Communication system incorporated in a container

Information

  • Patent Grant
  • 9198608
  • Patent Number
    9,198,608
  • Date Filed
    Wednesday, November 23, 2011
    13 years ago
  • Date Issued
    Tuesday, December 1, 2015
    9 years ago
Abstract
The system of the present invention includes a container and an electronic component with a partial power source in the form of dissimilar materials. The container includes a liquid. Upon contact with the liquid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 13/180,507 filed on Jul. 11, 2011 and entitled COMMUNICATION SYSTEM INCORPORATED IN AN INGESTIBLE PRODUCT, now U.S. Pat. No. 8,836,513 which is a continuation-in-part of U.S. Patent Application Publication 2010/0081894A1, now U.S. Pat. No. 7,978,064 and entitled COMMUNICATION SYSTEM WITH PARTIAL POWER SOURCE which is a continuation-in-part application of U.S. patent application Ser. No. 11/912,475 filed Jun. 23, 2008, now U.S. Pat. No. 8,847,766: which application is a 371 application of PCT Application Serial No. PCT/US06/16370 filed Apr. 28, 2006; which application pursuant to 35 U.S.C. §119 (e), claims priority to the filing dates of: U.S. Provisional Patent Application Ser. No. 60/676,145 filed Apr. 28, 2005; U.S. Provisional Patent Application Ser. No. 60/694,078 filed Jun. 24, 2005; U.S. Provisional Patent Application Ser. No. 60/713,680 filed Sep. 1, 2005 and U.S. Provisional Patent Application Ser. No. 60/790,335 filed Apr. 7, 2006; the disclosures of which are herein incorporated by reference.


This application is related to the following US Applications, the disclosures of which are incorporate herein by reference: U.S. application Ser. No. 13/180,516, filed Jul. 11, 2011 and entitled COMMUNICATION SYSTEM WITH REMOTE ACTIVATION, now U.S. Pat. No. 8,912,908; U.S. application Ser. No. 13/180,525 filed on Jul. 11, 2011 and entitled COMMUNICATION SYSTEM WITH ENHANCED PARTIAL POWER AND METHOD OF MANUFACTURING SAME, now U.S. Pat. No. 8,802,183; U.S. application Ser. No. 13/180,498, filed Jul. 11, 2011 and entitled COMMUNICATION SYSTEM WITH MULTIPLE TYPES OF POWER, now U.S. Patent Application Publication No. 2012/0004520; U.S. application Ser. No. 13/180,538, filed Jul. 11, 2011 and entitled COMMUNICATION SYSTEM USING POLYPHARMACY CO-PACKAGED MEDICATION DOSING UNIT, now U.S. Patent Application Publication No. 2012/0024889; U.S. application Ser. No. 13/180,539, filed Jul. 11, 2011 and entitled COMMUNICATION SYSTEM USING AN IMPLANTABLE DEVICE, now U.S. Pat. No. 8,730,031.


FIELD

The present invention is related to communication systems for detection of an event. More specifically, the present disclosure includes a system that includes a device for association with ingestible ingredients or products.


INTRODUCTION

Various devices and products are used for tracking food consumption. Examples of such devices or products have typically required human input or intervention in order to correlate the information associated with the type of food taken, the timing of consumption, and the amount of food consumed. Additionally, even if collection of some information is automated, human input is needed to match the information with the actual consumer so that there is a direct connection between the information and the person that consumed the food.


Given that there are so many different variables and types of information to track, the known systems do not provide an accurate means for tracking food consumption because of the need to rely upon human entry of data. Therefore, what is needed is a system and method for automating the tracking of food consumption, including timing of consumption, quantity of consumption, and identity of the consumer along with other information such as when a container is opened.


SUMMARY

The present disclosure includes a system for automation of the monitoring and tracking of consumption of food products. The system includes a container with a sensor that can communicate to a receiver. The container also includes sensors that measure the amount of food consumed and information related to the timing of the intent to consume as well as the timing of the consumption. The information can also be used to determine the identity of the consumer by using an ingestible device that produces a unique signature once inside the consumer's body.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows an event indicator system in communication with an implanted device in according to the teaching of the present invention.



FIG. 2A shows the pharmaceutical product of FIG. 1 with the event indicator system on the exterior of the pharmaceutical product in accordance with the teachings of the present invention.



FIG. 2B shows the pharmaceutical product of FIG. 1 with the event indicator system positioned inside the pharmaceutical product in accordance with the teachings of the present invention.



FIG. 3 is a block diagram representation of one aspect of the event indicator system with dissimilar metals positioned on opposite ends in accordance with the teachings of the present invention.



FIG. 4 is a block diagram representation of another aspect of the event indicator system with dissimilar metals positioned on the same end and separated by a non-conducting material in accordance with the teachings of the present invention.



FIG. 5 shows ionic transfer or the current path through a conducting fluid when the event indicator system of FIG. 3 is in contact with conducting liquid and in an active state in accordance with the teachings of the present invention.



FIG. 5A shows an exploded view of the surface of dissimilar materials of FIG. 5, in accordance with the teachings of the present invention.



FIG. 5B shows the event indicator system of FIG. 5 with a pH sensor unit, in accordance with the teachings of the present invention.



FIG. 6 is a block diagram illustration of one aspect of the control device used in the system of FIGS. 3 and 4, in accordance with the teachings of the present invention.



FIG. 7 shows a container for liquids with an event indicator in accordance with the teachings of the present invention.



FIG. 8 shows a container for liquids with an event indicator and volume sensor in accordance with the teachings of the present invention.



FIG. 9 is a process for collecting and correlating the information to automate tracking of food consumption by a consumer.





DETAILED DESCRIPTION

The present invention discloses an apparatus that is part of a system. The apparatus that includes a container and a sensor, as discussed in detail below. In accordance with one aspect of the present invention, the sensor is air activated. In accordance with another aspect of the present invention the sensor is activated upon contact with a conduction liquid or fluid, such as a drink or physiological fluid. The container can also measure the quantity food in the container and includes multiple aspects for indicating the occurrence of an event.


As described in more detail below, the system of the present invention is used with a conducting fluid to indicate the event marked by contact between the conducting fluid and the system. For example, the system of the present disclosure may be used with pharmaceutical product and the event that is indicated is when the product is taken or ingested. The term “ingested” or “ingest” or “ingesting” is understood to mean any introduction of the system internal to the body. For example, ingesting includes simply placing the system in the mouth all the way to the descending colon. Thus, the term ingesting refers to any instant in time when the system is introduced to an environment that contains a conducting fluid. Another example would be a situation when a non-conducting fluid is mixed with a conducting fluid. In such a situation the system would be present in the non-conduction fluid and when the two fluids are mixed, the system comes into contact with the conducting fluid and the system is activated. Yet another example would be the situation when the presence of certain conducting fluids needed to be detected. In such instances, the presence of the system, which would be activated, within the conducting fluid could be detected and, hence, the presence of the respective fluid would be detected.


Referring again to the instance where the system is used with the product that is ingested by the living organism, when the product that includes the system is taken or ingested, the device comes into contact with the conducting liquid of the body. When the system of the present invention comes into contact with the body fluid, a voltage potential is created and the system is activated. A portion of the power source is provided by the device, while another portion of the power source is provided by the conducting fluid, which is discussed in detail below.


Referring now to FIG. 1, an ingestible capsule 14 that includes a system of the present invention is shown inside the body. The capsule 14 is configured as an orally ingestible pharmaceutical formulation in the form of a pill or capsule. Upon ingestion, the capsule 14 moves to the stomach. Upon reaching the stomach, the capsule 14 is in contact with stomach fluid 18 and undergoes a chemical reaction with the various materials in the stomach fluid 18, such as hydrochloric acid and other digestive agents. The system of the present invention is discussed in reference to a pharmaceutical environment. However, the scope of the present invention is not limited thereby. The present invention can be used in any environment where a conducting fluid is present or becomes present through mixing of two or more components that result in a conducting liquid.


Referring now to FIG. 2A, a pharmaceutical product 10, similar to the capsule 14 of FIG. 1, is shown with a system 12, such as an ingestible event marker or an ionic emission module. The scope of the present invention is not limited by the shape or type of the product 10. For example, it will be clear to one skilled in the art that the product 10 can be a capsule, a time-release oral dosage, a tablet, a gel cap, a sub-lingual tablet, or any oral dosage product that can be combined with the system 12.


Additionally, the system 12 of the present invention may be ingested without a pharmaceutical product via a carrier capsule that includes only the system with no other active agent. In accordance with another aspect of the present invention, the system 12 may be used as part of a food product or an ingredient in a food product. For example, the system 12 is coated with a protective material as discussed in detail below. The system 12 is then included is the food product similar to any ingredient. Thus, ingestion of that food product may be tracked automatically, which is often useful in setting where knowing the exact food take and time of ingestion is needed, for example when a person has a special diet or is receiving care at a hospital as a patient or in-patient.


In accordance with another example of the present invention, the system 12 may be combined with an ingredient commonly used in making food. For example, the system 12 may be secured to salt in a manner similar to the way the system 12 is secured to a pharmaceutical product, as discussed below. Then as the ingredient with the system 12 is mixed into the food, the food will include the system which will become activated upon ingestion.


In accordance with various aspects of the present invention, when the system 12 is combined with food and ingested there are various approaches to activation of the system 12. In accordance with one aspect of the present invention, the system 12 may be coated with a material that breaks and releases the system 12 as the food is being masticated, e.g. chewed or squashed. In accordance with another aspect of the present invention, the coating material may be reactive to saliva and when in contact with saliva will dissolve or disintegrate and release the system 12. Conducting fluids associated with saliva may activate the system 12. In accordance with yet another aspect of the present invention, the coating material may be reactive to stomach acids and dissolve or disintegrate upon contact with the stomach fluids to release the system 12. In accordance with another aspect of the present invention, the coating material may be made of material that resists breaking or dissolving when masticated or exposed to saliva, such as the beads found in drinks. In accordance with another aspect of the present invention, the coating material may be intentionally destroyed or broken apart when distributed or mixed in with a food, such as when bread is mixed and prepared for a food (e.g. pizza dough).


Continuing with FIG. 2A, in the shown aspect, the product 10 has the system 12 secured to the exterior using known methods of securing micro-devices to the exterior of pharmaceutical products or an ingestible ingredient, for example food or ingredients of food. Example of methods for securing the micro-device to the product is disclosed in U.S. Provisional Application No. 61/142,849 filed on Jan. 1, 2009 and entitled “HIGH-THROUGHPUT PRODUCTION OF INGESTIBLE EVENT MARKERS” as well as U.S. Provisional Application No. 61/177,611 filed on May 12, 2009 and entitled “INGESTIBLE EVENT MARKERS COMPRISING AN IDENTIFIER AND AN INGESTIBLE COMPONENT”, the entire disclosure of each is incorporated herein by reference. Once ingested, the system 12 comes into contact with body liquids and the system 12 is activated. The system 12 uses the voltage potential difference to power up and thereafter modulates conductance to create a unique and identifiable current signature. Upon activation, the system 12 controls the conductance and, hence, current flow to produce the current signature.


There are various reasons for delaying the activation of the system 12. In order to delay the activation of the system 12, the system 12 may be coated with a shielding material or protective layer. The layer is dissolved over a period of time, thereby allowing the system 12 to be activated when the product 10 has reached a target location.


Referring now to FIG. 2B, a pharmaceutical product or an ingestible product/ingredient 20, similar to the capsule 14 of FIG. 1, is shown with a system 22, such as an ingestible event marker or an identifiable emission module. The scope of the present invention is not limited by the environment to which the system 22 is introduced. For example, the system 22 can be enclosed in a capsule that is taken in addition to/independently from the pharmaceutical product or ingestible ingredient. The capsule may be simply a carrier for the system 22 and may not contain any product. Furthermore, the scope of the present invention is not limited by the shape or type of product 20. For example, it will be clear to one skilled in the art that the product 20 can be a food product or ingredient, a capsule, a time-release oral dosage, a tablet, a gel capsule, a sub-lingual tablet, or any oral dosage product. In the referenced aspect, the product 20 has the system 22 positioned inside or secured to the interior of the product 20. In one aspect, the system 22 is secured to the interior wall of the product 20. When the system 22 is positioned inside a gel capsule, then the content of the gel capsule is a non-conducting gel-liquid. On the other hand, if the content of the gel capsule is a conducting gel-liquid, then in an alternative aspect, the system 22 is coated with a protective cover to prevent unwanted activation by the gel capsule content. If the content of the capsule is a dry powder or microspheres, then the system 22 is positioned or placed within the capsule. If the product 20 is a tablet or hard pill, then the system 22 is held in place inside the tablet. Once ingested, the product 20 containing the system 22 is dissolved. The system 22 comes into contact with body liquids and the system 22 is activated. Depending on the product 20, the system 22 may be positioned in either a near-central or near-perimeter position depending on the desired activation delay between the time of initial ingestion and activation of the system 22. For example, a central position for the system 22 means that it will take longer for the system 22 to be in contact with the conducting liquid and, hence, it will take longer for the system 22 to be activated. Therefore, it will take longer for the occurrence of the event to be detected.


Referring now to FIG. 3, in one aspect, the systems 12 and 22 of FIGS. 2A and 2B, respectively, are shown in more detail as system 30. The system 30 can be used in association with any pharmaceutical product, as mentioned above, to determine when a patient takes the pharmaceutical product. As indicated above, the scope of the present invention is not limited by the environment and the product that is used with the system 30. For example, the system 30 may be placed within a capsule and the capsule is placed within the conducting liquid. The capsule would then dissolve over a period of time and release the system 30 into the conducting liquid. Thus, in one aspect, the capsule would contain the system 30 and no product. Such a capsule may then be used in any environment where a conducting liquid is present and with any product. For example, the capsule may be dropped into a container filled with jet fuel, salt water, tomato sauce, motor oil, or any similar product. Additionally, the capsule containing the system 30 may be ingested at the same time that any pharmaceutical product is ingested in order to record the occurrence of the event, such as when the product was taken.


In the specific example of the system 30 combined with the pharmaceutical product, as the product or pill is ingested, the system 30 is activated. The system 30 controls conductance to produce a unique current signature that is detected, thereby signifying that the pharmaceutical product has been taken. The system 30 includes a framework 32. The framework 32 is a chassis for the system 30 and multiple components are attached to, deposited upon, or secured to the framework 32. In this aspect of the system 30, a digestible material 34 is physically associated with the framework 32. The material 34 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework all of which may be referred to herein as “deposit” with respect to the framework 32. The material 34 is deposited on one side of the framework 32. The materials of interest that can be used as material 34 include, but are not limited to: Cu or Cul. The material 34 is deposited by physical vapor deposition, electrodeposition, or plasma deposition, among other protocols. The material 34 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. The shape is controlled by shadow mask deposition, or photolithography and etching. Additionally, even though only one region is shown for depositing the material, each system 30 may contain two or more electrically unique regions where the material 34 may be deposited, as desired.


At a different side, which is the opposite side as shown in FIG. 3, another digestible material 36 is deposited, such that materials 34 and 36 are dissimilar. Although not shown, the different side selected may be the side next to the side selected for the material 34. The scope of the present invention is not limited by the side selected and the term “different side” can mean any of the multiple sides that are different from the first selected side. Furthermore, even though the shape of the system is shown as a square, the shape may be any geometrically suitable shape. Material 34 and 36 are selected such that they produce a voltage potential difference when the system 30 is in contact with conducting liquid, such as body fluids. The materials of interest for material 36 include, but are not limited to: Mg, Zn, or other electronegative metals. As indicated above with respect to the material 34, the material 36 may be chemically deposited on, evaporated onto, secured to, or built-up on the framework. Also, an adhesion layer may be necessary to help the material 36 (as well as material 34 when needed) to adhere to the framework 32. Typical adhesion layers for the material 36 are Ti, TiW, Cr or similar material. Anode material and the adhesion layer may be deposited by physical vapor deposition, electrodeposition or plasma deposition. The material 36 may be from about 0.05 to about 500 μm thick, such as from about 5 to about 100 μm thick. However, the scope of the present invention is not limited by the thickness of any of the materials nor by the type of process used to deposit or secure the materials to the framework 32.


According to the disclosure set forth, the materials 34 and 36 can be any pair of materials with different electrochemical potentials. Additionally, in the aspects wherein the system 30 is used in-vivo, the materials 34 and 36 may be vitamins that can be absorbed. More specifically, the materials 34 and 36 can be made of any two materials appropriate for the environment in which the system 30 will be operating. For example, when used with an ingestible product, the materials 34 and 36 are any pair of materials with different electrochemical potentials that are ingestible. An illustrative example includes the instance when the system 30 is in contact with an ionic solution, such as stomach acids. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or Cul). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.


Materials and pairings of interest include, but are not limited to, those reported in Table 1 below. In one aspect, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage potential created between the materials as they come into contact with a conducting liquid. Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine and the like. In another aspect, the materials are copper iodine (Cul) as the anode and magnesium (Mg) as the cathode. Aspects of the present invention use electrode materials that are not harmful to the human body.












TABLE 1







Anode
Cathode


















Metals
Magnesium, Zinc




Sodium, Lithium



Iron


Salts

Copper salts: iodide, chloride, bromide,




sulfate, formate, (other anions possible)




Fe3+ salts: e.g. orthophosphate,




pyrophosphate, (other anions possible)




Oxygen on platinum, gold or other




catalytic surfaces


Intercalation
Graphite with Li,
Vanadium oxide


compounds
K, Ca, Na, Mg
Manganese oxide









Thus, when the system 30 is in contact with the conducting liquid, a current path, an example is shown in FIG. 5, is formed through the conducting liquid between material 34 and 36. A control device 38 is secured to the framework 32 and electrically coupled to the materials 34 and 36. The control device 38 includes electronic circuitry, for example control logic that is capable of controlling and altering the conductance between the materials 34 and 36.


The voltage potential created between the materials 34 and 36 provides the power for operating the system as well as produces the current flow through the conducting fluid and the system. In one aspect, the system operates in direct current mode. In an alternative aspect, the system controls the direction of the current so that the direction of current is reversed in a cyclic manner, similar to alternating current. As the system reaches the conducting fluid or the electrolyte, where the fluid or electrolyte component is provided by a physiological fluid, e.g., stomach acid, the path for current flow between the materials 34 and 36 is completed external to the system 30; the current path through the system 30 is controlled by the control device 38. Completion of the current path allows for the current to flow and in turn a receiver, not shown, can detect the presence of the current and recognize that the system 30 has been activate and the desired event is occurring or has occurred.


In one aspect, the two materials 34 and 36 are similar in function to the two electrodes needed for a direct current power source, such as a battery. The conducting liquid acts as the electrolyte needed to complete the power source. The completed power source described is defined by the physical chemical reaction between the materials 34 and 36 of the system 30 and the surrounding fluids of the body. The completed power source may be viewed as a power source that exploits reverse electrolysis in an ionic or a conducting solution such as gastric fluid, blood, or other bodily fluids and some tissues. Additionally, the environment may be something other than a body and the liquid may be any conducting liquid. For example, the conducting fluid may be salt water or a metallic based paint.


In certain aspects, these two materials are shielded from the surrounding environment by an additional layer of material. Accordingly, when the shield is dissolved and the two dissimilar materials are exposed to the target site, a voltage potential is generated.


In certain aspects, the complete power source or supply is one that is made up of active electrode materials, electrolytes, and inactive materials, such as current collectors, packaging, etc. The active materials are any pair of materials with different electrochemical potentials. Suitable materials are not restricted to metals, and in certain aspects the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as Cul). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.


A variety of different materials may be employed as the materials that form the electrodes. In certain aspects, electrode materials are chosen to provide for a voltage upon contact with the target physiological site, e.g., the stomach, sufficient to drive the system of the identifier. In certain aspects, the voltage provided by the electrode materials upon contact of the metals of the power source with the target physiological site is 0.001 V or higher, including 0.01 V or higher, such as 0.1 V or higher, e.g., 0.3 V or higher, including 0.5 volts or higher, and including 1.0 volts or higher, where in certain aspects, the voltage ranges from about 0.001 to about 10 volts, such as from about 0.01 to about 10 V.


Referring again to FIG. 3, the materials 34 and 36 provide the voltage potential to activate the control device 38. Once the control device 38 is activated or powered up, the control device 38 can alter conductance between the materials 34 and 36 in a unique manner. By altering the conductance between materials 34 and 36, the control device 38 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 30. This produces a unique current signature that can be detected and measured by a receiver (not shown), which can be positioned internal or external to the body. In addition to controlling the magnitude of the current path between the materials, non-conducting materials, membrane, or “skirt” are used to increase the “length” of the current path and, hence, act to boost the conductance path, as disclosed in the U.S. patent application Ser. No. 12/238,345 entitled, “In-Body Device with Virtual Dipole Signal Amplification” filed Sep. 25, 2008, the entire content of which is incorporated herein by reference. Alternatively, throughout the disclosure herein, the terms “non-conducting material”, “membrane”, and “skirt” are interchangeably with the term “current path extender” without impacting the scope or the present aspects and the claims herein. The skirt, shown in portion at 35 and 37, respectively, may be associated with, e.g., secured to, the framework 32. Various shapes and configurations for the skirt are contemplated as within the scope of the present invention. For example, the system 30 may be surrounded entirely or partially by the skirt and the skirt maybe positioned along a central axis of the system 30 or off-center relative to a central axis. Thus, the scope of the present invention as claimed herein is not limited by the shape or size of the skirt. Furthermore, in other aspects, the materials 34 and 36 may be separated by one skirt that is positioned in any defined region between the materials 34 and 36.


Referring now to FIG. 4, in another aspect, the systems 12 and 22 of FIGS. 2A and 2B, respectively, are shown in more detail as system 40. The system 40 includes a framework 42. The framework 42 is similar to the framework 32 of FIG. 3. In this aspect of the system 40, a digestible or dissolvable material 44 is deposited on a portion of one side of the framework 42. At a different portion of the same side of the framework 42, another digestible material 46 is deposited, such that materials 44 and 46 are dissimilar. More specifically, material 44 and 46 are selected such that they form a voltage potential difference when in contact with a conducting liquid, such as body fluids. Thus, when the system 40 is in contact with and/or partially in contact with the conducting liquid, then a current path, an example is shown in FIG. 5, is formed through the conducting liquid between material 44 and 46. A control device 48 is secured to the framework 42 and electrically coupled to the materials 44 and 46. The control device 48 includes electronic circuitry that is capable of controlling part of the conductance path between the materials 44 and 46. The materials 44 and 46 are separated by a non-conducting skirt 49. Various examples of the skirt 49 are disclosed in U.S. Provisional Application No. 61/173,511 filed on Apr. 28, 2009 and entitled “HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME” and U.S. Provisional Application No. 61/173,564 filed on Apr. 28, 2009 and entitled “INGESTIBLE EVENT MARKERS HAVING SIGNAL AMPLIFIERS THAT COMPRISE AN ACTIVE AGENT”; as well as U.S. application Ser. No. 12/238,345 filed Sep. 25, 2008 and entitled “IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION”; the entire disclosure of each is incorporated herein by reference.


Once the control device 48 is activated or powered up, the control device 48 can alter conductance between the materials 44 and 46. Thus, the control device 48 is capable of controlling the magnitude of the current through the conducting liquid that surrounds the system 40. As indicated above with respect to system 30, a unique current signature that is associated with the system 40 can be detected by a receiver (not shown) to mark the activation of the system 40. In order to increase the “length” of the current path the size of the skirt 49 is altered. The longer the current path, the easier it may be for the receiver to detect the current.


Referring now to FIG. 5, the system 30 of FIG. 3 is shown in an activated state and in contact with conducting liquid. The system 30 is grounded through ground contact 52. For example, when the system 30 is in contact with a conducting fluid, the conducting fluid provides the ground. The system 30 also includes a sensor module 74, which is described in greater detail with respect to FIG. 6. Ion or current paths 50 between material 34 to material 36 and through the conducting fluid in contact with the system 30. The voltage potential created between the material 34 and 36 is created through chemical reactions between materials 34/36 and the conducting fluid.


The system 30 also includes a unit 75. The unit 75 includes communication functions and in accordance with the various aspects of the present invention can act as any of the following: a receiver, a transmitter, or a transceiver. Thus, another device that is external to the system 30, such as a cell phone, an implanted device, a device attached to the user's body, or a device placed under the user's skin can communicate with the system 30 through the unit 75. The unit 75 is also electrically connected to the materials 34 and 36. In accordance with one aspect of the present invention, any device that is external to the system 30 may communicate with either the unit 75 or the control module 38 using current flow through the environment surrounding the system 30. For example, a patch or receiver that is attached to the user's body, a cell phone or device being held by the user, or an implanted device, any of which can generate a current signature through the user's body. The current signature can include information that is encoded therein. The current signature is detected by the system 30, using the unit 75 or the control module 38, and decoded to allow communication to the system 30 from the device external to system 30. Accordingly, the external device can send a signal to the unit 75, either wirelessly or through transconduction, that controls the activation of the system 30.


Referring now to FIG. 5A shows an exploded view of the surface of the material 34. The surface of the material 34 is not planar, but rather an irregular surface. The irregular surface increases the surface area of the material and, hence, the area that comes in contact with the conducting fluid. In one aspect, at the surface of the material 34, there is an electrochemical reaction between the material 34 and the surrounding conducting fluid such that mass is released into the conducting fluid. The term “mass” as used herein refers to protons and neutrons that form a substance. One example includes the instant where the material is CuCl and when in contact with the conducting fluid, CuCl becomes Cu (solid) and Clin solution. The flow of positive ions into the conducting fluid is depicted by the current path 50. Negative ions flow in the opposite direction. In a similar manner, there is an electrochemical reaction between the material 36 and the surrounding conducting fluid. In this example, the release of negative ions at the material 34 and release of positive ion by the material 36 is collectively referred to as the ionic exchange. The rate of ionic exchange and, hence the ionic emission rate or flow, is controlled by the control device 38. The control device 38 can increase or decrease the rate of ion flow by altering the conductance, which alters the impedance, between the materials 34 and 36. Through controlling the ion exchange, the system 30 can encode information in the ionic exchange process. Thus, the system 30 uses ionic emission to encode information in the ionic exchange.


The control device 38 can vary the duration of a fixed ionic exchange rate or current flow magnitude while keeping the rate or magnitude near constant, similar to when the frequency is modulated and the amplitude is constant. Also, the control device 38 can vary the level of the ionic exchange rate or the magnitude of the current flow while keeping the duration near constant. Thus, using various combinations of changes in duration and altering the rate or magnitude, the control device 38 encodes information in the current flow or the ionic exchange. For example, the control device 38 may use, but is not limited to any of the following techniques namely, Binary Phase-Shift Keying (PSK), Frequency modulation, Amplitude modulation, on-off keying, and PSK with on-off keying.


As indicated above, the various aspects disclosed herein, such as systems 30 and 40 of FIGS. 3 and 4, respectively, include electronic components as part of the control device 38 or the control device 48. Components that may be present include but are not limited to: logic and/or memory elements, an integrated circuit, an inductor, a resistor, and sensors for measuring various parameters. Each component may be secured to the framework and/or to another component. The components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.


As indicated above, the system, such as system 30 and 40, control the conductance between the dissimilar materials and, hence, the rate of ionic exchange or the current flow. Through altering the conductance in a specific manner the system is capable of encoding information in the ionic exchange and the current signature. The ionic exchange or the current signature is used to uniquely identify the specific system. Additionally, the systems 30 and 40 are capable of producing various different unique exchanges or signatures and, thus, provide additional information. For example, a second current signature based on a second conductance alteration pattern may be used to provide additional information, which information may be related to the physical environment. To further illustrate, a first current signature may be a very low current state that maintains an oscillator on the chip and a second current signature may be a current state at least a factor of ten higher than the current state associated with the first current signature.


Referring now to FIG. 6, a block diagram representation of the control device 38 is shown. The control device 30 includes a control module 62, a counter or clock 64, and a memory 66. Additionally, the device 38 is shown to include a sensor module 72 as well as the sensor module 74, which was referenced in FIG. 5. The control module 62 has an input 68 electrically coupled to the material 34 and an output 70 electrically coupled to the material 36. The control module 62, the clock 64, the memory 66, and the sensor modules 72/74 also have power inputs (some not shown). The power for each of these components is supplied by the voltage potential produced by the chemical reaction between materials 34 and 36 and the conducting fluid, when the system 30 is in contact with the conducting fluid. The control module 62 controls the conductance through logic that alters the overall impedance of the system 30. The control module 62 is electrically coupled to the clock 64. The clock 64 provides a clock cycle to the control module 62. Based upon the programmed characteristics of the control module 62, when a set number of clock cycles have passed, the control module 62 alters the conductance characteristics between materials 34 and 36. This cycle is repeated and thereby the control device 38 produces a unique current signature characteristic. The control module 62 is also electrically coupled to the memory 66. Both the clock 64 and the memory 66 are powered by the voltage potential created between the materials 34 and 36.


The control module 62 is also electrically coupled to and in communication with the sensor modules 72 and 74. In the aspect shown, the sensor module 72 is part of the control device 38 and the sensor module 74 is a separate component. In alternative aspects, either one of the sensor modules 72 and 74 can be used without the other and the scope of the present invention is not limited by the structural or functional location of the sensor modules 72 or 74. Additionally, any component of the system 30 may be functionally or structurally moved, combined, or repositioned without limiting the scope of the present invention as claimed. Thus, it is possible to have one single structure, for example a processor, which is designed to perform the functions of all of the following modules: the control module 62, the clock 64, the memory 66, and the sensor module 72 or 74. On the other hand, it is also within the scope of the present invention to have each of these functional components located in independent structures that are linked electrically and able to communicate.


Referring again to FIG. 6, the sensor modules 72 or 74 can include any of the following sensors: temperature, pressure, pH level, and conductivity. In one aspect, the sensor modules 72 or 74 gather information from the environment and communicate the analog information to the control module 62. The control module then converts the analog information to digital information and the digital information is encoded in the current flow or the rate of the transfer of mass that produces the ionic flow. In another aspect, the sensor modules 72 or 74 gather information from the environment and convert the analog information to digital information and then communicate the digital information to control module 62. In the aspect shown in FIG. 5, the sensor modules 74 is shown as being electrically coupled to the material 34 and 36 as well as the control device 38. In another aspect, as shown in FIG. 6, the sensor module 74 is electrically coupled to the control device 38 at connection 78. The connection 78 acts as both a source for power supply to the sensor module 74 and a communication channel between the sensor module 74 and the control device 38.


Referring now to FIG. 5B, the system 30 includes a pH sensor module 76 connected to a material 39, which is selected in accordance with the specific type of sensing function being performed. The pH sensor module 76 is also connected to the control device 38. The material 39 is electrically isolated from the material 34 by a non-conductive barrier 55. In one aspect, the material 39 is platinum. In operation, the pH sensor module 76 uses the voltage potential difference between the materials 34/36. The pH sensor module 76 measures the voltage potential difference between the material 34 and the material 39 and records that value for later comparison. The pH sensor module 76 also measures the voltage potential difference between the material 39 and the material 36 and records that value for later comparison. The pH sensor module 76 calculates the pH level of the surrounding environment using the voltage potential values. The pH sensor module 76 provides that information to the control device 38. The control device 38 varies the rate of the transfer of mass that produces the ionic transfer and the current flow to encode the information relevant to the pH level in the ionic transfer, which can be detected by a receiver (not shown). Thus, the system 30 can determine and provide the information related to the pH level to a source external to the environment.


As indicated above, the control device 38 can be programmed in advance to output a pre-defined current signature. In another aspect, the system can include a receiver system that can receive programming information when the system is activated. In another aspect, not shown, the switch 64 and the memory 66 can be combined into one device.


In addition to the above components, the system 30 may also include one or other electronic components. Electrical components of interest include, but are not limited to: additional logic and/or memory elements, e.g., in the form of an integrated circuit; a power regulation device, e.g., battery, fuel cell or capacitor; a sensor, a stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.


In certain aspects, the ingestible circuitry includes a coating layer. The purpose of this coating layer can vary, e.g., to protect the circuitry, the chip and/or the battery, or any components during processing, during storage, or even during ingestion. In such instances, a coating on top of the circuitry may be included. Also of interest are coatings that are designed to protect the ingestible circuitry during storage, but dissolve immediately during use. For example, coatings that dissolve upon contact with an aqueous fluid, e.g. stomach fluid, or the conducting fluid as referenced above. Also of interest are protective processing coatings that are employed to allow the use of processing steps that would otherwise damage certain components of the device. For example, in aspects where a chip with dissimilar material deposited on the top and bottom is produced, the product needs to be diced. However, the dicing process can scratch off the dissimilar material, and also there might be liquid involved which would cause the dissimilar materials to discharge or dissolve. In such instances, a protective coating on the materials prevents mechanical or liquid contact with the component during processing can be employed. Another purpose of the dissolvable coatings may be to delay activation of the device. For example, the coating that sits on the dissimilar material and takes a certain period of time, e.g., five minutes, to dissolve upon contact with stomach fluid may be employed. The coating can also be an environmentally sensitive coating, e.g., a temperature or pH sensitive coating, or other chemically sensitive coating that provides for dissolution in a controlled fashion and allows one to activate the device when desired. Coatings that survive the stomach but dissolve in the intestine are also of interest, e.g., where one desires to delay activation until the device leaves the stomach. An example of such a coating is a polymer that is insoluble at low pH, but becomes soluble at a higher pH. Also of interest are pharmaceutical formulation protective coatings, e.g., a gel cap liquid protective coating that prevents the circuit from being activated by liquid of the gel cap.


Referring now to FIG. 7, a container 100 is shown that includes an event indicator 102. The container 100 holds liquid 110 that can be consumed by a consumer. The scope of the present invention is not limited by the type of consumable liquid within container 100. In accordance with one aspect of the present invention, the indicator 102 is placed at or near the opening of the container 100, such that as the liquid 110 is poured and comes into contact with the event indicator 102, the presence of the liquid 110 activates the indicator 102. As long as the liquid 110 is in contact with the indicator 102, such as while the liquid 100 is being poured, the indicator 102 remains active. Once activated, the indicator 102 communicates with a detector or receiver device 120. Thus, the device 120 can record the timing of the activation of the indicator 102.


In accordance with another aspect of the present invention, the indicator 102 can be activated by coming into contact with the consumer's mouth and is activated upon contact with the physiological fluids of the consumer, such as saliva. Once activated the indicator 102 communicates with the device 120, which may be positioned on or secured to the consumer's body or skin or part of the clothing worn by the consumer that is in contact with the consumer's skin. Thus, the device 120 could communicate with the indicator 102 through the consumer's body using transconduction or wirelessly through the air.


In accordance with other aspects of the present invention, additional indicators, such as an ingestible indicator 130 that includes a coating material 130a and a unit 130b, is present or included in the liquid 110. In accordance with one aspects of the present invention, the indicator 130 is similar to the indicator 102. Based on the various aspects of the present invention, the indicator 130 may be different from the indicator 102. In accordance with one aspects of the present invention, the coating 130a of the indicator 130 is designed to react with physiological fluids, such as stomach acids, and dissolve. Once the coating 130a is dissolved inside the consumer's body, the indicator 130 is activated and communicates with the device 120 using transconduction as indicated above. The scope of the present invention is not limited by the number of indicators 130 that are included in the liquid 110.


In accordance with another aspect of the present invention, the indicator 102 includes a zinc-air activated type battery. Thus, as a cap 104 is secured onto the container, the cap 104 isolates the indicator 102 from the air. Thus, the indicator 102 is activated when the cap 104 is removed and the indicator 102 is exposed to the air. Once activated, information is then sent to the device 120 to indicate that the container 100 is open and the liquid 110 is ready to be consumed or dispensed. Thus, when the consumer ingests or drinks the liquid 110, the indicator 130 is activated and additional information is sent to the device 120. The correlation between the information from the indicator 102 and the indicator 130 determines if the consumer actually consumed the liquid 110 as well as the delay between opening the container 100 and consuming the liquid 110.


In accordance with another aspect of the present invention, the liquid 110 is non-conducting and thus the coating 130a is removed and only the unit 130b of the indicator 130 is included.


Referring now to FIG. 8, a container 200 is shown similar to the container 100 that includes an event indicator 202 and an ingestible indicator 230. The container 200 holds liquid 210 that can be consumed. The scope of the present invention is not limited by the type of consumable liquid within container 200. The container 200 also includes sensors 300 (e.g. 300a-c) and 302 (e.g. 302a-c). In accordance with one aspect of the present invention, the sensors 300 and 302 include conductive ink that forms a capacitive plate pair. In accordance with another aspect of the present invention, the sensor 300 and 302 are made of traditional conduction material to form a capacitive pair. The sensor 300 forms one side of a capacitive coupler and the sensor 302 is the other side. For example the sensors 300a and 302a are one capacitive pair. The sensors 300 and 302 are secured to or positioned on the outside of the container 200. The sensor 300 and 302, in accordance with one aspect of the present invention, form a sensor for detection of change in content of the container 200. As the liquid 210 is removed, the capacitive characteristics between the sensors 300 and 302 changes. This change indicates the volume of liquid removed from the container 200. For example, the capacitance between the sensors 300a and 302a is different compared to the sensors 300b and 302b due to the type of material separating the sensors 300 and 302. In one instance it is air, in another it is the liquid 210, respectively. The sensors 300 and 302 can be positioned more or less proximal and the scope of the present invention is not limited by the relative distance separating the sensors 300 and 302. The more sensor pairs 300 and 302 that are included, the more accurate the measurement of the volume dispensed. This information can be communicated to a device 220.


In accordance with various aspects of the present invention, using the timing of activation of the indicator 202 and the activation of the indicator 230, as well as the information from sensor 300 and 302 information, the system can determine the volume of liquid consumed as well as the timing of the consumption of the content, such as the liquid 210, relative to the timing of opening the container 200 and the timing of dispensing the content of the container 200.


In accordance with another aspect of the present invention, as the consumer holds the container 200 and is wearing the device 220, then a transconduction signal is used to communicate information from the container 200 to the device 220. Furthermore, as indicated above, the sensor 200, based on the various aspects of the present invention, may be any of the sensor types, similar to sensor 100 of FIG. 7.


In accordance with the teachings of the present invention, there are various sources of information associated with the same container. For example: when a container is opened is one source of information; when a container is gripped or held by a consumer in one source of information; when the content of the container is dispensed is one source of information; when the container is in contact with the consumer's mouth is one source of information; when the content is ingested is one source of information; how much of the content is ingested is another source of the information; and the identity of the consumer is another source of information. Depending on the various aspects of the present invention, the information may be received by the device, such as the device 120 or device 220, wirelessly or through the consumer's body using transconduction.


In accordance with the present invention, if one consumer grips a container of the present invention, a signal is sent to device. The container includes sensors, such as sensors 300 and 302 of FIG. 8, that can be activated using a zinc-air battery or activated using a partial power source that is activated upon contact with moisture on the skin. This sensor can be protected from damage and activation by having a protective covering, such as a peel off label or similar covering. The next source of information is produced by having the lid or cap of the container is removed. Depending on the power source of the sensor located near the opening of the container, the information is either produced the moment the lid is removed or when the consumer's mouth comes into contact with the sensor located at the opening of the container. As the liquid is dispensed, the sensors, such as sensors 300 or 302, on the container detect changes in capacitance and pass that information to the device; the information can be sent through a wireless communication approach or through the user's body using transconduction by encoding the information in the current signature that the device detects. Another source of information is determining if the consumer ingested the content of the container and this is detected as a current signature from the ingestible sensors, such as sensors 130 or 230 that were ingested with the food.


Referring now to FIG. 9, a flow process 900 is shown for collecting and correlating the information associated with the container, such as container 100 of FIG. 7 or container 200 of FIG. 8, to allow for automation of tracking food consumption by a consumer of the food. In accordance with the scope of the present invention, the information produces by the various sensors and indicators are uniquely associated with the container. Thus, if there were two containers sending information to the same device, the device can distinguish between the source of the information based on uniqueness of the information. The process 900 start at step 902. At step 910 a detector or receiver device, such as the device 120 or device 220, determines if there is any signal coming from an active indicator/sensor/capacitor pair, such as indicators 102, 202, 130, 230, 300 and 302. If there is information being send from any activate indicator/sensor/capacitor pair, then at step 912 the device stores the information including time and date associated with the information. Furthermore, the information may include identifying information about the product, which is also stored. If there is no active activate indicator/sensor/capacitor pair, then the process 900 waits at step 910. In accordance with one aspect of the present invention, the device may enter a sleep mode to conserver power is there is no active activate indicator/sensor/capacitor pair detected for a defined period of time. At step 914 the process 900 determines if the information collected is associated with the same container or a different container. If the information is associated with the same container, such as container 100, then at step 916 the device compares the time and date information with the other information recorded and outputs, at step 920, some correlated data about the container 100 or stored the correlated data. The process 900 then returns to step 914 to determine if there is new information or additional information about the same container to then correlated further. If the information is for a different container, then at step 918 the information is stored by the device until additional information is gathered from another active indicator/sensor/capacitor pair for the same container.


Identifiers of interest include two dissimilar electrochemical materials, which act similar to the electrodes (e.g., anode and cathode) of a power source. The reference to an electrode or anode or cathode are used here merely as illustrative examples. The scope of the present invention is not limited by the label used and includes the aspect wherein the voltage potential is created between two dissimilar materials. Thus, when reference is made to an electrode, anode, or cathode it is intended as a reference to a voltage potential created between two dissimilar materials.


When the materials are exposed and come into contact with the body fluid, such as stomach acid or other types of fluid (either alone or in combination with a dried conductive medium precursor), a potential difference, that is, a voltage, is generated between the electrodes as a result of the respective oxidation and reduction reactions incurred to the two electrode materials. A voltaic cell, or battery, can thereby be produced. Accordingly, in aspects of the invention, such power supplies are configured such that when the two dissimilar materials are exposed to the target site, e.g., the stomach, the digestive tract, etc., a voltage is generated.


In certain aspects, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage output of the battery. Non-metals that may be used as doping agents in certain aspects include, but are not limited to: sulfur, iodine and the like.


In accordance with the various aspects of the present invention, the system of the present invention can be inside specific food products (e.g. a granola bar), with one of the data encoded and communicated by the system being the caloric content of the food or other relevant dietary information e.g. fiber sugar content, fat type and content etc. This would help people on a diet monitor their daily intakes, get incentives for staying on-diet etc. Also, the system is co-ingested with food, using on-board sensing to measure food release into the stomach e.g. fat content. Also, an instrumented cup that detects when the system of the present invention has been dropped into the cup and whether the user or person took a drink (similar to inhaler product), and how much they drank. For example, the sensors 300 and 302 of FIG. 8 would indicated how much of the content of the container 200 was removed based on the change in capacitance between the various sensors 300 and 302 as explained above. An advantage of this aspect of the present invention is that it would automate the process of tracking food or regular supplements consumption.


In accordance with other aspects of the present invention, chemical markers can incorporate certain marker species into the food (e.g. salt, low-or-high pH, protein, and lipid). When ingested, a marker species is released into stomach environment. With the sensing capability, the system of the present invention can detect chemical-binding receptors on the surface or by coating on the system that reacts with a chemically-active coating (e.g. a coating such as a specific-ion-conducting glass membrane that allows only the desired marker species to penetrate). Co-ingest the system with the food, and use the system to measure/detect the presence of the “marker species”. The system that is ingestible and masticable can contain a detector capable of measuring endocanabinoids. (see paper DiPatrizio et al, “Endocannabinoid signal in the gut controls dietary fat intake” for example reference, the entire disclose of which is incorporated herein by reference). When the signal is detected—a sign that high fat food intake has occurred—the user or patient is instructed via phone to take a prescription (also RIS-enabled) to disrupt the endocannabinoid signal, thus reducing the craving for more high fat foods.


In accordance with another aspect of the present invention, the system is detectable when the skirt is not present. In accordance with another aspect of the present invention, the ingestible sensors are safe to bite, for example by thinning the silicon. In accordance with another aspect of the present invention, several of the systems of the present invention are placed in the food so that if some get damaged during mastication the others are still functional. Thus, the systems could be distributed throughout the food, so that the number of systems detected gives an indication of the quantity of food consumed. Additionally, another aspect of the present invention teaches that the system of the present invention can be surrounded with gummy material and laminated between polymer layers that are soluble at low pH, but not in neutral pH (saliva). Furthermore, by reversing the coating, the opposite effect is achieved in accordance with another aspect of the present invention. First coat/laminate the system of the present invention with a pH sensitive polymer and then insert it inside gummy bites to help survive in the mouth. Thus, the system of the present invention is inside a gummy-bear like protective layer, and may be reduced in size, such as skirt-less or flexible skirt. The protective layer may consist of multilayers or may have a density or solubility gradient such that the material nearest the system is only slowly soluble and likely to be swallowed due to slippery surface, rounded shape and very small size. The system, according to another aspect of the present invention, would have a circuit modification that, in addition to probing the local impedance, has a feedback to postpone activation while the local impedance is high. This allows time for the remaining layer(s) to dissolve. The system is activated or turns on as soon as liquid penetrates through, but cannot send sufficient signal strength for detection, the high current and battery layer depletion is postponed until the impedance drops sufficiently. Thus, the system according to this aspect of the present invention, for example, is put into pre-measured meal and snack types to read out what was consumed.


It is to be understood that this invention is not limited to particular aspects or aspects described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.


All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.


Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A system for communication comprising: a container defining an opening and configured to contain a food, wherein the container includes a lid to secure the opening of the container and the food is an electrically conductive liquid; andan event indicator configured to transmit a signal, wherein the event indicator comprises: a support structure including a control module; anda partial power source comprising: a first material physically associated with the support structure; anda second material physically associated with the support structure at a location different from the location of the first material, such that the first material and second material are electrically isolated from each other and are configured to produce a voltage potential, wherein the control module is configured to control conductance between the first material and the second material when the partial power source is completed by the introduction of the electrically conductive liquid between the first material and the second material to complete the partial power source, and wherein the event indicator is secured to the container near the opening;wherein the event indicator comprises a wireless transmitter configured to produce and transmit the signal when the lid is removed, the signal comprising information associated with a removal of the lid;wherein at least one of the first material and second material is zinc, the voltage potential also being produced when the zinc reacts with air to produce the voltage potential to activate the event indicator as the lid is removed, wherein the event indicator produces and transmits the signal upon such activation; andan ingestible indicator located in the electrically conductive liquid and configured to transmit a second signal, wherein the ingestible indicator includes a coating to prevent interaction of the ingestible indicator with the electrically conductive liquid.
  • 2. The system of claim 1, wherein the first material and the second material produce the voltage potential when in contact with the electrically conductive liquid as the electrically conductive liquid is dispensed through the opening of the container, the event indicator also being configured to be activated due to the first material and the second material coming in contact with the electrically conductive liquid.
  • 3. The system of claim 2, wherein the event indicator produces a current signature that includes the information encoded therein using the control module.
  • 4. The system of claim 2, wherein the ingestible indicator includes: a second support structure;a first dissimilar material physically associated with the second support structure of the ingestible indicator; anda second dissimilar material physically associated with the second support structure of the ingestible indicator at a location different from the location of the first dissimilar material of the ingestible indicator, such that the first dissimilar material of the ingestible indicator indictor and second dissimilar material of the ingestible indicator are electrically isolated from each other and are configured to produce a second voltage potential,wherein the second support structure of the ingestible indicator includes a second control module for controlling conductance between the first dissimilar material of the ingestible indicator and the second dissimilar material of the ingestible indicator.
  • 5. The system of claim 4, wherein the ingestible indicator communicates with a detector associated with a consumer's body and wherein the detector receives and decodes the second signal comprising information produced by the ingestible indicator.
  • 6. The system of claim 1, wherein the coating dissolves when in contact with a physiological fluid.
  • 7. The system of claim 1, wherein the event indicator transmits the signal to a receiver secured to a consumer's skin.
  • 8. The system of claim 1, further comprising a capacitive sensor secured to the container, wherein the capacitive sensor includes a pair of capacitive plates positioned on the container to allow for detection of the capacitance of the food of the container and wherein the capacitive sensor is configured to produce a third signal indicating at least one change in the capacitance of the container.
  • 9. The system of claim 8, wherein the capacitive plates of the capacitive sensor comprise conductive ink.
  • 10. A system for tracking food consumption by a consumer, the system comprising: a container defining an opening and including a lid, wherein the container is configured to hold the food;an ingestible indicator located in the food of the container and configured to communicate information, wherein the ingestible indicator comprises: a support structure including a control module; anda partial power source, comprising: a first material physically associated with the support structure; and a second material physically associated with the support structure at a location different from the location of the first material, such that the first material and second material are electrically isolated from each other and are configured to produce a voltage potential to activate the control module and to complete the partial power source by the introduction of a physiological fluid of a consumer between the first material and the second material, wherein the control module transmits the information to a receiver associated with the consumer upon being activated;an event indicator secured near the opening of the container and protected by the lid, such that when the lid is removed, the event indicator is activated and transmits information associated with the lid being removed; anda content sensor secured on a wall of the container to transmit a signal comprising information associated with a change in the container's food content, wherein the information from the event indicator and the information from the content sensor are transmitted to the receiver associated with the consumer.
  • 11. The system of claim 10, wherein the event indicator transmits its information wirelessly and by using transconduction through the consumer's body and wherein the content sensor includes a unit to transmit its information using transconduction through the consumer's body.
  • 12. The system of claim 11, wherein the event indicator and the content sensor are in communication such that activation of the event indicator results in a second signal being sent to the content sensor.
  • 13. The system of claim 10, wherein the food is liquid and wherein a plurality of ingestible sensors are included in the liquid to produce information when the ingestible sensors are ingested, wherein the information is transmitted to the receiver using transconduction.
  • 14. The system of claim 13 wherein the receiver includes a unit that is configured to correlate the information from the event indicator, the content sensor, and the ingestible sensors to automate the tracking of the food consumption by the consumer.
  • 15. A method for automating the tracking of food consumption by a consumer, the method comprising the steps of: activating an event indicator upon opening of a container that includes a food, wherein, upon activation, the event indicator transmits information to a receiver about the food's type and a time of the opening of the container and wherein the information from the event indicator is uniquely identifiable with the container;activating, after the event indicator has been activated, a content sensor upon dispensing of the food, wherein the content sensor transmits information to the receiver about an amount of the food that is dispensed from the container wherein the information from the content sensor is uniquely identifiable with the container;activating, after the content sensor has been activated, an ingestible indicator upon ingestion of the food by the consumer, wherein the ingestible indicator is ingestible and transmits information to the receiver to indicate the food has been consumed by the consumer wherein the information from the ingestible indicator is uniquely identifiable with the container; andcorrelating, at the receiver, at least two pieces of the information selected from the information group including information from the event indicator, the information from the content sensor, and the information from the ingestible indicator to automate tracking of the consumer's food consumption.
US Referenced Citations (938)
Number Name Date Kind
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3628669 McKinnis et al. Dec 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3727616 Lenzkes Apr 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester Dec 1978 A
4141349 Ory et al. Feb 1979 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4281664 Duggan Aug 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischell Jan 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4578061 Lemelson Mar 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenberg Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4681111 Silvian Jul 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4809705 Ascher Mar 1989 A
4844076 Lesho Jul 1989 A
4871974 Davis et al. Oct 1989 A
4876093 Theeuwes et al. Oct 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000957 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5079006 Urquhart Jan 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5179578 Ishizu Jan 1993 A
5245332 Katzenstein et al. Sep 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5511548 Riazzi et al. Apr 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
D377983 Sabri et al. Feb 1997 S
5600548 Nguyen et al. Feb 1997 A
5634466 Gruner Jun 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5705189 Lehmann et al. Jan 1998 A
5720771 Snell Feb 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5862808 Albarello Jan 1999 A
5868136 Fox Feb 1999 A
5921925 Cartmell et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5925066 Kroll et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6009350 Renken Dec 1999 A
6023631 Cartmell et al. Feb 2000 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6083248 Thompson Jul 2000 A
6090489 Hayakawa et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6117077 Del Mar et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6204764 Maloney Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6275476 Wood Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 Cofino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6368190 Easter et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Nohl et al. May 2002 B1
6394953 Devlin et al. May 2002 B1
6394997 Lemelson May 2002 B1
6409674 Brockway et al. Jun 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6482156 Lliff Nov 2002 B2
6494829 New et al. Dec 2002 B1
6496705 Ng et al. Dec 2002 B1
6505077 Kast et al. Jan 2003 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6540699 Smith Apr 2003 B1
6544174 West Apr 2003 B2
6564079 Cory May 2003 B1
6572636 Hagen et al. Jun 2003 B1
6574425 Weiss et al. Jun 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour et al. Jul 2003 B2
6605038 Teller Aug 2003 B1
6605046 Del Mar Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6650718 Fujimura et al. Nov 2003 B1
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6683493 Fujimora et al. Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6804558 Haller et al. Oct 2004 B2
6814706 Barton et al. Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6882881 Lesser et al. Apr 2005 B1
6897788 Khair et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6939292 Mizuno Sep 2005 B2
6942616 Kerr Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6959929 Pugnet et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7023940 Nakamura et al. Apr 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7050419 Azenkot et al. May 2006 B2
7062308 Jackson Jun 2006 B1
7076437 Levy Jul 2006 B1
7081693 Hamel et al. Jul 2006 B2
7118531 Krill Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7161484 Tsoukalis Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7295877 Govari Nov 2007 B2
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7366675 Walker et al. Apr 2008 B1
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7419468 Shimizu et al. Sep 2008 B2
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7471665 Perlman Dec 2008 B2
7499674 Salokannel Mar 2009 B2
7502643 Farringdon et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508248 Yoshida Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7512860 Miyazaki et al. Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7616710 Kim et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7668437 Yamada et al. Feb 2010 B1
7672703 Yeo et al. Mar 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
7697994 VanDanacker et al. Apr 2010 B2
7712288 Ramasubramanian et al. May 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Cosentino Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7779614 McGonagle et al. Aug 2010 B1
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7806852 Jurson Oct 2010 B1
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7857766 Lasater et al. Dec 2010 B2
7899526 Benditt et al. Mar 2011 B2
7904133 Gehman et al. Mar 2011 B2
D639437 Bishay et al. Jun 2011 S
8025149 Sterry et al. Sep 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8073707 Teller et al. Dec 2011 B2
8083128 Dembo et al. Dec 2011 B2
8123576 Kim Feb 2012 B2
8135596 Jung et al. Mar 2012 B2
8180425 Selvitelli et al. May 2012 B2
8200320 Kovacs Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8224667 Miller et al. Jul 2012 B1
8238998 Park Aug 2012 B2
8249686 Libbus et al. Aug 2012 B2
8258962 Robertson et al. Sep 2012 B2
8262394 Walker et al. Sep 2012 B2
8285356 Bly et al. Oct 2012 B2
8290574 Felid et al. Oct 2012 B2
8301232 Albert et al. Oct 2012 B2
8308640 Baldus et al. Nov 2012 B2
8315687 Cross et al. Nov 2012 B2
8369936 Farringdon et al. Feb 2013 B2
8386009 Lindberg et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8440274 Wang May 2013 B2
8514086 Harper et al. Aug 2013 B2
8542123 Robertson et al. Sep 2013 B2
8564432 Covannon et al. Oct 2013 B2
8583227 Savage et al. Nov 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8668645 Drucker et al. Mar 2014 B2
8771183 Sloan Jul 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8932221 Colliou et al. Jan 2015 B2
8945005 Hafezi et al. Feb 2015 B2
20010027331 Thompson Oct 2001 A1
20010031071 Nichols et al. Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010056262 Cabiri et al. Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020067270 Yarin et al. Jun 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020132226 Nair Sep 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020193846 Pool et al. Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030063522 Sagar Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030181815 Ebner et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030229382 Sun et al. Dec 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040019172 Yang et al. Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040111011 Uchiyama et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukuda et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040122297 Stahmann et al. Jun 2004 A1
20040138558 Dunki-Jacobs et al. Jul 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171914 Avni Sep 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Glukhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20040267240 Gross et al. Dec 2004 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050151625 Lai Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060089858 Ling Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060158820 Takiguchi Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183992 Kawashima Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060229053 Sivard Oct 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060255064 Donaldson Nov 2006 A1
20060265246 Hoag Nov 2006 A1
20060267774 Feinberg et al. Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060285607 Strodtbeck et al. Dec 2006 A1
20060287693 Kraft et al. Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070088194 Tahar Apr 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135691 Zingelewicz et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070207858 Breving Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070244810 Rudolph Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070291715 Laroia et al. Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080004503 Nisani et al. Jan 2008 A1
20080014866 Lipowski Jan 2008 A1
20080015421 Penner Jan 2008 A1
20080015494 Santini et al. Jan 2008 A1
20080015893 Miller et al. Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 De Geest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080033301 Dellavecchia et al. Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080051767 Rossing et al. Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Boric-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBoeuf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214903 Orbach Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080223936 Mickle et al. Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080281636 Jung et al. Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288026 Cross et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080306362 Davis Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090006133 Weinert Jan 2009 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Arneson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boyden et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090131774 Sweitzer May 2009 A1
20090134181 Wachman et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey et al. Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090247836 Cole et al. Oct 2009 A1
20090253960 Takenaka Oct 2009 A1
20090256702 Robertson et al. Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090277815 Kohl et al. Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090301925 Alloro et al. Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100006585 Flowers et al. Jan 2010 A1
20100010330 Rankers Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100081894 Zdeblick et al. Apr 2010 A1
20100082367 Hains et al. Apr 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100160742 Seidl et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100185055 Robertson Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100203394 Bae et al. Aug 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagliov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100268288 Hunter et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100298668 Hafezi et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100299155 Findlay et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312577 Goodnow et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20100332443 Gartenberg Dec 2010 A1
20110004079 Al-Ali et al. Jan 2011 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110029622 Walker et al. Feb 2011 A1
20110040203 Savage et al. Feb 2011 A1
20110050431 Hood et al. Mar 2011 A1
20110054265 Hafezi et al. Mar 2011 A1
20110065983 Hafezi et al. Mar 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110081860 Brown et al. Apr 2011 A1
20110105864 Robertson et al. May 2011 A1
20110124983 Kroll et al. May 2011 A1
20110144470 Mazar et al. Jun 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20110237924 McGusty et al. Sep 2011 A1
20110270112 Manera et al. Nov 2011 A1
20110279963 Kumar et al. Nov 2011 A1
20120024889 Robertson et al. Feb 2012 A1
20120029309 Paquet et al. Feb 2012 A1
20120062371 Radivojevic et al. Mar 2012 A1
20120083715 Yuen et al. Apr 2012 A1
20120089000 Bishay et al. Apr 2012 A1
20120101396 Solosko et al. Apr 2012 A1
20120197144 Christ et al. Aug 2012 A1
20120214140 Brynelsen et al. Aug 2012 A1
20120265544 Hwang et al. Oct 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20120310070 Kumar et al. Dec 2012 A1
20120316413 Liu et al. Dec 2012 A1
20130030259 Thomsen et al. Jan 2013 A1
20130057385 Murakami et al. Mar 2013 A1
20130060115 Gehman et al. Mar 2013 A1
20140315170 Ionescu et al. Oct 2014 A1
20140334575 Arne et al. Nov 2014 A1
20150048929 Robertson et al. Feb 2015 A1
20150051465 Robertson et al. Feb 2015 A1
20150080677 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080679 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150080681 Hafezi et al. Mar 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150149375 Thompson et al. May 2015 A1
Foreign Referenced Citations (200)
Number Date Country
1588649 Mar 2005 CN
1991868 Jul 2007 CN
101005470 Jul 2007 CN
10313005 Oct 2004 DE
0344939 Dec 1989 EP
1246356 Oct 2002 EP
1342447 Sep 2003 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
2143369 Jan 2010 EP
775071 May 1957 GB
2432862 Jun 2007 GB
172917 Jun 2010 IL
61017949 Jan 1986 JP
61072712 Apr 1986 JP
05-228128 Sep 1993 JP
H0646539 Feb 1994 JP
09-330159 Dec 1997 JP
10-14898 Jan 1998 JP
2000-506410 May 2000 JP
2002-224053 Aug 2002 JP
2002263185 Sep 2002 JP
2002282219 Oct 2002 JP
2002291684 Oct 2002 JP
2004-7187 Jan 2004 JP
2004134384 Apr 2004 JP
2004313242 Nov 2004 JP
2005-073886 Mar 2005 JP
2005-087552 Apr 2005 JP
2005-304880 Apr 2005 JP
2005124708 May 2005 JP
2005-532841 Nov 2005 JP
2005-532849 Nov 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2006-177699 Jul 2006 JP
2006-187611 Jul 2006 JP
2006278091 Oct 2006 JP
2006346000 Dec 2006 JP
3876573 Jan 2007 JP
2007159631 Jun 2007 JP
2007-313340 Dec 2007 JP
2007-330677 Dec 2007 JP
2008011865 Jan 2008 JP
2008501415 Jan 2008 JP
2008191955 Aug 2008 JP
2009-061236 Mar 2009 JP
20020015907 Mar 2002 KR
20020061744 Jul 2002 KR
200609977523 Jul 2006 KR
927471 Nov 2009 KR
10-2012-09995 Sep 2012 KR
200301864 Jul 2003 TW
553735 Sep 2003 TW
200724094 Jul 2007 TW
WO8802237 Apr 1988 WO
WO9221307 Dec 1992 WO
WO9308734 May 1993 WO
WO9319667 Oct 1993 WO
WO9401165 Jan 1994 WO
WO9516393 Jun 1995 WO
WO9714112 Apr 1997 WO
WO9739963 Oct 1997 WO
WO9843537 Oct 1998 WO
WO9937290 Jul 1999 WO
WO9959465 Nov 1999 WO
WO0033246 Jun 2000 WO
WO0100085 Jan 2001 WO
WO0147466 Jul 2001 WO
WO0149364 Jul 2001 WO
WO0174011 Oct 2001 WO
WO0180731 Nov 2001 WO
WO0235997 May 2002 WO
WO0245489 Jun 2002 WO
WO02058330 Jul 2002 WO
WO02062276 Aug 2002 WO
WO02087681 Nov 2002 WO
WO02095351 Nov 2002 WO
WO03005877 Jan 2003 WO
WO03050643 Jun 2003 WO
WO03068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004059551 Jul 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068748 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075751 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2004110555 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041767 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005053517 Jun 2005 WO
WO2005082436 Sep 2005 WO
WO2005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2005117697 Dec 2005 WO
WO2006009404 Jan 2006 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006035351 Apr 2006 WO
WO2006037802 Apr 2006 WO
WO2006046648 May 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006059338 Jun 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006104843 Oct 2006 WO
WO2006109072 Oct 2006 WO
WO2006116718 Nov 2006 WO
WO2006119345 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007127945 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007133526 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008039030 Apr 2008 WO
WO2008052136 May 2008 WO
WO2008061138 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009005759 Jan 2009 WO
WO2009006615 Jan 2009 WO
WO2009022343 Feb 2009 WO
WO2009029453 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010000085 Jan 2010 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010075115 Jul 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010115194 Oct 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2012104657 Aug 2012 WO
WO2012158190 Nov 2012 WO
WO2013012869 Jan 2013 WO
Non-Patent Literature Citations (97)
Entry
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pages.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, pp. 35 of 46.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. for Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pages.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract.
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie.
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf.
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837.
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band—Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP—IEEE—Dubai—Conference.pdf.
Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. (2002), p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
ISFET—Ion Sensitive Field-Effect Transistor; MICROSENS S.A. pdf document. Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
INTROMEDIC, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
LIFESCAN, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp.
MacKay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
Mackay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink—usb—factsheet.pdf 2pp.
Medtronic “The New MiniMed Paradigm® REAL-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp.
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp.
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/.
MINIMITTER Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005.
MINIMITTER Co. Inc. Noninvasive technology to help your studies succeed. MiniMitter.com Mar. 31, 2009.
MINI MITTER Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. Sep. 21, 1999.
MINI MITTER Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004.
MINIMITTER Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005).
MINIMITTER Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009.
Mohaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
“New ‘smart pill’ to track adherence” E-Health-lnsider (2010) http://www.e-health-insider.com/news/5910/new—‘smart—pill’—monitors—medicines.
NPL—AntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp.
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical—medtronic—buy—minimed/; 2 pp.
Philips Respironics (http/minimitter.com/products.cfm) Products, Noninvasive Technology to Help Your Studies Succeed. 510(k) Permanent Notification for Vital Sense. Apr. 22, 2004.
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/.
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics—and—telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010.
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
“The SmartPill Wireless Motility Capsule” SmartPill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule&id=17814.
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/1.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
University of Florida News “Rx for health: Engineers design pill that signals it has been swallowed” (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
U.S. Appl. No. 12/238,345, filed Sep. 25, 2008, Hooman et al., Non-Final Office Action mailed Jun. 13, 2011 22pp.
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 24 pp.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA—Web/documents/ME/ePatch—ECG—EMG.pdf, dated Sep. 2, 2010.
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Hotz “The Really Smart Phone” The Wall Street Journal, What They Know (2011); 6 pp.; http://online.wsj.com/article/SB10001424052748704547604576263261679848814.html?mod=djemTECH—t.
“The SmartPill Wireless Motility Capsule” SmartPill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule &id=17814.
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Jimbo et al., “Gastric-fluid-utilized micro battery for micro medical devices” The Sixth International Workshop on Micro and Nanotechnology for Power Geneartion and Energy Conservation Applications, (2006) pp. 97-100.
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).
Halthion Medical Technologies “Providing Ambulatory Medical Devices Which Monitor, Measure and Record” webpage. Online website: http://www.halthion.com/; downloaded May 30, 2012.
Hoeksma, J. “New ‘smart pill’ to track adherence” E-Health-Insider May (2010) http://www.e-health-insidercom/news/5910/new—‘smart—pill’—monitors—medicines.
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Platt, D., “Modulation and Deviation” AE6EO, Foothills Amateur Radio Society; Oct. 26, 2007; 61 pp.
Evanczuk, S., “PIC MCU software library uses human body for secure communications link” EDN Network; edn.com; Feb. 26, 2013 Retrieved from internet Jun. 19, 2013 at http://www.edn.com/electronics-products/other/4407842/PIC-MCU-software-library-uses-human-body-for-secure-communications-link; 5 pp.
“PALO Bluetooth Baseband” PALO Bluetooth Resource Center (2002) Retrieved from internet Dec. 12, 2012 at URL: http://palowireless.com/bluearticles/baseband.asp; Office Action dated Jan. 17, 2013 for EP08853901.0.
Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Lin et al., “Do Physiological Data Relate to Traditional Usability Indexes?” Proceedings of OZCHI 2005, Canberra, Australia (2005) 10 pp.
Mandryk et al., “A physiological approach for continuously modeling user emotion in interactive play environments” Proceedings of Measuring Behavior (2008) (Maastrichtm The Netherlandsm Aug. 26-29) 2 pp.
Mandryk et al., “Objectively Evaluating Entertainment Technology” Simon Fraser University; CHI (2004) ACM 1-58113-703-6/04/0004; 2 pp.
Baskiyar, S. “A Real-time Fault Tolerant Intra-body Network” Dept. of Comp. Sci & Soft Eng; Auburn University; Proceedings of the 27th Annual IEEE Conference; 0742-1303/02 (2002) IEEE; 6 pp.
Owano, N., “Study proposes smart sutures with sensors for wounds” Phys.Org. Aug. (2012). http://phys.org/news/2012-08-smart-sutures-sensors-wounds.html.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. (1975), p. 1-157.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997).
Consolvo, Sunny et al., “Design Requirement for Technologies that Encourage Physical Activity,” CHI 2006 Proceedings, Designing for Tangible Interactions, Apr. 22, 2006, Montreal, Quebec, Canada, pp. 457-466.
Greene, “Medicaid Efforts to Incentivize Healthy Behaviours”, Center for Health Care Strategies, Inc., Resource Paper, Jul. 2007.
Kendle, Earl R. And Morris, Larry A., “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper 22. pp. 1-6.
Related Publications (1)
Number Date Country
20120299723 A1 Nov 2012 US