This invention relates generally to beer kegs and more specifically to a system for monitoring one or more characteristics of the use and/or contents of beer kegs.
Draft beer is typically provided in beer kegs, with the kegs having a typical volume in the range of 15.5 gallons. However, it has been difficult, if not impossible, heretofore, to ensure proper handling of draft beer kegs to ensure quality of the beer. Temperature, age and light are the highest risk factors that affect quality of draft beer. The lack of an ability to provide quality control and monitoring produces an economic loss to the owner. Estimates indicate that the lack of control over handling results in a 4-7%, or even more, reduction in sales. Poor handling includes exposure to even moderate heat as well as excessive time in storage, even storage which is temperature controlled. Further, even with refrigerated trains and trucks, there is no automated system to ensure overall proper handling of the individual kegs. While most kegs do a suitable job for protecting beer from the effects of light, other factors such as temperatures to which the keg has been exposed and age of the beer significantly affect the quality of the beer over its lifetime in a keg.
Once a filled beer keg leaves the producer, i.e. the brewer, there is no reliable way for the brewer to know the conditions the keg encounters, or whether it was ever subjected to conditions which could affect quality. Further, there is no verification of the travel of the individual beer keg and no knowledge of the location of a keg. Typically, many kegs go missing, and are never returned to the source. It has been estimated that in excess of 20 million kegs are used each year with 500,00 kegs lost and 100 million dollars in economic loss.
Accordingly, it would be desirable to have a monitoring system which can correct one or more of the disadvantages encountered by beer kegs during use thereof.
Accordingly, disclosed herein is a communication system for monitoring the use of beer kegs and the beer contained therein, for a brewery which in operation fills the kegs with beer and communicates directly with the kegs, comprising: a sensor system, which includes a processor and temporary data storage, attachable to a beer keg which when filled moves between the brewery and a selected destination; a two-way information communication link which directly connects the brewery and the sensor system attached to the keg concerning filling of the keg with beer by the brewery and the status of the keg and the beer therein during transportation of a filled keg to a destination, including providing information to the brewery from the sensor system that the keg has arrived at to brewery for fillings, wherein information provided by the brewery to the sensor system includes confirmation to the sensor system that the keg is ready to be filled by the brewery following cleaning of the keg and otherwise making the keg ready to be filled by the brewery, and wherein information acquired by the sensor system in operation is provided to said processor therein and from there to said temporary data storage and then to the brewery; wherein the information acquired by the sensor system includes the temperature of the beer in the keg and the location of the keg, as the keg moves from the brewery to the destination, wherein the sensor system provides an alert to the brewery when the temperature of the beer is out of a standard temperature range; and wherein all information acquired by the sensor system is uploaded directly from the temporary data storage in the sensor system to the data storage associated with the brewery over the communication network and wherein all information provided by the brewery to the sensor system is provided directly to the processor therein over the communication link.
Referring to
The processor and more particularly the software in the processor, checks regularly for receipt of data from the sensors, which will typically include temperature 45, fill level (volume) 47 and location 49. Typically, the sensor readings are recorded in the data storage 17 on an hourly basis but are then transmitted to the external data control center 30 daily, but this can be changed by the user. An alarm can be transmitted if no data is recorded by the data center. Alarms can be set for temperature variations from a standard temperature range during transport or use of the keg including over temperature and under temperature. It is important that the beer not be exposed to temperatures outside of the preselected range, which may vary depending on the beer. If data transmission is for some reason temporarily interrupted i.e. not fulfilling the daily reporting requirements, communication begins with the last confirmed communication, at least 24 hours of data. The location of the keg (longitude and latitude) can be provided as well. Location can be provided to the user at the data center on a map, for instance. Volume can be recorded by a flow sensor or force sensor, at the bottom of the keg, as shown at 48 in
When the volume measured or determined from the force sensor reaches a certain low level, a notice can be sent to the user advising them of the volume remaining. The keg can then be retrieved or sent back to the user from the last location, to ensure freshness. Further, a resupply notice can be sent to the user providing an indication that a resupply is necessary. Contact can then be made with the proprietor or other user at the location relative to a providing new keg. The original keg is then returned to the brewery for cleaning and reuse, at 43.
Although a preferred embodiment of the invention has been disclosed for purposes of illustration, it should be understood that various changes, modifications and substitutions may be incorporated in the embodiment without departing from the spirit of the invention, which is defined by the claims which follow. What is claimed is:
Number | Date | Country | |
---|---|---|---|
Parent | 15130179 | Apr 2016 | US |
Child | 16526849 | US |