory;enable a privileged operating mode not normally available to a user of said network in response to said privilege request message; andwherein said active subnet controller is selected by a negotiation process based on a set of features and parameters of each subnet controller by entering a startup state upon power-up.
  • 2. The network of claim 1, wherein said privileged operating mode enables said system device to write said configuration data to said non-volatile memory, wherein said configuration data conveyed to said system device via one or more configuration messages published by said user interface.
  • 3. The network of claim 1, wherein said privileged operating mode enables a test mode of said system device in which system device receives said configuration data via one or more configuration messages and causes said configuration data to be stored in said non- volatile memory.
  • 4. The network of claim 1, wherein enabling said privileged operating mode includes said system device receiving a password via an authentication message.
  • 5. The network of claim 1, wherein said user interface is configured to send said privilege request message in response to input by an operator.
  • 6. The network of claim 5, wherein said user interface is further configured to receive said input from a remote entity.
  • 7. The network device of claim 6, wherein said user interface is further configured to receive said input via the internet.
  • 8. A method of manufacturing a device networkable in an HVAC data processing and communication network, comprising: configuring a physical layer interface to interface to a network;configuring a communication module to send and receive messages over said network via said physical layer interface, said messages including communications with an active subnet controller of said network that acts as a network controller of said network and an inactive subnet controller configured to act as said network controller when said active subnet controller malfunctions, said inactive subnet controller configured to back up parameters stored in said active controller;configuring a non-volatile memory to store configuration data; andconfiguring a functional block to respond to a privilege request message received by said communication module thereby enabling a privileged operating mode not normally available to a user of said network; andselecting the active subnet controller by a negotiating process based on a set of features and parameters of each subnet controller by entering a startup state upon power-up.
  • 9. The method of claim 8, wherein said privileged operating mode enables writing said configuration data to said non-volatile memory, wherein said configuration data are received via one or more configuration messages.
  • 10. The method of claim 8, wherein said privileged operating mode enables a test mode of said functional block grants access to said in which said functional block receives said configuration data via one or more configuration messages and causes said configuration data to be stored in said non-volatile memory.
  • 11. The method of claim 8, wherein enabling said privileged operating mode includes receiving a password via an authentication message.
  • 12. The method of claim 8, further comprising a user interface configured to send said privilege request message in response to input by an operator.
  • 13. The method of claim 12, wherein said user interface is further configured to receive said input from a remote entity.
  • 14. The method of claim 13, wherein said user interface is further configured to receive said input via the internet.
  • 15. A system device of an HVAC data processing and communication network, comprising: a physical layer interface configured to interface to said network;a communication module configured to send and receive messages over said network via said physical layer interface;a non-volatile memory configured to store configuration data; anda functional block adapted to respond to a privilege request message received by said communication module thereby enabling a privileged operating mode not normally available to a user of said network;wherein said communication module is configured to communicate with an active subnet controller acting as a network controller of said network and an inactive subnet controller when acting as said network controller when said active subnet controller malfunctions;wherein said inactive subnet controller is configured to backup parameters stored in said active controller; andwherein said active subnet controller is selected by a negotiation process based on a set of features and parameters of each subnet controller by entering a startup state upon power-up.
  • 16. The system device of claim 15, wherein said privileged operating mode enables writing said configuration data to said non-volatile memory, wherein said configuration data are received via one or more configuration messages.
  • 17. The system device of claim 15, wherein said privileged operating mode enables a test mode of said functional block in which said functional block receives said configuration data via one or more configuration messages and causes said configuration data to be stored in said non-volatile memory.
  • 18. The system device of claim 15, wherein enabling said privileged operating mode includes receiving a password via an authentication message.
  • 19. The system device of claim 15, further comprising a user interface configured to send said privilege request message in response to input by an operator.
  • 20. The system device of claim 19, wherein said user interface is further configured to receive said input from a remote entity.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/167,135, filed by Grohman, et al., on Apr. 6, 2009, entitled “Comprehensive HVAC Control System” and U.S. Provisional Application Ser. No. 61/852,676, filed by Grohman, et al., on Apr. 7, 2009, and is also a continuation-in-part application of Application No. 12/258,659, filed by Grohman on Oct. 27, 2008, entitled “Apparatus and Method for Controlling an Environmental Conditioning Unit,” all of which are commonly assigned with this application and incorporated herein by reference. This application is also related to the following U.S. patent applications, which are filed on even date herewith, commonly assigned with this application and incorporated herein by reference: Ser. No.InventorsTitle12/603,464Grohman, “Alarm and Diagnostics System and Methodet al.for a Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,534Wallaert,“Flush Wall Mount Control Unit and In-et al.Set Mounting Plate for a Heating,Ventilation and Air Conditioning System”12/603,449Thorson, “System and Method of Use for a Useret al.Interface Dashboard of a Heating,Ventilation and Air ConditioningNetwork”12/603,382Grohman“Device Abstraction System and Methodfor a Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,526Grohman, “Communication Protocol System andet al.Method for a Distributed-ArchitectureHeating, Ventilation and AirConditioning Network”12/603,527Hadzidedic“Memory Recovery Scheme and DataStructure in a Heating, Ventilation andAir Conditioning Network”12/603,490Grohman“System Recovery in a Heating,Ventilation and Air ConditioningNetwork”12/603,473Grohman, “System and Method for Zoning aet al.Distributed-Architecture Heating,Ventilation and Air ConditioningNetwork”12/603,525Grohman, “Method of Controlling Equipment in aet al.Heating, Ventilation and AirConditioning Network”12/603,512Grohman, “Programming and Configuration in aet al.Heating, Ventilation and AirConditioning Network”12/603,431Mirza, “General Control Techniques in aet al.Heating, Ventilation and AirConditioning Network”

US Referenced Citations (1284)
Number Name Date Kind
4048491 Wessman Sep 1977 A
4187543 Healey et al. Feb 1980 A
4231352 Bowden et al. Nov 1980 A
4262736 Gilkeson et al. Apr 1981 A
4296464 Woods et al. Oct 1981 A
4381549 Stamp et al. Apr 1983 A
4464543 Kline et al. Aug 1984 A
4482785 Finnegan et al. Nov 1984 A
4501125 Han Feb 1985 A
4606042 Kahn et al. Aug 1986 A
4616325 Heckenbach et al. Oct 1986 A
4694394 Costantini Sep 1987 A
4698628 Herkert et al. Oct 1987 A
4703325 Chamberlin et al. Oct 1987 A
4706247 Yoshioka Nov 1987 A
4723239 Schwartz Feb 1988 A
4829447 Parker et al. May 1989 A
4841450 Fredriksson Jun 1989 A
4843084 Parker et al. Jun 1989 A
4873649 Grald et al. Oct 1989 A
4884214 Parker et al. Nov 1989 A
4887262 van Veldhuizen Dec 1989 A
4888728 Shirakawa et al. Dec 1989 A
4889280 Grald et al. Dec 1989 A
4931948 Parker et al. Jun 1990 A
4941143 Twitty et al. Jul 1990 A
4942613 Lynch Jul 1990 A
4947484 Twitty et al. Aug 1990 A
4947928 Parker et al. Aug 1990 A
4953083 Takata et al. Aug 1990 A
4955018 Twitty et al. Sep 1990 A
4967567 Proctor et al. Nov 1990 A
4978896 Shah Dec 1990 A
4991770 Bird et al. Feb 1991 A
4996513 Mak et al. Feb 1991 A
5006827 Brueton et al. Apr 1991 A
5018138 Twitty et al. May 1991 A
5039980 Aggers et al. Aug 1991 A
5042997 Rhodes Aug 1991 A
5058388 Shaw et al. Oct 1991 A
5061916 French et al. Oct 1991 A
5065813 Berkeley et al. Nov 1991 A
5086385 Launey et al. Feb 1992 A
5103896 Saga Apr 1992 A
5105366 Beckey Apr 1992 A
5115967 Wedekind May 1992 A
5128855 Hilber et al. Jul 1992 A
5165465 Kenet Nov 1992 A
5170935 Federspiel et al. Dec 1992 A
5180102 Gilbert et al. Jan 1993 A
5181653 Foster et al. Jan 1993 A
5184122 Decious et al. Feb 1993 A
5191643 Alsenz Mar 1993 A
5195327 Kim Mar 1993 A
5197666 Wedekind Mar 1993 A
5197668 Ratz et al. Mar 1993 A
5203497 Ratz et al. Apr 1993 A
5220260 Schuler Jun 1993 A
5230482 Ratz et al. Jul 1993 A
5259553 Shyu Nov 1993 A
5274571 Hesse et al. Dec 1993 A
5276630 Baldwin et al. Jan 1994 A
5277036 Dieckmann et al. Jan 1994 A
5278957 Chan Jan 1994 A
5279458 DeWolf et al. Jan 1994 A
5297143 Fridrich et al. Mar 1994 A
5314004 Strand et al. May 1994 A
5323385 Jurewicz et al. Jun 1994 A
5323619 Kim Jun 1994 A
5327426 Dolin, Jr. et al. Jul 1994 A
5329991 Mehta et al. Jul 1994 A
5337952 Thompson Aug 1994 A
5341988 Rein et al. Aug 1994 A
5355323 Bae Oct 1994 A
5361982 Liebl et al. Nov 1994 A
5374200 Giroux Dec 1994 A
5383116 Lennartsson Jan 1995 A
5384697 Pascucci Jan 1995 A
5414337 Schuler May 1995 A
5417368 Jeffery et al. May 1995 A
5420572 Dolin, Jr. et al. May 1995 A
5434965 Matheny et al. Jul 1995 A
5440895 Bahel et al. Aug 1995 A
5444626 Schenk Aug 1995 A
5444851 Woest Aug 1995 A
5448180 Kienzler et al. Sep 1995 A
5448561 Kaiser et al. Sep 1995 A
5449047 Schivley, Jr. Sep 1995 A
5450570 Richek et al. Sep 1995 A
5452201 Pieronek et al. Sep 1995 A
5460327 Hill et al. Oct 1995 A
5463735 Pascucci et al. Oct 1995 A
5469150 Sitte Nov 1995 A
5475364 Kenet Dec 1995 A
5481481 Frey et al. Jan 1996 A
5481661 Kobayashi Jan 1996 A
5488834 Schwarz Feb 1996 A
5491649 Friday, Jr. et al. Feb 1996 A
5502818 Lamberg Mar 1996 A
5511188 Pascucci et al. Apr 1996 A
5513324 Dolin, Jr. et al. Apr 1996 A
5515267 Alsenz May 1996 A
5520328 Bujak, Jr. May 1996 A
5522044 Pascucci et al. May 1996 A
5530643 Hodorowski Jun 1996 A
5537339 Naganuma et al. Jul 1996 A
5539778 Kienzler et al. Jul 1996 A
5544036 Brown et al. Aug 1996 A
5544809 Keating et al. Aug 1996 A
5550980 Pascucci et al. Aug 1996 A
5551053 Nadolski et al. Aug 1996 A
5555269 Friday, Jr. et al. Sep 1996 A
5555509 Dolan et al. Sep 1996 A
5559407 Dudley et al. Sep 1996 A
5559412 Schuler Sep 1996 A
5566879 Longtin Oct 1996 A
5572658 Mohr et al. Nov 1996 A
5574848 Thomson Nov 1996 A
5579221 Mun Nov 1996 A
5581478 Cruse et al. Dec 1996 A
5592058 Archer et al. Jan 1997 A
5592059 Archer Jan 1997 A
5592628 Ueno et al. Jan 1997 A
5596437 Heins Jan 1997 A
5598566 Pascucci et al. Jan 1997 A
5600782 Thomson Feb 1997 A
5613157 Davidson et al. Mar 1997 A
5613369 Sato et al. Mar 1997 A
5617282 Rall et al. Apr 1997 A
5621662 Humphries et al. Apr 1997 A
5628201 Bahel et al. May 1997 A
5630325 Bahel et al. May 1997 A
5631825 van Weele et al. May 1997 A
5634590 Gorski et al. Jun 1997 A
5675756 Benton et al. Oct 1997 A
5675830 Satula Oct 1997 A
5684463 Diercks et al. Nov 1997 A
5684717 Beilfuss et al. Nov 1997 A
5699243 Eckel et al. Dec 1997 A
5706190 Russ et al. Jan 1998 A
5711480 Zepke et al. Jan 1998 A
5720604 Kelly et al. Feb 1998 A
5722822 Wilson et al. Mar 1998 A
5726900 Walter et al. Mar 1998 A
5729442 Frantz Mar 1998 A
5737529 Dolin, Jr. et al. Apr 1998 A
5748923 Eitrich May 1998 A
5751572 Maciulewicz May 1998 A
5751948 Dolan et al. May 1998 A
5754779 Dolin, Jr. et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764146 Baldwin et al. Jun 1998 A
5772326 Batko et al. Jun 1998 A
5772732 James et al. Jun 1998 A
5774322 Walter et al. Jun 1998 A
5774492 Orlowsik, Jr. et al. Jun 1998 A
5774493 Ross Jun 1998 A
5777837 Eckel et al. Jul 1998 A
5782296 Mehta Jul 1998 A
5784647 Sugimoto Jul 1998 A
5786993 Frutiger et al. Jul 1998 A
5787027 Dolan et al. Jul 1998 A
5791332 Thompson et al. Aug 1998 A
5793646 Hibberd et al. Aug 1998 A
5801942 Nixon et al. Sep 1998 A
5802485 Koelle et al. Sep 1998 A
5803357 Lakin Sep 1998 A
5809063 Ashe et al. Sep 1998 A
5809556 Fujisawa et al. Sep 1998 A
5816492 Charles et al. Oct 1998 A
5818347 Dolan et al. Oct 1998 A
5819845 Ryu et al. Oct 1998 A
5822512 Goodrum et al. Oct 1998 A
5826038 Nakazumi Oct 1998 A
5829674 Vanostrand et al. Nov 1998 A
5841654 Verissimo et al. Nov 1998 A
5848887 Zabielski et al. Dec 1998 A
5854744 Zeng et al. Dec 1998 A
5856972 Riley et al. Jan 1999 A
5860411 Thompson et al. Jan 1999 A
5860473 Seiden Jan 1999 A
5862052 Nixon et al. Jan 1999 A
5862411 Kay et al. Jan 1999 A
5864581 Alger-Meunier et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5878236 Kleineberg et al. Mar 1999 A
5883627 Pleyer Mar 1999 A
5884072 Rasmussen Mar 1999 A
5892690 Boatman et al. Apr 1999 A
5896304 Tiemann et al. Apr 1999 A
5900674 Wojnarowski et al. May 1999 A
5903454 Hoffberg et al. May 1999 A
5912877 Shirai et al. Jun 1999 A
5914453 James et al. Jun 1999 A
5915101 Kleineberg et al. Jun 1999 A
5924486 Ehlers et al. Jul 1999 A
5927398 Maciulewicz Jul 1999 A
5930249 Stademann et al. Jul 1999 A
5933655 Vrabec et al. Aug 1999 A
5934554 Charles et al. Aug 1999 A
5937942 Bias et al. Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5962989 Baker Oct 1999 A
5971597 Baldwin et al. Oct 1999 A
5973594 Baldwin et al. Oct 1999 A
5974554 Oh Oct 1999 A
5983353 McHann, Jr. Nov 1999 A
5983646 Grothe et al. Nov 1999 A
5993195 Thompson Nov 1999 A
6006142 Seem et al. Dec 1999 A
6011821 Sauer et al. Jan 2000 A
6021252 Faris et al. Feb 2000 A
6028864 Marttinen et al. Feb 2000 A
6032178 Bacigalupo et al. Feb 2000 A
6035024 Stumer Mar 2000 A
6046410 Wojnarowski et al. Apr 2000 A
6049817 Schoen et al. Apr 2000 A
6052525 Carlson et al. Apr 2000 A
6053416 Specht et al. Apr 2000 A
6061600 Ying May 2000 A
6061603 Papadopoulos et al. May 2000 A
6078660 Burgess Jun 2000 A
6082894 Batko et al. Jul 2000 A
6092280 Wojnarowski Jul 2000 A
6095674 Verissimo et al. Aug 2000 A
6098116 Nixon et al. Aug 2000 A
6101824 Meyer et al. Aug 2000 A
6110260 Kubokawa Aug 2000 A
6115713 Pascucci et al. Sep 2000 A
6138227 Thewes et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145501 Manohar et al. Nov 2000 A
6145751 Ahmed Nov 2000 A
6147601 Sandelman et al. Nov 2000 A
6151298 Bernhardsson et al. Nov 2000 A
6151529 Batko Nov 2000 A
6151625 Swales et al. Nov 2000 A
6151650 Birzer Nov 2000 A
6155341 Thompson et al. Dec 2000 A
6160477 Sandelman et al. Dec 2000 A
6160484 Spahl et al. Dec 2000 A
6160795 Hosemann Dec 2000 A
6167338 De Wille et al. Dec 2000 A
6169937 Peterson Jan 2001 B1
6169964 Alsa et al. Jan 2001 B1
6170044 McLaughlin et al. Jan 2001 B1
6177945 Pleyer Jan 2001 B1
6179213 Gibino et al. Jan 2001 B1
6182130 Dolin, Jr. et al. Jan 2001 B1
6188642 Schoniger et al. Feb 2001 B1
6190442 Redner Feb 2001 B1
6208905 Giddings et al. Mar 2001 B1
6208924 Bauer Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6216066 Goebel et al. Apr 2001 B1
6227191 Garloch May 2001 B1
6232604 McDaniel et al. May 2001 B1
6237113 Daiber May 2001 B1
6240326 Gloudeman et al. May 2001 B1
6241156 Kline et al. Jun 2001 B1
6252890 Alger-Meunier et al. Jun 2001 B1
6254009 Proffitt et al. Jul 2001 B1
6266205 Schreck et al. Jul 2001 B1
6269127 Richards Jul 2001 B1
6271845 Richardson Aug 2001 B1
6282454 Papadopoulos et al. Aug 2001 B1
6285912 Ellison et al. Sep 2001 B1
6292518 Grabb et al. Sep 2001 B1
6298376 Rosner et al. Oct 2001 B1
6298454 Schleiss et al. Oct 2001 B1
6298551 Wojnarowski et al. Oct 2001 B1
6304557 Nakazumi Oct 2001 B1
6307331 Bonasia et al. Oct 2001 B1
6324008 Baldwin et al. Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6336065 Gibson et al. Jan 2002 B1
6343236 Gibson et al. Jan 2002 B1
6349306 Malik et al. Feb 2002 B1
6349883 Simmons et al. Feb 2002 B1
6353775 Nichols Mar 2002 B1
6359220 Schiedegger et al. Mar 2002 B2
6370037 Schoenfish Apr 2002 B1
6374373 Heim et al. Apr 2002 B1
6377283 Thomas Apr 2002 B1
6385510 Hoog et al. May 2002 B1
6390806 Dempsey et al. May 2002 B1
6393023 Shimizu et al. May 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6405104 Dougherty Jun 2002 B1
6408228 Seem et al. Jun 2002 B1
6411701 Stademann Jun 2002 B1
6411857 Flood Jun 2002 B1
6412435 Timmons, Jr. Jul 2002 B1
6415395 Varma et al. Jul 2002 B1
6418507 Fackler Jul 2002 B1
6423118 Becerra et al. Jul 2002 B1
6424872 Glanzer et al. Jul 2002 B1
6424874 Cofer Jul 2002 B1
6427454 West Aug 2002 B1
6429845 Unseld et al. Aug 2002 B1
6430953 Roh Aug 2002 B2
6434715 Andersen Aug 2002 B1
6435418 Toth et al. Aug 2002 B1
6437691 Sandelman et al. Aug 2002 B1
6437805 Sojoodi et al. Aug 2002 B1
6441723 Mansfield et al. Aug 2002 B1
6442952 Roh et al. Sep 2002 B2
6448896 Bankus et al. Sep 2002 B1
6449315 Richards Sep 2002 B2
6450409 Rowlette et al. Sep 2002 B1
6453374 Kovalan et al. Sep 2002 B1
6454177 Sasao et al. Sep 2002 B1
6462654 Sandelman et al. Oct 2002 B1
6478084 Kumar et al. Nov 2002 B1
6493661 White et al. Dec 2002 B1
6497570 Sears et al. Dec 2002 B1
6498844 Stademann Dec 2002 B1
6501995 Kinney et al. Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6505087 Lucas et al. Jan 2003 B1
6508407 Lefkowitz et al. Jan 2003 B1
6526122 Matsushita et al. Feb 2003 B2
6535123 Sandelman et al. Mar 2003 B2
6535138 Dolan et al. Mar 2003 B1
6539489 Reinert Mar 2003 B1
6540148 Salsbury et al. Apr 2003 B1
6542462 Sohraby et al. Apr 2003 B1
6543007 Bliley et al. Apr 2003 B1
6545660 Shen et al. Apr 2003 B1
6546008 Wehrend Apr 2003 B1
6552647 Thiessen et al. Apr 2003 B1
6554198 Hull et al. Apr 2003 B1
6560976 Jayanth May 2003 B2
6564348 Barenys et al. May 2003 B1
6567476 Kohl et al. May 2003 B2
6572363 Virgil, Jr. et al. Jun 2003 B1
6574215 Hummel Jun 2003 B2
6574234 Myer et al. Jun 2003 B1
6574581 Bohrer et al. Jun 2003 B1
6575233 Krumnow Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6587039 Woestemeyer et al. Jul 2003 B1
6587739 Abrams et al. Jul 2003 B1
6587884 Papadopoulos et al. Jul 2003 B1
6594272 Ketcham et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6600923 Dzuban Jul 2003 B1
6608560 Abrams Aug 2003 B2
6609127 Lee et al. Aug 2003 B1
6615088 Myer et al. Sep 2003 B1
6615594 Jayanth et al. Sep 2003 B2
6618394 Hilleary Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622926 Sartain et al. Sep 2003 B1
6628993 Bauer Sep 2003 B1
6633781 Lee et al. Oct 2003 B1
6636771 Varma et al. Oct 2003 B1
6639939 Naden et al. Oct 2003 B1
6640145 Hoffberg et al. Oct 2003 B2
6640890 Dage et al. Nov 2003 B1
6643689 Rode et al. Nov 2003 B2
6644557 Jacobs Nov 2003 B1
6647317 Takai et al. Nov 2003 B2
6650949 Fera et al. Nov 2003 B1
6651034 Hedlund et al. Nov 2003 B1
6658373 Rossi et al. Dec 2003 B2
RE38406 Faris et al. Jan 2004 E
6681215 Jammu Jan 2004 B2
6688387 Wellington et al. Feb 2004 B1
6704688 Aslam et al. Mar 2004 B2
6708239 Ellerbrock et al. Mar 2004 B1
6715120 Hladik et al. Mar 2004 B1
6715302 Ferragut, II Apr 2004 B2
6715690 Hull et al. Apr 2004 B2
6717513 Sandelman et al. Apr 2004 B1
6717919 Ketcham et al. Apr 2004 B1
6718384 Linzy Apr 2004 B2
6722143 Moon et al. Apr 2004 B2
6725180 Mayer et al. Apr 2004 B2
6725398 Varma et al. Apr 2004 B1
6728369 Burgess Apr 2004 B2
6732191 Baker et al. May 2004 B1
6735196 Manzardo May 2004 B1
6735282 Matsushita et al. May 2004 B2
6735965 Moon et al. May 2004 B2
6738676 Hirayama May 2004 B2
6741915 Poth May 2004 B2
6744771 Barber et al. Jun 2004 B1
6745106 Howard et al. Jun 2004 B2
6747888 Klein Jun 2004 B2
6758050 Jayanth et al. Jul 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6763040 Hite et al. Jul 2004 B1
6763272 Knepper Jul 2004 B2
6765993 Cueman Jul 2004 B2
6768732 Neuhaus Jul 2004 B1
6774786 Havekost et al. Aug 2004 B1
6779176 Chambers, II et al. Aug 2004 B1
6783079 Carey et al. Aug 2004 B2
6789739 Rosen Sep 2004 B2
6791530 Vernier et al. Sep 2004 B2
6795935 Unkle et al. Sep 2004 B1
6798341 Eckel et al. Sep 2004 B1
6801524 Eteminan Oct 2004 B2
6804564 Crispin et al. Oct 2004 B2
6810333 Adedeji et al. Oct 2004 B2
6814299 Carey Nov 2004 B1
6814660 Cavett Nov 2004 B1
6816071 Conti Nov 2004 B2
6817757 Wallace Nov 2004 B1
6819802 Higgs et al. Nov 2004 B2
6822202 Atlas Nov 2004 B2
6823680 Jayanth Nov 2004 B2
6824069 Rosen Nov 2004 B2
6826454 Sulfstede Nov 2004 B2
6826590 Glanzer et al. Nov 2004 B1
6832118 Heberlein et al. Dec 2004 B1
6833787 Levi Dec 2004 B1
6833844 Shiota et al. Dec 2004 B1
6840052 Smith et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6842808 Weigl et al. Jan 2005 B2
6845918 Rotondo Jan 2005 B2
6850992 Heinrich et al. Feb 2005 B2
6851948 Dempsey et al. Feb 2005 B2
6853291 Aisa Feb 2005 B1
6854444 Plagge et al. Feb 2005 B2
6865449 Dudley Mar 2005 B2
6865596 Barber et al. Mar 2005 B1
6865898 Yamanashi et al. Mar 2005 B2
6866375 Leighton et al. Mar 2005 B2
6868292 Ficco et al. Mar 2005 B2
6868900 Dage et al. Mar 2005 B2
6874693 Readio et al. Apr 2005 B2
6876891 Schuler Apr 2005 B1
6879881 Attridge, Jr. Apr 2005 B1
6888441 Carey May 2005 B2
6892121 Schmidt May 2005 B2
6894703 Vernier et al. May 2005 B2
6900808 Lassiter et al. May 2005 B2
6901316 Jensen et al. May 2005 B1
6901439 Bonasia et al. May 2005 B1
6907329 Junger et al. Jun 2005 B2
6909948 Mollmann et al. Jun 2005 B2
7228187 Ticky et al. Jun 2005 B2
6914893 Petite Jul 2005 B2
6918064 Mueller et al. Jul 2005 B2
6920318 Brooking et al. Jul 2005 B2
6925360 Yoon et al. Aug 2005 B2
6931645 Murching et al. Aug 2005 B2
6938106 Ellerbrock et al. Aug 2005 B2
6941193 Frecska et al. Sep 2005 B2
6944785 Gadir et al. Sep 2005 B2
6954680 Kreidler et al. Oct 2005 B2
6955060 Homan et al. Oct 2005 B2
6955302 Erdman, Jr. Oct 2005 B2
6956424 Hohnel Oct 2005 B2
6957696 Krumnow Oct 2005 B1
6963288 Sokol et al. Nov 2005 B1
6963922 Papadopoulos et al. Nov 2005 B2
6965802 Sexton Nov 2005 B2
6967565 Lingemann Nov 2005 B2
6968295 Carr Nov 2005 B1
6973366 Komai Dec 2005 B2
6975219 Eryurek et al. Dec 2005 B2
6975913 Kreidler et al. Dec 2005 B2
6975958 Bohrer et al. Dec 2005 B2
6980796 Cuellar et al. Dec 2005 B1
6981266 An et al. Dec 2005 B1
6983271 Morrow et al. Jan 2006 B2
6983889 Alles Jan 2006 B2
6988011 Varma et al. Jan 2006 B2
6988671 DeLuca Jan 2006 B2
6990381 Nomura et al. Jan 2006 B2
6990540 Dalakuras et al. Jan 2006 B2
6993414 Shah Jan 2006 B2
RE38985 Boatman et al. Feb 2006 E
6994620 Mills Feb 2006 B2
6999473 Windecker Feb 2006 B2
6999824 Glanzer et al. Feb 2006 B2
7000849 Ashworth et al. Feb 2006 B2
7002462 Welch Feb 2006 B2
7003378 Poth Feb 2006 B2
7006460 Vollmer et al. Feb 2006 B1
7006881 Hoffberg et al. Feb 2006 B1
7013239 Hedlund et al. Mar 2006 B2
7017827 Shah et al. Mar 2006 B2
7020798 Meng et al. Mar 2006 B2
7022008 Crocker Apr 2006 B1
7024282 Coogan et al. Apr 2006 B2
7024283 Bicknell Apr 2006 B2
7025281 DeLuca Apr 2006 B2
7027808 Wesby Apr 2006 B2
7029391 Nagaya et al. Apr 2006 B2
7031880 Seem et al. Apr 2006 B1
7032018 Lee et al. Apr 2006 B2
7035719 Howard et al. Apr 2006 B2
7035898 Baker Apr 2006 B1
7036743 Shah May 2006 B2
7043339 Maeda et al. May 2006 B2
7044397 Bartlett et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7051282 Marcjan May 2006 B2
7055759 Wacker et al. Jun 2006 B2
7058459 Weiberle et al. Jun 2006 B2
7058477 Rosen Jun 2006 B1
7058693 Baker, Jr. Jun 2006 B1
7058737 Ellerbrock et al. Jun 2006 B2
7062927 Kwon et al. Jun 2006 B2
7068612 Berkcan et al. Jun 2006 B2
7076962 He et al. Jul 2006 B2
7082339 Murray et al. Jul 2006 B2
7082352 Lim Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7085626 Harrod et al. Aug 2006 B2
7085814 Gandhi et al. Aug 2006 B1
7089087 Dudley Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7089530 Dardinski et al. Aug 2006 B1
7092768 Labuda Aug 2006 B1
7092772 Murray et al. Aug 2006 B2
7092794 Hill et al. Aug 2006 B1
7096078 Burr et al. Aug 2006 B2
7096285 Ellerbrock et al. Aug 2006 B2
7096465 Dardinski et al. Aug 2006 B1
7099965 Ellerbrock et al. Aug 2006 B2
7100382 Butler et al. Sep 2006 B2
7103000 Rode et al. Sep 2006 B1
7103016 Duffy et al. Sep 2006 B1
7103420 Brown et al. Sep 2006 B2
7110835 Blevins et al. Sep 2006 B2
7114088 Horbelt Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7117050 Sasaki et al. Oct 2006 B2
7117051 Landry et al. Oct 2006 B2
7117395 Opaterny Oct 2006 B2
7120036 Kyono Oct 2006 B2
7123428 Yeo et al. Oct 2006 B2
7123774 Dhavala et al. Oct 2006 B2
7127305 Palmon Oct 2006 B1
7127327 O'Donnell Oct 2006 B1
7130409 Beyda Oct 2006 B2
7130719 Ehlers et al. Oct 2006 B2
7133407 Jinzaki et al. Nov 2006 B2
7133748 Robinson Nov 2006 B2
7133749 Goldberg et al. Nov 2006 B2
7135982 Lee Nov 2006 B2
7139550 Cuellar et al. Nov 2006 B2
7142948 Metz Nov 2006 B2
7146230 Glanzer et al. Dec 2006 B2
7146231 Schleiss et al. Dec 2006 B2
7146253 Hoog et al. Dec 2006 B2
7150408 DeLuca Dec 2006 B2
7155318 Sharma et al. Dec 2006 B2
7155499 Soemo et al. Dec 2006 B2
7156316 Kates Jan 2007 B2
7162512 Amit et al. Jan 2007 B1
7162883 Jayanth et al. Jan 2007 B2
7163156 Kates Jan 2007 B2
7163158 Rossi et al. Jan 2007 B2
7167762 Glanzer et al. Jan 2007 B2
7168627 Kates Jan 2007 B2
7171579 Weigl et al. Jan 2007 B2
7172132 Proffitt et al. Feb 2007 B2
7172160 Piel et al. Feb 2007 B2
7174239 Butler et al. Feb 2007 B2
7174728 Jayanth Feb 2007 B2
7175086 Gascoyne et al. Feb 2007 B2
7175098 DeLuca Feb 2007 B2
7177926 Kramer Feb 2007 B2
7181317 Amundson et al. Feb 2007 B2
7185262 Barthel et al. Feb 2007 B2
7186290 Sheehan et al. Mar 2007 B2
7187354 Min et al. Mar 2007 B2
7187986 Johnson et al. Mar 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
7188207 Mitter Mar 2007 B2
7188482 Sadegh et al. Mar 2007 B2
7188779 Alles Mar 2007 B2
7191028 Nomura et al. Mar 2007 B2
7194663 Fletcher et al. Mar 2007 B2
7195211 Kande et al. Mar 2007 B2
7197717 Anderson et al. Mar 2007 B2
7200450 Boyer et al. Apr 2007 B2
7203165 Kowalewski Apr 2007 B1
7203575 Maturana et al. Apr 2007 B2
7203776 Junger et al. Apr 2007 B2
7206646 Nixon et al. Apr 2007 B2
7206647 Kumar Apr 2007 B2
7209485 Guse Apr 2007 B2
7209748 Wong et al. Apr 2007 B2
7212825 Wong et al May 2007 B2
7213044 Tjong et al. May 2007 B2
7216016 Van Ostrand et al. May 2007 B2
7216017 Kwon et al. May 2007 B2
7216497 Hull et al. May 2007 B2
7218589 Wisnudel et al. May 2007 B2
7218996 Beitelmal et al. May 2007 B1
7219141 Bonasia et al. May 2007 B2
7222111 Budike, Jr. May 2007 B1
7222152 Thompson et al. May 2007 B1
7222493 Jayanth et al. May 2007 B2
7222494 Peterson et al. May 2007 B2
7224366 Kessler et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7225356 Monitzer May 2007 B2
7232058 Lee Jun 2007 B2
7233229 Stroupe et al. Jun 2007 B2
7239623 Burghardt et al. Jul 2007 B2
7242988 Hoffberg et al. Jul 2007 B1
7243004 Shah et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7246753 Hull et al. Jul 2007 B2
7248576 Hoffmann Jul 2007 B2
7251534 Walls et al. Jul 2007 B2
7257813 Mayer et al. Aug 2007 B1
7259666 Hermsmeyer et al. Aug 2007 B1
7260084 Saller Aug 2007 B2
7260451 Takai et al. Aug 2007 B2
7260609 Fuehrer et al. Aug 2007 B2
7260948 Jayanth et al. Aug 2007 B2
7261241 Eoga Aug 2007 B2
7261243 Butler et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7266775 Patitucci Sep 2007 B2
7266960 Shah Sep 2007 B2
7269962 Bachmann Sep 2007 B2
7272154 Loebig Sep 2007 B2
7272452 Coogan et al. Sep 2007 B2
7272457 Glanzer et al. Sep 2007 B2
7274972 Amundson et al. Sep 2007 B2
7274973 Nichols et al. Sep 2007 B2
7277280 Peng Oct 2007 B2
7277970 Ellerbrock et al. Oct 2007 B2
7278103 Clark et al. Oct 2007 B1
7281697 Reggiani Oct 2007 B2
7287062 Im et al. Oct 2007 B2
7287708 Lucas et al. Oct 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7289458 Gila et al. Oct 2007 B2
7292900 Kreidler et al. Nov 2007 B2
7293422 Parachini et al. Nov 2007 B2
7295099 Lee et al. Nov 2007 B2
7296426 Butler et al. Nov 2007 B2
7299279 Sadaghiany Nov 2007 B2
7299996 Garrett et al. Nov 2007 B2
7301699 Kanamori et al. Nov 2007 B2
7302642 Smith et al. Nov 2007 B2
7305495 Carter Dec 2007 B2
7306165 Shah Dec 2007 B2
7310559 Walko, Jr. Dec 2007 B2
7313465 O'Donnell Dec 2007 B1
7313716 Weigl et al. Dec 2007 B2
7313923 Jayanth et al. Jan 2008 B2
7315768 Dang et al. Jan 2008 B2
7317970 Pienta et al. Jan 2008 B2
7318089 Stachura et al. Jan 2008 B1
7320110 Shah Jan 2008 B2
7324874 Jung Jan 2008 B2
7327376 Shen et al. Feb 2008 B2
7327815 Jurisch Feb 2008 B1
7330512 Frank et al. Feb 2008 B2
7331191 He et al. Feb 2008 B2
7334161 Williams et al. Feb 2008 B2
7336650 Franz et al. Feb 2008 B2
7337191 Haeberle et al. Feb 2008 B2
7337369 Barthel et al. Feb 2008 B2
7337619 Hsieh et al. Mar 2008 B2
7343226 Ehlers et al. Mar 2008 B2
7346404 Eryurek et al. Mar 2008 B2
7346433 Budike, Jr. Mar 2008 B2
7346835 Lobinger et al. Mar 2008 B1
7349761 Cruse Mar 2008 B1
7354005 Carey et al. Apr 2008 B2
7356050 Reindl et al. Apr 2008 B2
7359335 Knop et al. Apr 2008 B2
7359345 Chang et al. Apr 2008 B2
7360002 Brueckner et al. Apr 2008 B2
7360370 Shah et al. Apr 2008 B2
7360717 Shah Apr 2008 B2
7364093 Garozzo Apr 2008 B2
7365812 Lee Apr 2008 B2
7366498 Ko et al. Apr 2008 B2
7366944 Oshins et al. Apr 2008 B2
7370074 Alexander et al. May 2008 B2
7377450 Van Ostrand et al. May 2008 B2
7379791 Tamarkin et al. May 2008 B2
7379997 Ehlers et al. May 2008 B2
7383158 Krocker et al. Jun 2008 B2
7389150 Inoue et al. Jun 2008 B2
7389204 Eryurek et al. Jun 2008 B2
RE40437 Rosen Jul 2008 E
7392661 Alles Jul 2008 B2
7395122 Kreidler et al. Jul 2008 B2
7395137 Robinson Jul 2008 B2
7403128 Scuka et al. Jul 2008 B2
7412839 Jayanth Aug 2008 B2
7412842 Pham Aug 2008 B2
7418428 Ehlers et al. Aug 2008 B2
7424345 Norbeck Sep 2008 B2
D578026 Roher et al. Oct 2008 S
7433740 Hesse et al. Oct 2008 B2
7434744 Garozzo et al. Oct 2008 B2
7436292 Rourke et al. Oct 2008 B2
7436293 Rourke et al. Oct 2008 B2
7436296 Rourke et al. Oct 2008 B2
7436400 Cheng Oct 2008 B2
7437198 Iwaki Oct 2008 B2
7439862 Quan Oct 2008 B2
7441094 Stephens Oct 2008 B2
7446660 Posamentier Nov 2008 B2
7448435 Garozzo Nov 2008 B2
7451937 Flood et al. Nov 2008 B2
7454269 Dushane et al. Nov 2008 B1
7455240 Chapman, Jr. et al. Nov 2008 B2
7457853 Chari et al. Nov 2008 B1
7460933 Chapman, Jr. et al. Dec 2008 B2
7476988 Mulhouse et al. Jan 2009 B2
7516106 Ehlers et al. Apr 2009 B2
7526364 Rule et al. Apr 2009 B2
7567844 Thomas et al. Jul 2009 B2
7571195 Billingsley et al. Aug 2009 B2
7571355 Shabalin Aug 2009 B2
7574871 Bloemer et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7587459 Wewalaarachchi Sep 2009 B2
7593124 Sheng et al. Sep 2009 B1
7593787 Feingold et al. Sep 2009 B2
7604046 Bergman et al. Oct 2009 B2
7624931 Chapman et al. Dec 2009 B2
7641126 Schultz et al. Jan 2010 B2
7650323 Hesse et al. Jan 2010 B2
D610475 Beers et al. Feb 2010 S
7693583 Wolff et al. Apr 2010 B2
7693591 Hoglund et al. Apr 2010 B2
7706923 Amundson et al. Apr 2010 B2
7730223 Bavor et al. Jun 2010 B1
7734572 Wiemeyer et al. Jun 2010 B2
7743124 Holdaway et al. Jun 2010 B2
7747757 Garglulo et al. Jun 2010 B2
7752289 Kikkawa et al. Jul 2010 B2
7761563 Shike et al. Jul 2010 B2
7774102 Butler et al. Aug 2010 B2
7797349 Kosaka Sep 2010 B2
7809472 Silva et al. Oct 2010 B1
7827963 Li et al. Nov 2010 B2
7847790 Bewley et al. Dec 2010 B2
7861941 Schultz et al. Jan 2011 B2
7870080 Budike, Jr. Jan 2011 B2
7886166 Shnekendorf et al. Feb 2011 B2
7904209 Podgorny et al. Mar 2011 B2
7934504 Lowe et al. May 2011 B2
7949615 Ehlers et al. May 2011 B2
7963454 Sullivan et al. Jun 2011 B2
D642081 Kashimoto Jul 2011 S
7979164 Garozzo et al. Jul 2011 B2
8005576 Rodgers Aug 2011 B2
8024054 Mairs et al. Sep 2011 B2
8032254 Amundson et al. Oct 2011 B2
8042049 Killian et al. Oct 2011 B2
D648641 Wallaert Nov 2011 S
D648642 Wallaert Nov 2011 S
8050801 Richards et al. Nov 2011 B2
8082068 Rodgers Dec 2011 B2
8083154 Schultz et al. Dec 2011 B2
8087593 Leen Jan 2012 B2
8091796 Amundson et al. Jan 2012 B2
8099178 Mairs et al. Jan 2012 B2
8103390 Rodgers Jan 2012 B2
8112181 Remsburg Feb 2012 B2
8116917 Rodgers Feb 2012 B2
8122110 Wilbur et al. Feb 2012 B1
8127060 Doll et al. Feb 2012 B2
8167216 Schultz et al. May 2012 B2
8183995 Wang et al. May 2012 B2
8219249 Harrod et al. Jul 2012 B2
8224491 Koster et al. Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8239073 Fausak et al. Aug 2012 B2
8244383 Bergman et al. Aug 2012 B2
8255090 Frader-Thompson Aug 2012 B2
20010025349 Sharood et al. Sep 2001 A1
20010034586 Ewert et al. Oct 2001 A1
20010048376 Maeda et al. Dec 2001 A1
20010055311 Trachewsky et al. Dec 2001 A1
20020002425 Dossey et al. Jan 2002 A1
20020013897 McTernan et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020022894 Eryurek et al. Feb 2002 A1
20020026476 Miyazaki et al. Feb 2002 A1
20020033252 Sasao et al. Mar 2002 A1
20020048194 Klein Apr 2002 A1
20020072814 Schuler et al. Jun 2002 A1
20020091784 Baker et al. Jul 2002 A1
20020104323 Rash et al. Aug 2002 A1
20020116550 Hansen Aug 2002 A1
20020123896 Diez et al. Sep 2002 A1
20020124211 Gray et al. Sep 2002 A1
20020143523 Balaji et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020157054 Shin et al. Oct 2002 A1
20020163427 Eryurek et al. Nov 2002 A1
20020178288 McLeod Nov 2002 A1
20020190242 Iillie et al. Dec 2002 A1
20020191026 Rodden et al. Dec 2002 A1
20020191603 Shin et al. Dec 2002 A1
20030058863 Oost Mar 2003 A1
20030061340 Sun et al. Mar 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030088338 Phillips et al. May 2003 A1
20030097482 DeHart et al. May 2003 A1
20030108064 Bilke et al. Jun 2003 A1
20030115177 Takanabe et al. Jun 2003 A1
20030116637 Ellingham Jun 2003 A1
20030154355 Fernandez Aug 2003 A1
20030191857 Terrell et al. Oct 2003 A1
20030206100 Richman et al. Nov 2003 A1
20030229784 Cuellar et al. Dec 2003 A1
20040001478 Wong Jan 2004 A1
20040003051 Krzyzanowski et al. Jan 2004 A1
20040003415 Ng Jan 2004 A1
20040025089 Haswarey et al. Feb 2004 A1
20040039478 Kiesel et al. Feb 2004 A1
20040059815 Buckingham et al. Mar 2004 A1
20040066788 Lin et al. Apr 2004 A1
20040088069 Singh May 2004 A1
20040095237 Chen et al. May 2004 A1
20040104942 Weigel Jun 2004 A1
20040107717 Yoon et al. Jun 2004 A1
20040111186 Rossi et al. Jun 2004 A1
20040111254 Gogel et al. Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040133314 Ehlers et al. Jul 2004 A1
20040133704 Krzyzanowski Jul 2004 A1
20040138981 Ehlers et al. Jul 2004 A1
20040139038 Ehlers et al. Jul 2004 A1
20040143360 Kiesel et al. Jul 2004 A1
20040146008 Conradt et al. Jul 2004 A1
20040148482 Grundy et al. Jul 2004 A1
20040156360 Sexton et al. Aug 2004 A1
20040159112 Jayanth et al. Aug 2004 A1
20040189590 Mehaffey et al. Sep 2004 A1
20040204775 Keyes et al. Oct 2004 A1
20040205781 Hill et al. Oct 2004 A1
20040206096 Jayanth Oct 2004 A1
20040210348 Imhof et al. Oct 2004 A1
20040218591 Ogawa et al. Nov 2004 A1
20040222307 DeLuca Nov 2004 A1
20040236471 Poth Nov 2004 A1
20040245352 Smith et al. Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20040266491 Howard et al. Dec 2004 A1
20040267385 Lingemann Dec 2004 A1
20040267395 Discenzo et al. Dec 2004 A1
20040267790 Pak et al. Dec 2004 A1
20050005249 Hill et al. Jan 2005 A1
20050007249 Eryurek et al. Jan 2005 A1
20050010759 Wakiyama Jan 2005 A1
20050033707 Ehlers et al. Feb 2005 A1
20050034023 Maturana et al. Feb 2005 A1
20050040247 Pouchak Feb 2005 A1
20050040250 Wruck Feb 2005 A1
20050041033 Hilts et al. Feb 2005 A1
20050041633 Roeser et al. Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050051168 DeVries et al. Mar 2005 A1
20050054381 Lee et al. Mar 2005 A1
20050055427 Frutiger et al. Mar 2005 A1
20050068978 Sexton et al. Mar 2005 A1
20050073789 Tanis Apr 2005 A1
20050076150 Lee et al. Apr 2005 A1
20050080879 Kim et al. Apr 2005 A1
20050081156 Clark et al. Apr 2005 A1
20050081157 Clark et al. Apr 2005 A1
20050090915 Geiwitz Apr 2005 A1
20050096872 Blevins et al. May 2005 A1
20050097478 Killian et al. May 2005 A1
20050103874 Erdman May 2005 A1
20050109048 Lee May 2005 A1
20050116023 Amundson et al. Jun 2005 A1
20050118996 Lee et al. Jun 2005 A1
20050119765 Bergman Jun 2005 A1
20050119766 Amundson et al. Jun 2005 A1
20050119771 Amundson et al. Jun 2005 A1
20050119793 Amundson et al. Jun 2005 A1
20050119794 Amundson et al. Jun 2005 A1
20050120012 Poth et al. Jun 2005 A1
20050125495 Tjong et al. Jun 2005 A1
20050143138 Lee et al. Jun 2005 A1
20050145705 Shah et al. Jul 2005 A1
20050150967 Chapman et al. Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050159848 Shah et al. Jul 2005 A1
20050159924 Shah et al. Jul 2005 A1
20050161517 Helt et al. Jul 2005 A1
20050166610 Jayanth Aug 2005 A1
20050176410 Brooking et al. Aug 2005 A1
20050182498 Landou et al. Aug 2005 A1
20050192727 Shostak et al. Sep 2005 A1
20050193155 Fujita Sep 2005 A1
20050198040 Cohen et al. Sep 2005 A1
20050223339 Lee Oct 2005 A1
20050229610 Park et al. Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050240312 Terry et al. Oct 2005 A1
20050252673 Kregle et al. Nov 2005 A1
20050256591 Rule et al. Nov 2005 A1
20050256935 Overstreet et al. Nov 2005 A1
20050258257 Thurman et al. Nov 2005 A1
20050258259 Stanimirovic Nov 2005 A1
20050270151 Winick Dec 2005 A1
20050278071 Durham Dec 2005 A1
20050280364 Omura et al. Dec 2005 A1
20050281368 Droba et al. Dec 2005 A1
20050288823 Hesse et al. Dec 2005 A1
20060006244 Morrow et al. Jan 2006 A1
20060009861 Bonasia Jan 2006 A1
20060009863 Lingemann Jan 2006 A1
20060021358 Nallapa Feb 2006 A1
20060021359 Hur et al. Feb 2006 A1
20060027671 Shah Feb 2006 A1
20060030954 Bergman et al. Feb 2006 A1
20060036350 Bohrer et al. Feb 2006 A1
20060036952 Yang Feb 2006 A1
20060041898 Potyrailo et al. Feb 2006 A1
20060045107 Kucenas et al. Mar 2006 A1
20060048064 Vronay Mar 2006 A1
20060058924 Shah Mar 2006 A1
20060063523 McFarland et al. Mar 2006 A1
20060090142 Glasgow et al. Apr 2006 A1
20060090483 Kim et al. May 2006 A1
20060091227 Attridge May 2006 A1
20060092977 Bai et al. May 2006 A1
20060105697 Aronstam et al. May 2006 A1
20060106791 Morrow et al. May 2006 A1
20060108432 Mattheis May 2006 A1
20060111816 Spalink et al. May 2006 A1
20060130497 Kang et al. Jun 2006 A1
20060144055 Ahn Jul 2006 A1
20060144232 Kang et al. Jul 2006 A1
20060149414 Archacki et al. Jul 2006 A1
20060150027 Paden Jul 2006 A1
20060153247 Stumer Jul 2006 A1
20060155398 Hoffberg et al. Jul 2006 A1
20060158051 Bartlett et al. Jul 2006 A1
20060159007 Frutiger et al. Jul 2006 A1
20060168522 Bala Jul 2006 A1
20060185818 Garozzo Aug 2006 A1
20060186214 Simon et al. Aug 2006 A1
20060190138 Stone et al. Aug 2006 A1
20060192021 Schultz et al. Aug 2006 A1
20060192022 Barton et al. Aug 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060200253 Hoffberg et al. Sep 2006 A1
20060200258 Hoffberg et al. Sep 2006 A1
20060200259 Hoffberg et al. Sep 2006 A1
20060200260 Hoffberg et al. Sep 2006 A1
20060202978 Lee et al. Sep 2006 A1
20060206220 Amundson Sep 2006 A1
20060209208 Kim et al. Sep 2006 A1
20060212194 Breed Sep 2006 A1
20060219799 Schultz et al. Oct 2006 A1
20060229090 LaDue Oct 2006 A1
20060235548 Gaudette Oct 2006 A1
20060236351 Ellerbrock et al. Oct 2006 A1
20060239296 Jinzaki et al. Oct 2006 A1
20060248233 Park et al. Nov 2006 A1
20060250578 Pohl et al. Nov 2006 A1
20060250979 Gauweiler et al. Nov 2006 A1
20060267756 Kates Nov 2006 A1
20060276917 Li et al. Dec 2006 A1
20070005191 Sloup et al. Jan 2007 A1
20070008116 Bergman et al. Jan 2007 A1
20070012052 Butler et al. Jan 2007 A1
20070013534 DiMaggio Jan 2007 A1
20070014233 Oguro et al. Jan 2007 A1
20070016311 Bergman et al. Jan 2007 A1
20070016476 Hoffberg et al. Jan 2007 A1
20070019683 Kryzyanowski Jan 2007 A1
20070025368 Ha et al. Feb 2007 A1
20070032909 Tolbert et al. Feb 2007 A1
20070033310 Kweon Feb 2007 A1
20070035255 Shuster et al. Feb 2007 A1
20070040040 Mueller Feb 2007 A1
20070043477 Ehlers et al. Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070045429 Chapman et al. Mar 2007 A1
20070045431 Chapman et al. Mar 2007 A1
20070045442 Chapman et al. Mar 2007 A1
20070051818 Atlas Mar 2007 A1
20070053513 Hoffberg Mar 2007 A1
20070055407 Goldberg et al. Mar 2007 A1
20070055757 Mairs et al. Mar 2007 A1
20070067062 Mairs et al. Mar 2007 A1
20070067496 Deiretsbacher et al. Mar 2007 A1
20070073973 Hazay Mar 2007 A1
20070080235 Fulton Apr 2007 A1
20070083721 Grinspan Apr 2007 A1
20070084937 Ahmed Apr 2007 A1
20070088883 Wakabayashi Apr 2007 A1
20070089090 Riedl et al. Apr 2007 A1
20070090199 Hull et al. Apr 2007 A1
20070093226 Foltyn et al. Apr 2007 A1
20070097993 Bojahra et al. May 2007 A1
20070102149 Kates May 2007 A1
20070109114 Farley et al. May 2007 A1
20070109975 Reckamp et al. May 2007 A1
20070113247 Kwak May 2007 A1
20070114291 Pouchak May 2007 A1
20070119957 Kates May 2007 A1
20070119958 Kates May 2007 A1
20070129820 Glanzer et al. Jun 2007 A1
20070129825 Kargenian Jun 2007 A1
20070129826 Kreidler et al. Jun 2007 A1
20070129917 Blevins et al. Jun 2007 A1
20070130834 Kande et al. Jun 2007 A1
20070130969 Peterson et al. Jun 2007 A1
20070131784 Garozzo et al. Jun 2007 A1
20070135692 Hwang et al. Jun 2007 A1
20070135946 Sugiyama et al. Jun 2007 A1
20070136669 Kwon et al. Jun 2007 A1
20070136687 Pak Jun 2007 A1
20070138307 Khoo Jun 2007 A1
20070138308 Schultz et al. Jun 2007 A1
20070143704 Laird-McConnell Jun 2007 A1
20070143707 Yun et al. Jun 2007 A1
20070157016 Dayan et al. Jul 2007 A1
20070158442 Chapman et al. Jul 2007 A1
20070168887 Lee Jul 2007 A1
20070177505 Charrua et al. Aug 2007 A1
20070191024 Kim et al. Aug 2007 A1
20070192731 Townsend et al. Aug 2007 A1
20070194138 Shah Aug 2007 A9
20070204637 Fujii et al. Sep 2007 A1
20070205297 Finkam et al. Sep 2007 A1
20070205916 Blom et al. Sep 2007 A1
20070208461 Chase Sep 2007 A1
20070208549 Blevins et al. Sep 2007 A1
20070213853 Glanzer et al. Sep 2007 A1
20070219645 Thomas et al. Sep 2007 A1
20070220301 Brundridge et al. Sep 2007 A1
20070220907 Ehlers Sep 2007 A1
20070221741 Wagner et al. Sep 2007 A1
20070223500 Lee et al. Sep 2007 A1
20070225868 Terlson et al. Sep 2007 A1
20070225869 Amundson et al. Sep 2007 A1
20070233323 Wiemeyer et al. Oct 2007 A1
20070236156 Lys et al. Oct 2007 A1
20070237032 Rhee et al. Oct 2007 A1
20070238413 Coutts Oct 2007 A1
20070239658 Cunningham et al. Oct 2007 A1
20070240226 Song et al. Oct 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070242058 Yamada Oct 2007 A1
20070245306 Dameshek et al. Oct 2007 A1
20070257120 Chapman et al. Nov 2007 A1
20070260782 Shaikli Nov 2007 A1
20070260978 Oh et al. Nov 2007 A1
20070266329 Gaudette Nov 2007 A1
20070271521 Harriger et al. Nov 2007 A1
20070274093 Haim et al. Nov 2007 A1
20070277013 Rexha et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20070284452 Butler et al. Dec 2007 A1
20070299857 Gwozdz et al. Dec 2007 A1
20070300064 Isaacs et al. Dec 2007 A1
20080003845 Hong et al. Jan 2008 A1
20080004727 Glanzer et al. Jan 2008 A1
20080005428 Maul et al. Jan 2008 A1
20080006709 Ashworth et al. Jan 2008 A1
20080013259 Barton et al. Jan 2008 A1
20080029610 Nichols Feb 2008 A1
20080031147 Fieremans et al. Feb 2008 A1
20080040351 Jin et al. Feb 2008 A1
20080048045 Butler et al. Feb 2008 A1
20080048046 Wagner et al. Feb 2008 A1
20080054082 Evans et al. Mar 2008 A1
20080055190 Lee Mar 2008 A1
20080056722 Hendrix et al. Mar 2008 A1
20080057872 McFarland et al. Mar 2008 A1
20080057931 Nass et al. Mar 2008 A1
20080058996 Sachdev et al. Mar 2008 A1
20080059682 Cooley et al. Mar 2008 A1
20080062892 Dodgen et al. Mar 2008 A1
20080063006 Nichols Mar 2008 A1
20080065926 Poth et al. Mar 2008 A1
20080072704 Clark et al. Mar 2008 A1
20080073440 Butler et al. Mar 2008 A1
20080077884 Patitucci Mar 2008 A1
20080077886 Eichner Mar 2008 A1
20080082767 Nulkar et al. Apr 2008 A1
20080083009 Kaler et al. Apr 2008 A1
20080083834 Krebs et al. Apr 2008 A1
20080097651 Shah et al. Apr 2008 A1
20080104189 Baker et al. May 2008 A1
20080114500 Hull et al. May 2008 A1
20080120335 Dolgoff May 2008 A1
20080121729 Gray May 2008 A1
20080128523 Hoglund et al. Jun 2008 A1
20080129475 Breed et al. Jun 2008 A1
20080133033 Wolff et al. Jun 2008 A1
20080133060 Hoglund et al. Jun 2008 A1
20080133061 Hoglund et al. Jun 2008 A1
20080134087 Hoglund et al. Jun 2008 A1
20080134098 Hoglund et al. Jun 2008 A1
20080144302 Rosenblatt Jun 2008 A1
20080148098 Chen Jun 2008 A1
20080161976 Stanimirovic Jul 2008 A1
20080161977 Takach et al. Jul 2008 A1
20080161978 Shah Jul 2008 A1
20080168255 Abou-Emara et al. Jul 2008 A1
20080168356 Eryurek et al. Jul 2008 A1
20080183335 Poth et al. Jul 2008 A1
20080184059 Chen Jul 2008 A1
20080185976 Dickey et al. Aug 2008 A1
20080186160 Kim et al. Aug 2008 A1
20080192649 Pyeon et al. Aug 2008 A1
20080192745 Spears Aug 2008 A1
20080195254 Jung et al. Aug 2008 A1
20080195581 Ashmore et al. Aug 2008 A1
20080195687 Jung et al. Aug 2008 A1
20080198036 Songkakul et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080217418 Helt et al. Sep 2008 A1
20080217419 Ehlers et al. Sep 2008 A1
20080223944 Helt et al. Sep 2008 A1
20080235611 Fraley et al. Sep 2008 A1
20080256475 Amundson et al. Oct 2008 A1
20080264085 Perry et al. Oct 2008 A1
20080272934 Wang et al. Nov 2008 A1
20080281472 Podgorny et al. Nov 2008 A1
20080294274 Laberge et al. Nov 2008 A1
20080294932 Oshins et al. Nov 2008 A1
20090001180 Siddaramanna et al. Jan 2009 A1
20090001182 Siddaramanna et al. Jan 2009 A1
20090049847 Butler et al. Feb 2009 A1
20090052105 Soleimani et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057425 Sullivan et al. Mar 2009 A1
20090062964 Sullivan et al. Mar 2009 A1
20090065597 Garozzo et al. Mar 2009 A1
20090094506 Lakkis Apr 2009 A1
20090105846 Hesse et al. Apr 2009 A1
20090113037 Pouchak Apr 2009 A1
20090119092 Balasubramanyan May 2009 A1
20090132091 Chambers et al. May 2009 A1
20090140056 Leen Jun 2009 A1
20090140057 Leen Jun 2009 A1
20090140058 Koster et al. Jun 2009 A1
20090140061 Schultz et al. Jun 2009 A1
20090140062 Amundson et al. Jun 2009 A1
20090140063 Koster et al. Jun 2009 A1
20090140064 Schultz et al. Jun 2009 A1
20090143879 Amundson et al. Jun 2009 A1
20090143880 Amundson et al. Jun 2009 A1
20090143916 Boll et al. Jun 2009 A1
20090143918 Amundson et al. Jun 2009 A1
20090157529 Ehlers et al. Jun 2009 A1
20090195349 Frader-Thompson Aug 2009 A1
20090198810 Bayer et al. Aug 2009 A1
20090245278 Kee Oct 2009 A1
20090257431 Ramanathan et al. Oct 2009 A1
20090259785 Perry et al. Oct 2009 A1
20090261174 Butler et al. Oct 2009 A1
20090261767 Butler et al. Oct 2009 A1
20090266904 Cohen Oct 2009 A1
20090267540 Chemel et al. Oct 2009 A1
20090271336 Franks Oct 2009 A1
20090287736 Shike et al. Nov 2009 A1
20100011437 Courtney Jan 2010 A1
20100023865 Fulker et al. Jan 2010 A1
20100050075 Thorson et al. Feb 2010 A1
20100050108 Mirza Feb 2010 A1
20100063644 Kansal et al. Mar 2010 A1
20100070086 Harrod et al. Mar 2010 A1
20100070089 Harrod et al. Mar 2010 A1
20100070093 Harrod et al. Mar 2010 A1
20100070907 Harrod et al. Mar 2010 A1
20100073159 Schmickley et al. Mar 2010 A1
20100076605 Harrod et al. Mar 2010 A1
20100100253 Fausak et al. Apr 2010 A1
20100101854 Wallaert et al. Apr 2010 A1
20100102136 Hadzidedic et al. Apr 2010 A1
20100102948 Grohman et al. Apr 2010 A1
20100102973 Grohman et al. Apr 2010 A1
20100106305 Pavlak et al. Apr 2010 A1
20100106307 Grohman et al. Apr 2010 A1
20100106308 Filbeck et al. Apr 2010 A1
20100106309 Grohman et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100106311 Wallaert Apr 2010 A1
20100106312 Grohman et al. Apr 2010 A1
20100106313 Grohman et al. Apr 2010 A1
20100106314 Grohman et al. Apr 2010 A1
20100106315 Grohman Apr 2010 A1
20100106316 Curry et al. Apr 2010 A1
20100106317 Grohman et al. Apr 2010 A1
20100106318 Grohman et al. Apr 2010 A1
20100106319 Grohman et al. Apr 2010 A1
20100106320 Grohman et al. Apr 2010 A1
20100106321 Hadzidedic Apr 2010 A1
20100106322 Grohman Apr 2010 A1
20100106323 Wallaert Apr 2010 A1
20100106324 Grohman Apr 2010 A1
20100106325 Grohman Apr 2010 A1
20100106326 Grohman Apr 2010 A1
20100106327 Grohman et al. Apr 2010 A1
20100106329 Grohman Apr 2010 A1
20100106330 Grohman Apr 2010 A1
20100106333 Grohman et al. Apr 2010 A1
20100106334 Grohman et al. Apr 2010 A1
20100106787 Grohman Apr 2010 A1
20100106809 Grohman Apr 2010 A1
20100106810 Grohman Apr 2010 A1
20100106814 Hadzidedic et al. Apr 2010 A1
20100106815 Grohman et al. Apr 2010 A1
20100106925 Grohman et al. Apr 2010 A1
20100106957 Grohman et al. Apr 2010 A1
20100107007 Grohman et al. Apr 2010 A1
20100107070 Devineni et al. Apr 2010 A1
20100107071 Pavlak et al. Apr 2010 A1
20100107072 Mirza et al. Apr 2010 A1
20100107073 Wallaert Apr 2010 A1
20100107074 Pavlak et al. Apr 2010 A1
20100107076 Grohman Apr 2010 A1
20100107083 Grohman Apr 2010 A1
20100107103 Wallaert Apr 2010 A1
20100107109 Filbeck et al. Apr 2010 A1
20100107110 Mirza Apr 2010 A1
20100107111 Mirza Apr 2010 A1
20100107112 Jennings et al. Apr 2010 A1
20100107232 Grohman et al. Apr 2010 A1
20100115364 Grohman May 2010 A1
20100131884 Shah May 2010 A1
20100142526 Wong Jun 2010 A1
20100145528 Bergman et al. Jun 2010 A1
20100145629 Botich et al. Jun 2010 A1
20100168924 Tessier et al. Jul 2010 A1
20100169419 DeVilbiss et al. Jul 2010 A1
20100179696 Grohman et al. Jul 2010 A1
20100211546 Grohman et al. Aug 2010 A1
20100241245 Wiemeyer et al. Sep 2010 A1
20100259931 Chemel et al. Oct 2010 A1
20100264846 Chemel et al. Oct 2010 A1
20100270933 Chemel et al. Oct 2010 A1
20100272102 Kobayashi Oct 2010 A1
20100295474 Chemel et al. Nov 2010 A1
20100295475 Chemel et al. Nov 2010 A1
20100295482 Chemel et al. Nov 2010 A1
20100301768 Chemel et al. Dec 2010 A1
20100301769 Chemel et al. Dec 2010 A1
20100301770 Chemel et al. Dec 2010 A1
20100301771 Chemel et al. Dec 2010 A1
20100301773 Chemel et al. Dec 2010 A1
20100301774 Chemel et al. Dec 2010 A1
20100305761 Remsburg Dec 2010 A1
20100314458 Votaw et al. Dec 2010 A1
20100319362 Hisaoka Dec 2010 A1
20110001436 Chemel et al. Jan 2011 A1
20110001438 Chemel et al. Jan 2011 A1
20110004823 Wallaert Jan 2011 A1
20110004824 Thorson et al. Jan 2011 A1
20110007016 Mirza et al. Jan 2011 A1
20110007017 Wallaert Jan 2011 A1
20110010620 Mirza et al. Jan 2011 A1
20110010621 Wallaert Jan 2011 A1
20110010652 Wallaert Jan 2011 A1
20110010653 Wallaert Jan 2011 A1
20110010660 Thorson et al. Jan 2011 A1
20110032932 Pyeon et al. Feb 2011 A2
20110040785 Steenberg et al. Feb 2011 A1
20110061014 Frader-Thompson et al. Mar 2011 A1
20110063126 Kennedy et al. Mar 2011 A1
20110066297 Saberi et al. Mar 2011 A1
20110160915 Bergman et al. Jun 2011 A1
20110251726 McNulty et al. Oct 2011 A1
20120012662 Leen et al. Jan 2012 A1
20120046792 Secor Feb 2012 A1
20120065805 Montalvo Mar 2012 A1
20120116593 Amundson et al. May 2012 A1
20120181010 Schultz et al. Jul 2012 A1
Foreign Referenced Citations (7)
Number Date Country
0980165 Feb 2000 EP
1956311 Aug 2008 EP
2241836 Oct 2010 EP
2241837 Oct 2010 EP
2117573 Oct 1983 GB
02056540 Jul 2002 WO
2008100641 Aug 2008 WO
Non-Patent Literature Citations (70)
Entry
IPMI—Intelligent Platform Management Interface Specification, v1.5, Document Revision 1.1, Intel, H-P, NEC and Dell, Feb. 20, 2002.
UNIX man pages: login (1), http://unixhelp.ed.ac.uk/CGI/man-cgi?login, Util-linux 1.6, Nov. 4, 1996.
Related case U.S. Appl. No. 12/603,508 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,450 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network ”.
Related case U.S. Appl. No. 12/603,382 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,504 filed on Oct. 21, 2009 to Amanda Filbeck et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,449 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,460 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,526 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Methof for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network K”.
Related case U.S. Appl. No. 12/603,532 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,475 filed on Oct. 21, 2009 to Suresh Kumar Devineni et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,362 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,473 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method for Zoning a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,407 filed on Oct. 21, 2009 to Amanda Filbeck et al., entitled “System and Method for Zoning a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,496 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,482 filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,488 filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,495 filed on Oct. 21, 2009 to Thomas Pavlak et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,497 filed on Oct. 21, 2009 to Muhammad Mirza et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,431 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “General Control Technique in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,502 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,489 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “System and Method for Zoning a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,527 filed on Oct. 21, 2009 to Darko Hadzidedic et al., entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,479 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,536 filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,509 filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,512 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Programming and Configuration in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,464 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,528 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,525 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Method of Controlling Equipment in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,520 filed on Oct. 21, 2009 to Darko Hadzidedic et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,420 filed on Oct. 21, 2009 to Darko Hadzidedic et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,483 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Device Abstraction System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 12/603,514 filed on Oct. 21, 2009 to Thomas Pavlak et al., entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,515 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,490 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “System Recovery in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,523 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning”.
Related case U.S. Appl. No. 12/603,493 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “System Recovery in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,547 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,531 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Memory Recovery Scheme and Data Structure in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,555 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,562 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,566 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,451 filed on Oct. 21, 2009 to Timothy Wallaert, entitled “Alarm and Diagnostic System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,553 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,487 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “System Recovery in a Heatting, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,558 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,468 filed on Oct. 21, 2009 to Wojciech Grohman et al., entitled “Programming and Configuration in a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,560 filed on Oct. 21, 2009 to Wojciech Grohman, entitled “Communication Protocol System and Method for a Distributed-Architecture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,519 filed on Oct. 21, 2009 to Thomas Pavlak, entitled “System and Method of Use for a User Interface Dashboard of a Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,499 filed on Oct. 21, 2009 to Jimmy Curry et al., entitled “Alarm and Diagnostics System and Method for a Distributed-Architechture Heating, Ventilation and Air Conditioning Network”.
Related case U.S. Appl. No. 12/603,534 filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Flush Wall Mount Thermostat and In-Set Mounting Plate for a Heating, Ventilation and Air Conditioning System”.
Related case U.S. Appl. No. 29/345,748 filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Thin Cover Plate for an Electronic System Controller”.
Related case U.S. Appl. No. 29/345,747 filed on Oct. 21, 2009 to Timothy Wallaert et al., entitled “Thin Cover Plate for an Electronic System Controller”.
Checket-Hanks, B., “Zoning Controls for Convenience's Sakes, High-End Residential Controls Move Into New Areas,” Air Conditioning, Heating & Refrigeration News, ABI/IFORM Global, Jun. 28, 2004, 3 pages.
Leeb, G., “A User Interface for Home-Net,” IEEE Transactions on Consumer Electronics, vol. 40, Issue 4, Nov. 1994, pp. 897-902.
“IPMI—Intelligent Platform Management Interface Specification v1.5,” Document Revision 1.1, Intel Hewlett-Packard NEC Dell, Feb. 20, 2002, 460 pages.
Nash, H., “Fire Alarm Systems for Health Care Facilities,” IEEE Transactions on Industry Applications, vol. 1A-19, No. 5, Sep./ Oct. 1983, pp. 848-852.
Bruggeman, E., et al., “A Multifunction Home Control System,” IEEE Transactions on Consumer Electronics, CE-29, Issue 1, 10 pages, 1983.
Fischer, H., et al., “Remote Building Management and DDc-Technology to Operate Distributed HVAC-Installations,” The first International Telecommunications Energy Special Conference, TELESCON '94, Apr. 11-15, 1994, pp. 127-132.
Gallas, B., et al., “ Embedded Pentium ® Processor System Design for Windows CE,” WESCON 1998, pp. 114-123.
“iView-100 Series (iView/iView-100-40) Handheld Controller User's Manual,” ICP DAS, Mar. 2006, Version 2.0.
“Spectre™ Commercial Zoning System, Engineering Data,” Lennox, Bulletin No. 210366E, Oct. 2002, 33 pages.
Sharma, A., “Design of Wireless Sensors Network for Building Management Systems,” University of California-Berkley, 57 pages, 2003.
“Linux Programmer's Manual,” UNIX Man Pages: Login (1), http://unixhelp.ed.ac.uk/CGI/man-cgi?login, Util-linux 1.6, Nov. 4, 1996, 4 pages.
“Field Display for Tridium JACE Controllers Product Data,” HVAC Concepts, Inc. 2005, 22 pages.
“HVAC Concepts,” Jace Network-Installation, 2004, 2 pages.
“Define Track at Dictionary.com ,” http://dictionary.reference.com/browse/track, Mar. 12, 2013, 3 pages.
“Definition of Track by Macmillan Dictionary,” http://www.macmillandictionary.com/dictionary/british/track, Mar. 12, 2013, 4 pages.
“Definition of track by the Free Online Dictionary, Thesaurus, and Encyclopedia,” http://www.thefreedictionary.com/track, Mar. 12, 2013, 6 pages.
Related Publications (1)
Number Date Country
20100107232 A1 Apr 2010 US
Provisional Applications (2)
Number Date Country
61167135 Apr 2009 US
61852676 Apr 2009 US
Continuation in Parts (1)
Number Date Country
Parent 12258659 Oct 2008 US
Child 12603539 US