The applicant's prior published patent application GB2,494,435A discloses a communication system which utilises a guiding medium which is suitable for sustaining electromagnetic surface waves. The contents of GB2,494,435A are hereby incorporated by reference. The present application presents various applications and improvements to the system disclosed in GB2,494,435A.
In a first aspect, the present invention provides a communications system, comprising: a surface wave channel for guiding electromagnetic surface waves; a transmitter, coupled to said surface wave channel for transmitting signals along said surface wave channel; one or more disrupters, arranged to be positioned at arbitrary locations on or adjacent said surface wave channel, and arranged to convert said surface wave signals to space wave signals; and one or more receiver terminals, arranged to be positioned at locations corresponding to said disrupters, each terminal comprising an antenna for receiving said space wave signals.
In a second aspect, the present invention provides a surface wave to space wave converter, comprising: a surface wave collector; and an antenna; wherein the surface wave collector is coupled to the antenna; the surface wave collector is arranged to collect surface wave signals from a surface wave channel; and the antenna is arranged to radiate said signal as a space wave.
Further examples of features of the present invention are recited in the claims.
Embodiments of the present invention will now be described, by way of example only, and with reference to the accompanying drawings, in which:
The system 100 further comprises a surface wave launcher 102. The surface wave launcher 102 is arranged to convert electrical signals to surface wave signals. Further details of a suitable launcher are provided in GB2,494,435A, and are also described below. The system 100 also includes a server 103. The server 103 is coupled to the surface wave launcher 102 by connection 104. The server 103 is includes a transmitter, and is arranged to transmit data along the surface wave channel 101. The surface wave launcher 102 converts signals received from the server 103 to surface wave signals.
The system 100 also includes a plurality of disrupters 105A, 105B, 105C. The disrupters may be positioned at arbitrary positions along the surface wave channel. The disrupters are arranged to disrupt the surface wave signals, and to cause the surface wave signals to be scattered as space waves. In the present embodiment, the disrupters 105A, 105B, 105C are metallic plates, which act as reflectors. The metallic plates are positioned on the surface wave channel so that they are perpendicular to the surface. They are orientated to cause specular scattering at an angle of ninety degrees to the direction of the channel. In order to achieve this, the plates are orientated at a forty five degree angle. In use, when a surface wave hits the plate, it is reflected as a space wave. The reflectors may be arranged to reflect the surface waves towards the edge of the channel 101, where they reradiate as space waves. Alternatively, the reflectors may be arranged to reflect the surface waves upwards, away from the surface.
The system 100 also includes a plurality of user terminals 106A, 106B, 106C. Each user terminal is coupled to an antenna 107A, 107B, 107C. The antennas are arranged to receive the space waves reflected from the disrupters 105A, 105B, 105C. As such, in use, the antennas and their corresponding user terminals are positioned in close proximity to the positions of the corresponding disrupters. In particular, the antennas 107A, 107B, 107C are positioned close enough to the disrupters so that they may adequately receive the space wave signals.
The user terminals 106A, 106B, 106C may include a user interface which may include a display. The terminals may therefore be arranged to display data sent by the server 103. One application of this system may be in a television broadcast system. For example, the system may be used as an in-flight entertainment system on a passenger airplane.
In use, the server 103 broadcasts a data signal which may include multimedia data to be viewed by the user terminals 106A, 106B, 106C. The signal is converted to a surface wave by surface wave launcher 102. The surface wave propagates along the surface wave channel 101. The disrupters 105A, 105B, 105C are positioned such that only some of the surface wave is reflected, the remainder propagating along the surface channel towards the other disrupters. The reflected surface wave propagates as a space wave towards a corresponding antenna 107A, 107B, 107C. The space wave is then converted to an electrical signal by the corresponding antenna. The converted signal is then received by the corresponding user terminal 106A, 106B, 106C.
The waveguide 201 is a rectangular cuboid. The waveguide 201 includes a first planar conductor 210, which is forms an upper surface of the waveguide. The first planar conductor 210 forms an isosceles triangle, the top vertex of which is connected to the coupling pin 209. The waveguide 201 also includes a dielectric layer 211, positioned below the first planar conductor 210, and which is also a rectangular cuboid. The dielectric 211 is preferably low loss for the frequency of operation. The waveguide 201 also includes a second planar conductor (not shown in
The surface wave launcher 200 may also operate in reverse, as a surface wave collector. Furthermore, the system 100 may operate in reverse, with user terminals transmitting signals which are reflected by the disrupters onto the surface wave channel, to generate surface waves.
As noted, above the system 100 includes a number of disrupters.
In an alternative embodiment of the present invention, the converter 300 may be used to transmit a space wave signal to another converter, which then launchers a surface wave onto a further surface wave channel. This embodiment could be used where it is not possible to lay a surface wave channel, for example where a gap needs bridging.
In the above-described embodiments, surface wave launchers and surface wave collectors have been described. These devices may in fact identical in construction. However, in use, the device will either act to “collect” surface waves, or to “launch” surface waves. The terminology used above has been selected dependent on the context in which the device is being used. It will be appreciated that in some contexts, the devices may be used for both purposes, even though they are referred to as either collectors or launchers.
Features of the present invention are defined in the appended claims. While particular combinations of features have been presented in the claims, it will be appreciated that other combinations, such as those provided above, may be used.
Further modifications and variations of the aforementioned systems and methods may be implemented within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1311871.6 | Jul 2013 | GB | national |