The present invention relates to a control system for controlling radiation direction of an antenna beam as defined in the preamble of claim 1.
The present invention also relates to a method for controlling radiation direction of an antenna beam as defined in the preamble of claim 18.
The present invention also relates to a base station for controlling radiation direction of an antenna beam.
The present invention also relates to a communication system for controlling radiation direction of an antenna beam.
Related Art and Background of the Invention
Such control systems and control methods are previously known from WO2006057613 (PCT/SE2005/001777).
In this control system, the radiation direction of an antenna can be remotely adjusted in order to adapt a cell size to varying environmental factors, such as location of an antenna, geographic topography and the presence or absence of buildings. The cell size and thus also the radiation direction can also vary for different types of mobile systems using different frequencies.
The radiation direction is altered by applying phase shifts between transmitting antenna elements in antenna arrays in such a way that radiation from a number of antenna elements is combined for obtaining a combined beam. The direction of this combined beam can then be altered by altering the phase shifts.
The phase shifting means typically alters the phase shifts of the antenna elements using an actuating device, such as a motor, situated inside the antenna casing. The motor is driven by motor control logic also situated in the mast top. The motor control logic controls the motor movements based on remote control signals that could be sent from a control centre, which could be located on the ground, at a distance from the antenna. The signals are transmitted from the control centre to the mast top motor control logic over a control signal system.
Control signal systems, as the one used for carrying control signals used for altering the radiation direction in the background art described above, are exposed to the environmental surroundings of the control systems. They have to be protected against damages caused by lightning strikes and the like. These protection actions are often both complicated and expensive to implement.
Aim and Most Important Features of the Invention
It is an object of the present invention to provide a system and a method for controlling the radiation direction of an antenna beam that solves, or at least relieves, the above stated problem.
A further object of the present invention is to provide a base station including such a control system.
A still further object of the present invention is to provide a communication system including such a base station.
In particular it is an object of the present invention to provide a more robust, less complex and less expensive system and method for controlling the antenna beam direction than the control systems and methods known in the background art.
These objects are achieved by an antenna beam radiation direction control system according to the characterizing portion of claim 1.
The objects are also achieved by an antenna beam radiation direction control method according to the characterizing portion of claim 18.
The system and the method for controlling radiation direction of an antenna beam according to the present invention make it possible to connect the filtering means directly to the external control unit and thereby to directly provide the filtered out control signals from the filtering means to the external control unit.
Having the filtering means and external control unit directly connected to each other has the advantage that a number of circuits, in the background art systems, situated between the filtering means and the control means, can be omitted. A cable having fewer conductors can also be used between the CIN (Current Injector) means and the RET (Remote-Controlled Electrical Down-tilt) unit, in the system and method according to the invention, than was used between the CILOC (Current Injector Layer One Converter) and the RET unit in background art systems.
This reduces the complexity of the system and the method. It also makes the system and method more robust, since the complexity and number of circuits in the system has a great impact on how sensitive a system is for environmental hazards. Fewer circuits in the system itself make the production costs lower. Fewer circuits also result in fewer electronic components to protect against environmental problems, which further lower the production costs. Fewer conductors in the cable between the CIN and the RET unit also have the effect that less conductor connections have to be protected against the environment, which also lowers the production costs.
The present invention further has the advantage that a CILOC, used in background art systems for receiving control signals superposed in the RF feeder cable, can be simplified into a simple filtering means, a CIN. This makes the system and the method more robust as well as reduces complexity and production costs.
In different embodiments of the present invention, the filtering means may be placed either inside a TMA (Tower Mounted Amplifier) or outside a TMA.
Placement of the detecting means and the control means within the external control unit has the advantage that these means are better protected there than compared to placement of, for example, the detecting means in a CILOC, as was done in background art systems. A further advantage of placing the detecting means and the control means in this way is that the connections between these means are not exposed to damages from the environment.
Placement of the detecting means and the control means in the external control unit also has the advantage that systems according to the present invention can be used for upgrading existing systems, wherein the existing systems could have different configurations of their antennas.
In an embodiment of the present invention, the control data is OOK modulated directly at the MCU (Master Control Unit). RS485 is thus not used at all for controlling the radiation direction of the antenna, OOK signals are instead used all the way from the MCU to the RET unit. Neither RS485 converting circuits nor RS485 cables are needed for this embodiment, which makes the control system both less complex and less expensive.
Detailed exemplary embodiments and advantages of the control system and method according to the invention will now be described with reference to the appended drawings illustrating some preferred embodiments.
The AISG standard “Antenna Interface Standards Group, Standard No. AISG1: Issue 1.1, 30 Jul. 2004” defines a standard data interface at an antenna line device by means of which functional parameters of the device can be remotely controlled. The standard specifically defines power and data communication between BTS/Node B and tower top equipment.
The AISG standard states that there are two alternatives for communicating data for remote control between BTS/Node B and the tower top equipment. The first alternative is to use a direct RS485 connection between BTS/Node B and tower top equipment and the second alternative is to use a coaxial cable for carrying power, RF signals and remote control data communication.
The first alternative of the standard is shown in
To have an RS485 connection the whole way from MCU 104 up to the RET unit in the mast top is an expensive solution, since the RS485 connection 105 often is quite long and therefore needs to have thick conductor cables to avoid too much attenuation.
When the second alternative is used, the remote control data signals are, usually inside a TMA, converted in a layer-1 converter, also called CILOC (Current Injector Layer One Converter), and a RS485 data connection is used between the CILOC and the antenna. The remote control data communication is thus sent partly over the coaxial antenna feeder cable and partly using a RS485 data connection. On the coaxial cable OOK modulation (On Off Keying modulation) is used for carrying the control information. In OOK the presence or absence of carrier is used for representing the information, a logical 1 is modulated as “carrier off” and a logical 0 s modulated as “carrier on”.
The control data for controlling the radiation direction of the antenna is created in a MCU 204 and sent to a converter 207 via an RS485 connection 205. The converter 207 receives the control data on the RS485 connection 205, modulates the data using OOK and superposes the OOK signals on the RF signals on the coaxial feeder cable 203.
A CILOC (Current Injector Layer One Converter) 208, connected to the coaxial cable 203, receives the RF signals and the superposed control data on the cable. The CILOC 208 can be included in a TMA (Tower mounted amplifier). The CILOC 208 demodulates the control data and sends the control data to a RET unit (Remote-Controlled Electrical Down-Tilt) unit 206 via a second RS485 connection 209.
The CILOC 303, is connected to the coaxial feeder cable 301 and receives the RF signals and the superposed control data on the cable. The CILOC 303 includes a filter 304, detecting means 305 such as a detector, and an RS485 circuit 306. The filter 304 filters out the OOK modulated control. The detector 305 then detects the OOK modulated control data and provides the control data to the RS485 circuit 306. The RS485 circuit 306 converts the control data into an RS485 signal being on the format suitable for an RS485 connection. The control data is then sent from the CILOC 303 to a RET unit 308 via an RS485 connection 307.
The coaxial feeder cable 301 has one conductor and one screening wire. The control data signal on the coaxial cable 301 is further OOK modulated. The RS485 cable 307 has two conductors, one screening wire and one grounding wire. The control data signal received by the CILOC 303 thus has to be converted from OOK modulation and coaxial cable format into a format suitable for an RS485 connection. This is done by the RS485 circuit 306.
The control data is provided via the RS485 connection 307 to the RET unit 308. The RET unit includes a second RS485 circuit 309 that converts the control data from the RS485 signalling format to logical signal, such as TTL signals (Transistor Transistor Logic signals), readable by control means 310, such as a CPU (Central Processing Unit). The RS485 circuit 309 provides the TTL signals to the CPU 310. The CPU 310 processes the control data and sends the control data to a motor control circuit 311. The motor control circuit 311 produces motor control signals for controlling a motor 312. Controlled by the motor control signals the motor 312 alters the radiation direction of the antenna by displacing a phase shifting means.
The inventors have realised that the background art system shown in
An exemplary embodiment of a control system according to the present invention is shown in
Some parts of the system have been changed or moved in the exemplary embodiment according to the invention. These parts are the CIN (Current Injector), the detecting means 406 and the jumper cable connection 404 between the CIN and the external control unit 405. The CIN is here just a filtering means 403, which is a much less complex circuit than the CILOC 303 in
The exemplary control system according to the invention does not use an RS485 connection for the control signals filtered out by the filtering means 403. The connection 404 is thus not an RS485 connection. There is therefore no need for the two RS485 circuits 306 and 309 shown in
The CIN here only includes filtering means 403 that filters out the OOK modulated control signals superposed on the feeder cable and directly provides these control signals on a jumper cable 404 to detecting means 406, such as a detector, which detects the OOK modulated control signals and provides the control signals to control means 407, preferably being a CPU, on a signal format readable by the control means 407. The CIN does here not include an RS485 circuit and the RET unit 405 does also not include an RS485 circuit as in the background art.
Two RS485 circuits can thus be omitted by implementation of the invention. The invention thereby reduces the number of circuits and the complexity in the control system. The control system according to the invention has less electronic circuitry and is thereby both more robust (for example less sensitive to lightning strikes and the like) and is less costly to produce.
The cable 404 is further a coaxial cable having one conductor and one screening wire compared to the RS485 cable 307 in
In further embodiments of the invention, the motor 409 and the motor control circuit 408 can be partly or totally incorporated within the casing of the antenna 402.
In one embodiment, also shown in
In an alternative embodiment, the motor control circuit 408 and the motor 409 are situated within the casing of the antenna 402. The detecting means 406 and the control means 407 are in this embodiment situated outside the casing of the antenna 402, in the external control unit 405 attached to the antenna.
In another alternative embodiment the motor control circuit 408, the motor 409 and the control means 407 are situated within the casing of the antenna 402. The control means 407 can in this embodiment be placed behind a cover in the antenna casing, thereby being possible to switch and upgrade. The detecting means 406 is in this embodiment situated outside the casing of the antenna, in the external control unit 405 attached to the antenna.
The different embodiments of the placing of the motor 409, the motor control circuit 408, the control means 407 and the detecting means 406 have different advantages. It is generally advantageous, regarding robustness, to include as much as possible of the electronic circuitry within the antenna casing since this casing is constructed to be protected against environmental threats, such as lightning strikes and the like.
It is further an advantage, regarding robustness, to have as few external units as possible since external units have to be connected to the antenna with cables. External mast top cables are also exposed to the environmental threats and must be protected. This protection raises the production costs for the systems.
Thus, the embodiments in which most of the parts of the control system are situated within the casing of the antenna 402 have the positive feature to be well protected against environment since most of the circuitry and most of the cables are situated within the protected casing of the antenna 402.
The embodiments having a differing number of parts in the external control unit, outside the casing of the antenna, have the positive feature that they could be implemented in existing systems, without altering the contents of the antenna of the existing system. Such embodiments could thus be used for upgrading existing systems according to the teachings of the present invention. The embodiments according to the invention, having electric circuitry situated in the external control unit outside the casing of the antenna, have nevertheless better environmental protection than background art systems since two RS485 circuits and the RS485 connection present in background art systems are omitted.
A skilled person realises that there could be other possible embodiments having differing amount of circuitry situated inside and outside of the antenna casing and the external control unit. That could, for instance, depend on the construction of the antenna unit of the particular system in which the control system is to be implemented. It is also possible to place differing amount of electrical circuitry inside or outside of the external control unit. This is also realised by a person skilled in the art.
As is said above,
In an embodiment of the present invention the MCU 204 provides OOK modulated control data to the converting means 207 that superposes them on the RF signal on the feeder cable. In this embodiment RS485 is not used at all for controlling the radiation direction of the antenna, OOK signals are instead used all the way from the MCU to the RET unit. No RS485 converting circuits or RS485 cables are thus needed for this embodiment, which makes the control system both less complex and less costly.
In an embodiment of the invention the control data can be modulated using other modulation than OOK. FSK (Frequency Shift Keying) or any other type of suitable modulation can be used for modulating the control data according to this embodiment. Different kinds of modulations have different characteristics regarding bitrate and robustness as is known by a skilled person. The type of modulation to be used is preferably chosen with respect to these characteristics.
The control system, the base station, the communication system and the method for controlling according to the invention may be modified by those skilled in the art, as compared to the exemplary embodiments described above.
A number of different components, circuits and cables can, for instance, be used for implementing a control system according to the invention. The different parts of a control system according to the invention can also be situated in different parts and casings of existing antenna systems.
As is obvious for a skilled person, a number of other implementations, modifications, variations and/or additions can be made to the above described exemplary embodiments. It is to be understood that the invention includes all such other implementations, modifications, variations and/or additions which fall within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
0601909 | Sep 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2007/000795 | 9/12/2007 | WO | 00 | 3/5/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/033076 | 3/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020132644 | Mellor et al. | Sep 2002 | A1 |
20050012665 | Runyon et al. | Jan 2005 | A1 |
20050113047 | Kim | May 2005 | A1 |
Number | Date | Country |
---|---|---|
9909661 | Feb 1999 | WO |
0024121 | Apr 2000 | WO |
WO 2006056886 | Jan 2006 | WO |
WO 2006057613 | Jan 2006 | WO |
2006057612 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100164803 A1 | Jul 2010 | US |