This document describes communication systems having optical power supplies.
This section introduces aspects that can help facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
For example, a data center can include servers installed in a rack, each server includes one or more data processors mounted on a circuit board disposed in an enclosure. Each server includes one or more optical communication modules for converting input optical signals received from optical fiber cables into input electrical signals that are provided to the one or more data processors, and converting output electrical signals from the one or more data processors to output optical signals that are output to the optical fiber cables.
In a general aspect, a system including a housing having a front panel, a rear panel, an upper panel, and a lower panel is provided. The system includes a first circuit board or substrate; at least one data processor coupled to the first circuit board or substrate and configured to process data; and at least one optical module coupled to the first circuit board or substrate. Each optical module is configured to perform at least one of (i) convert input optical signals to electrical signals that are provided to the at least one data processor, or (ii) convert electrical signals received from the at least one data processor to output optical signals. The system includes at least one inlet fan mounted near the front panel and configured to increase an air flow across a surface of at least one of (i) the at least one data processor, (ii) a heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) a heat dissipating device thermally coupled to the at least one optical module. The system includes at least one laser module configured to provide optical power to the at least one optical module.
Implementations can include one or more of the following features. The at least one laser module can be positioned between the at least one inlet fan and at least one of the upper panel or the lower panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
At least 5, 10, or 20 laser modules can be positioned between the inlet fan and the upper panel.
At least 5, 10, or 20 laser modules can be positioned between the inlet fan and the lower panel.
Each of at least some of the laser modules can be placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
The system can include at least one air duct to direct warm air from the surface of at least one of (i) the at least one data processor, (ii) the heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
At least 5, 10, or 20 laser modules can be positioned between the air duct and the upper panel.
At least 5, 10, or 20 laser modules can be positioned between the air duct and the lower panel.
The system can include an air baffle to divide a space in a vicinity of the first circuit board or substrate into a first region and a second region, in which the first region can be in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module, wherein at least one of the at least one laser module can be located in the second region, and wherein at least one optical fiber can optically connect at least one optical module in the first region to at least one laser module in the second region.
The air baffle can define a cutout or an opening to allow the at least one optical fiber to extend from the first region to the second region through the cutout or opening.
The air baffle can enable a portion of the at least one optical fiber to be positioned away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reduce an amount of obstruction of air flow, and improve heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The first circuit board or substrate can be positioned at a distance behind the front panel.
The system can include an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector. The first fiber connector can be optically coupled to one of the at least one optical module, the second fiber connector can be optically coupled to one of the at least one laser module, and the third fiber connector can be optically coupled a fiber connector part at the front panel.
The system can include a sensor that detects an opening of the front panel, and a controller that in response to detecting the opening of the front panel, reduces or turns off power to the at least one laser module.
The at least one optical module can be coupled to a front side of the first circuit board or substrate, the at least one data processor can be coupled to a rear side of the first circuit board or substrate, the at least one inlet fan can include a first inlet fan and a second inlet fan, the first inlet fan can be configured to blow incoming air towards the at least one optical module or the heat dissipating device thermally coupled to the at least one optical module, and the second inlet fan can be configured to blow incoming air toward the at least one data processor or the heat dissipating device thermally coupled to the at least one data processor.
The first circuit board or substrate can have a first surface that defines a length and a width of the first circuit board or substrate, and the first circuit board or substrate can be positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
The at least one data processor can be immersed in a coolant, and the at least one inlet fan can be configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The optical module can include a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
The at least one data processor can include at least one million, ten million, one hundred million, one billion, or ten billion transistors.
The at least one data processor, the at least one optical module, and the at least one laser module can be configured to consume an average of at least 100, 200, 300, 400, 500, 600, or 700 watts of electric power for at least ten minutes during operation.
The system can be configured to remove heat generated by the at least one data processor, the at least one optical module, and the at least one laser module so as to maintain a temperature of the at least one data processor and the at least one optical module to be not more than 160° F. when ambient temperature outside of the housing is in a range from 62° F. to 82° F.
The at least one data processor can include at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
The at least one data processor can be capable of processing data from the at least one optical module at a rate of at least 25, 50, 100, 200, or 400 gigabits per second.
The at least one optical module can be coupled to a second circuit board or substrate that is coupled to the first circuit board or substrate.
The optical module can include a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator. The optical module can include at least one of a transimpedance amplifier configured to amplify a current generated by the photodetector or a driver configured to drive the optical modulator.
The optical module can include a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
The at least one data processor can include a two-dimensional arrangement of at least three data processors formed on the circuit board or substrate.
The two-dimensional arrangement of at least three data processors can include an array of at least two rows and at least two columns, at least three rows and at least three columns, or at least four rows and at least four columns of data processors.
The substrate can include a semiconductor wafer.
In another general aspect, a system comprises a rackmount server having an n rack unit form factor, in which n is an integer in a range from 1 to 8. The rackmount server comprises a housing comprising a front panel, a rear panel, an upper panel, and a lower panel. The system includes a first circuit board or substrate that has a first surface that defines a length and a width of the first circuit board or substrate, and the first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°. The system includes at least one optical module coupled to the first circuit board or substrate, in which at least a portion of the at least one optical module is positioned between the front panel and the first circuit board or substrate, in which each optical module is configured to perform at least one of (i) convert input optical signals to electrical signals, or (ii) convert electrical signals to output optical signals. The system includes at least one inlet fan mounted in a vicinity of the front panel and configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) a heat dissipating device thermally coupled to the at least one optical module. The system includes at least one laser module configured to provide optical power to the at least one optical module.
Implementations can include one or more of the following features. At least one of the at least one inlet fan can blow air toward the portion of the at least one optical module that is positioned between the front panel and the first circuit board or substrate.
The system can include a first heat dissipating device that is thermally coupled to the at least one optical module. At least a portion of the first heat dissipating device can be positioned between the front panel and the first circuit board or substrate, and at least one of the at least one inlet fan can blow air towards the portion of the first heat dissipating device that is positioned between the front panel and the first circuit board or substrate.
The at least one laser module can be positioned between the at least one inlet fan and at least one of the upper panel or the lower panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
At least 5, 10, or 20 laser modules can be positioned between the inlet fan and the upper panel.
At least 5, 10, or 20 laser modules can be positioned between the inlet fan and the lower panel.
Each of at least some of the laser modules can be placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
The system can include at least one air duct to direct warm air from the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
At least one of the at least one laser module can be oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
At least 5, 10, or 20 laser modules can be positioned between the air duct and the upper panel.
At least 5, 10, or 20 laser modules can be positioned between the air duct and the lower panel.
The system can include an air baffle to divide a space in a vicinity of the first circuit board or substrate into a first region and a second region. The first region can be in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module. At least one of the at least one laser module can be located in the second region. At least one optical fiber can optically connect at least one optical module in the first region to at least one laser module in the second region.
The air baffle can define a cutout or an opening to allow the at least one optical fiber to extend from the first region to the second region through the cutout or opening.
The air baffle can enable a portion of the at least one optical fiber to be positioned away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reduce an amount of obstruction of air flow, and improve heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The first circuit board or substrate can be positioned at a distance behind the front panel.
The system can include an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector. The first fiber connector can be optically coupled to one of the at least one optical module, the second fiber connector can be optically coupled to one of the at least one laser module, and the third fiber connector can be optically coupled a fiber connector part at the front panel.
The system can include a sensor that detects an opening of the front panel, and a controller that in response to detecting the opening of the front panel, reduces or turns off power to the at least one laser module.
The system can include at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module. The at least one optical module can be coupled to a front side of the first circuit board or substrate, and the at least one data processor can be coupled to a rear side of the first circuit board or substrate. The at least one inlet fan can include a first inlet fan and a second inlet fan. The first inlet fan can be configured to blow incoming air towards the at least one optical module or the heat dissipating device thermally coupled to the at least one optical module. The second inlet fan can be configured to blow incoming air toward the at least one data processor or the heat dissipating device thermally coupled to the at least one data processor.
The first circuit board or substrate can have a first surface that defines a length and a width of the first circuit board or substrate. The first circuit board or substrate can be positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
The system can include at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module. The at least one data processor can be immersed in a coolant, and the at least one inlet fan can be configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The optical module can include a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
The system can include at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module.
The at least one data processor can include at least one million, ten million, one hundred million, one billion, or ten billion transistors.
The at least one data processor, the at least one optical module, and the at least one laser module can be configured to consume an average of at least 100, 200, 300, 400, 500, 600, or 700 watts of electric power for at least ten minutes during operation.
The system can be configured to remove heat generated by the at least one data processor, the at least one optical module, and the at least one laser module so as to maintain a temperature of the at least one data processor and the at least one optical module to be not more than 160° F. when ambient temperature outside of the housing is in a range from 62° F. to 82° F.
The at least one data processor can include at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
The at least one data processor can be capable of processing data from the at least one optical module at a rate of at least 25, 50, 100, 200, or 400 gigabits per second.
The optical module can include a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator. The optical module can include at least one of a transimpedance amplifier configured to amplify a current generated by the photodetector or a driver configured to drive the optical modulator.
The optical module can include a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
The first surface of the first circuit board or substrate can be at an angle relative to the bottom panel of the housing, and the angle is in a range from 80° to 90°, or from 850 to 90°.
In another general aspect, a system comprises a rackmount server having an n rack unit form factor, in which n is an integer in a range from 1 to 8. The rackmount server comprises a housing comprising a front panel, a rear panel, an upper panel, and a lower panel. The rackmount server includes a first circuit board or substrate that has a first surface that defines a length and a width of the first circuit board or substrate. The first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°. The first circuit board or substrate is spaced apart from the front panel at a distance that is less than one half the distance between the front panel and the rear panel, and the front panel and the first circuit board or substrate define a first space between the front panel and the first circuit board or substrate. The rackmount server includes at least one active component, in which at least a portion of the at least one active component is positioned in the first space between the front panel and the first circuit board or substrate. The at least one active component is configured to at least one of (i) process signals that originate from one or more sources external to the housing and are transmitted through one or more paths that pass through the front panel and received by the at least one active component, or (ii) process signals that are output from the at least one active component and transmitted through one or more paths that pass through the front panel to one or more destinations external to the housing. The portion of the at least one active component positioned in the first space is configured to generate heat while processing the signals. The rackmount server includes a first air duct configured to direct air from an inlet positioned at a front portion of the housing toward the at least one active component, in which the air duct has an upper wall and a lower wall. The rackmount server includes at least one inlet fan mounted in a vicinity of the front panel and configured to increase an air flow through the first air duct toward a surface of at least one of (i) the at least one active component, or (ii) a heat dissipating device thermally coupled to the at least one active component. The rackmount server includes at least one laser module configured to provide optical power to the at least one active component, in which the at least one laser module is positioned at at least one of (i) between the upper wall of the first air duct and the upper panel of the housing, or (ii) between the lower wall of the first air duct and the lower panel of the housing.
Implementations can include one or more of the following features. The system can include a second air duct configured to direct air carrying heat from the at least one active component toward a rear portion of the housing.
The at least one active component can include at least one optical module, each optical module can be configured to perform at least one of (i) convert input optical signals to electrical signals, or (ii) convert electrical signals to output optical signals.
In another general aspect, a system comprises a server rack and a plurality of rackmount servers installed in the server rack. Each rackmount server has an n rack unit form factor, in which n is an integer in a range from 1 to 8. Each rackmount server includes a housing comprising a front panel, a rear panel, an upper panel, and a lower panel. The rackmount server includes a first circuit board or substrate that has a first surface that defines a length and a width of the first circuit board or substrate. The first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°. The rackmount server includes at least one optical module coupled to the first circuit board or substrate, in which at least a portion of the at least one optical module is positioned between the front panel and the first circuit board or substrate, in which each optical module is configured to perform at least one of (i) convert input optical signals to electrical signals, or (ii) convert electrical signals to output optical signals. The rackmount server includes at least one inlet fan mounted in a vicinity of the front panel and configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) a heat dissipating device thermally coupled to the at least one optical module. The rackmount server includes at least one laser module configured to provide optical power to the at least one optical module.
In another general aspect, a system comprises a server rack and a plurality of rackmount servers installed in the server rack. Each rackmount server has an n rack unit form factor, wherein n is an integer in a range from 1 to 8. Each rackmount server comprises a housing comprising a front panel, a rear panel, an upper panel, and a lower panel. The rackmount server includes a first circuit board or substrate that has a first surface that defines a length and a width of the first circuit board or substrate. The first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°. The rackmount server includes at least one optical module coupled to the first circuit board or substrate, in which at least a portion of the at least one optical module is positioned between the front panel and the first circuit board or substrate. Each optical module is configured to perform at least one of (i) convert input optical signals to electrical signals, or (ii) convert electrical signals to output optical signals. The rackmount server includes at least one inlet fan mounted in a vicinity of the front panel and configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) a heat dissipating device thermally coupled to the at least one optical module. The system includes at least one laser module configured to provide optical power to the at least one optical module in each rackmount server.
Implementations can include one or more of the following features. Each of at least some of the rackmount servers can include at least one laser module configured to provide optical power to the at least one optical module in the corresponding rackmount server.
The at least one laser module can be external to at least some of the rackmount servers.
Each of at least some of the rackmount servers can include at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module.
The at least one data processor can include at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
In another general aspect, a system comprises a server rack and a plurality of rackmount servers installed in the server rack. Each of the plurality of rackmount servers can include any rackmount servers described above.
In another general aspect, a data processing system comprises any system described above, in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 25, 50, 100, 200, or 400 Tbps.
In another general aspect, a data center comprises a plurality of systems, in which each of the plurality of systems includes any system described above.
Implementations can include one or more of the following features. In the data center, at least a first group of the plurality of systems can communicate with a second group of the plurality of systems through optical fiber cables.
The data center can include an air conditioning system. The server racks can be arranged to form rows of server racks with aisles between the rows, some of the aisles are configured as hot aisles, and some of the aisles are configured as cold aisles. The air conditioning system can be configured to direct cold air toward the cold aisles and retrieve warm air from the hot aisles. At least some of the server racks can be oriented such that front portions of the rackmount servers face the cold aisles, and rear portions of the rackmount servers face the hot aisles.
In another general aspect, a method of using any system or data processing system described above.
In another general aspect, a method of operating any data center described above.
In another general aspect, a method comprises: providing a housing comprising a front panel, a rear panel, an upper panel, and a lower panel; positioning a first circuit board or substrate in the housing at a distance from the front panel; positioning at least a portion of at least one optical module in a space between the front panel and the first circuit board or substrate; and processing data using at least one data processor coupled to the first circuit board or substrate. The method includes using the at least one optical module to perform at least one of (i) converting input optical signals to electrical signals that are provided to the at least one data processor, or (ii) converting electrical signals received from the at least one data processor to output optical signals. The method includes blowing air, using at least one inlet fan mounted near the front panel, to increase an air flow across a surface of at least one of (i) the at least one data processor, (ii) a heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) a heat dissipating device thermally coupled to the at least one optical module. The method includes providing optical power to the at least one optical module using at least one laser module.
Implementations can include one or more of the following features. The method can include positioning the at least one laser module between the at least one inlet fan and at least one of the upper panel or the lower panel.
The method can include orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a front-to-rear direction.
The method can include orienting at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
The method can include orienting at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
The method can include positioning at least 5, 10, or 20 laser modules between the inlet fan and the upper panel.
The method can include positioning at least 5, 10, or 20 laser modules between the inlet fan and the lower panel.
The method can include placing each of at least some of the laser modules in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
The method can include directing, using at least one air duct, warm air from the surface of at least one of (i) the at least one data processor, (ii) the heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
The method can include orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a front-to-rear direction.
The method can include orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a surface of the front panel.
The method can include orienting at least one of the at least one laser module such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<900.
The method can include positioning at least 5, 10, or 20 laser modules between the air duct and the upper panel.
The method can include positioning at least 5, 10, or 20 laser modules between the air duct and the lower panel.
The method can include dividing, using an air baffle, a space in a vicinity of the first circuit board or substrate into a first region and a second region, in which the first region is in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module. The method can include positioning at least one of the at least one laser module in the second region, and optically connecting at least one optical module in the first region to at least one laser module in the second region.
The method can include defining, using the air baffle, a cutout or an opening and extending the at least one optical fiber from the first region to the second region through the cutout or opening.
The method can include positioning a portion of the at least one optical fiber away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reducing an amount of obstruction of air flow, and improving heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The method can include providing an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector, optically coupling the first fiber connector to one of the at least one optical module, optically coupling the second fiber connector to one of the at least one laser module, and optically coupling the third fiber connector to a fiber connector part at the front panel.
The method can include detecting, using a sensor, an opening of the front panel. The method can include in response to detecting the opening of the front panel, using a controller to reduce or turn off power to the at least one laser module.
The method can include coupling the at least one optical module to a front side of the first circuit board or substrate, and coupling the at least one data processor to a rear side of the first circuit board or substrate. The at least one inlet fan can include a first inlet fan and a second inlet fan. The method can include using the first inlet fan to blow incoming air towards the at least one optical module or the heat dissipating device thermally coupled to the at least one optical module, and using the second inlet fan to blow incoming air toward the at least one data processor or the heat dissipating device thermally coupled to the at least one data processor.
The first circuit board or substrate can have a first surface that defines a length and a width of the first circuit board or substrate. The method can include positioning the first circuit board or substrate relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
The method can include immersing the at least one data processor in a coolant, and increasing, using the at least one inlet fan, an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
The optical module can include a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
The at least one data processor can include at least one million, ten million, one hundred million, one billion, or ten billion transistors.
The method can include consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 100, 200, 300, 400, 500, 600, or 700 watts of electric power for at least ten minutes during operation.
The method can include removing heat generated by the at least one data processor, the at least one optical module, and the at least one laser module so as to maintain a temperature of the at least one data processor and the at least one optical module to be not more than 160° F. when ambient temperature outside of the housing is in a range from 62° F. to 82° F.
The at least one data processor can include at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
The method can include processing data, using the at least one data processor, from the at least one optical module at a rate of at least 25, 50, 100, 200, or 400 gigabits per second.
The method can include coupling the at least one optical module to a second circuit board or substrate that is coupled to the first circuit board or substrate.
The optical module can include a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator. The method can include amplifying, using at least one of a transimpedance amplifier, a current generated by the photodetector or driving, using a driver, the optical modulator.
The optical module can include a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
The method can include providing the at least one data processor as a two-dimensional arrangement of at least three data processors formed on the circuit board or substrate.
The method can include providing the two-dimensional arrangement of at least three data processors as an array of at least two rows and at least two columns, at least three rows and at least three columns, or at least four rows and at least four columns of data processors.
The substrate can include a semiconductor wafer.
Other aspects include other combinations of the features recited above and other features, expressed as methods, apparatus, systems, program products, and in other ways.
Using one or more external optical power supplies to provide power supply light to a data processing system that includes one or more servers can have the advantage that the external optical power supplies can be modified, upgraded, repaired, or replaced without the need to open the housings of the servers. Redundant optical power supplies can be provided so that a defective external optical power supply can be repaired or replaced without taking the data processing system off-line. External optical power supplies can be placed at convenient centralized locations with dedicated temperature environments (as opposed to being crammed into already hot servers). External optical power supplies can be built much more efficiently than individual units, as certain common parts such as monitoring circuitry and thermal control units can be amortized over many more servers.
Particular embodiments of the subject matter described in this specification can be implemented to realize one or more of the following advantages. The data processing system has a high power efficiency, a low construction cost, a low operation cost, and high flexibility in reconfiguring optical network connections.
The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the invention will become apparent from the description, the drawings, and the claims.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict with patent applications or patent application publications incorporated herein by reference, the present specification, including definitions, will control.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. The dimensions of the various features can be arbitrarily expanded or reduced for clarity.
This document describes a novel system for high bandwidth data processing, including novel input/output interface modules for coupling bundles of optical fibers to data processing integrated circuits (e.g., network switches, central processing units, graphics processor units, tensor processing units, digital signal processors, and/or other application specific integrated circuits (ASICs)) that process the data transmitted through the optical fibers. In some implementations, the data processing integrated circuit is mounted on a circuit board (or substrate or a combination of circuit board(s) and substrate(s)) positioned near the input/output interface module through a relatively short electrical signal path on the circuit board (or substrate or a combination of circuit board(s) and substrate(s)). The input/output interface module includes a first connector that allows a user to conveniently connect or disconnect the input/output interface module to or from the circuit board (or substrate or a combination of circuit board(s) and substrate(s)). The input/output interface module can also include a second connector that allows the user to conveniently connect or disconnect the bundle of optical fibers to or from the input/output interface module. In some implementations, a rack mount system having a front panel is provided in which the circuit board (which supports the input/output interface modules and the data processing integrated circuits) (or substrate or a combination of circuit board(s) and substrate(s)) is vertically mounted in an orientation substantially parallel to, and positioned near, the front panel. In some examples, the circuit board (or substrate or a combination of circuit board(s) and substrate(s)) functions as the front panel or part of the front panel. The second connectors of the input/output interface modules face the front side of the rack mount system to allow the user to conveniently connect or disconnect bundles of optical fibers to or from the system.
In some implementations, a feature of the high bandwidth data processing system is that, by vertically mounting the circuit board that supports the input/output interface modules and the data processing integrated circuits to be near the front panel, or configuring the circuit board as the front panel or part of the front panel, the optical signals can be routed from the optical fibers through the input/output interface modules to the data processing integrated circuits through relatively short electrical signal paths. This allows the signals transmitted to the data processing integrated circuits to have a high bit rate (e.g., over 50 Gbps) while maintaining low crosstalk, distortion, and noise, hence reducing power consumption and footprint of the data processing system.
In some implementations, a feature of the high bandwidth data processing system is that the cost of maintenance and repair can be lower compared to traditional systems. For example, the input/output interface modules and the fiber optic cables are configured to be detachable, a defective input/output interface module can be replaced without taking apart the data processing system and without having to re-route any optical fiber. Another feature of the high bandwidth data processing system is that, because the user can easily connect or disconnect the bundles of the optical fibers to or from the input/output interface modules through the front panel of the rack mount system, the configurations for routing of high bit rate signals through the optical fibers to the various data processing integrated circuits is flexible and can easily be modified. For example, connecting a bundle of hundreds of strands of optical fibers to the optical connector of the rack mount system can be almost as simple as plugging a universal serial bus (USB) cable into a USB port. A further feature of the high bandwidth data processing system is that the input/output interface module can be made using relatively standard, low cost, and energy efficient components so that the initial hardware costs and subsequent operational costs of the input/output interface modules can be relatively low, compared to conventional systems.
In some implementations, optical interconnects can co-package and/or co-integrate optical transponders with electronic processing chips. It is useful to have transponder solutions that consume relatively low power and that are sufficiently robust against significant temperature variations as may be found within an electronic processing chip package. In some implementations, high speed and/or high bandwidth data processing systems can include massively spatially parallel optical interconnect solutions that multiplex information onto relatively few wavelengths and use a relatively large number of parallel spatial paths for chip-to-chip interconnection. For example, the relatively large number of parallel spatial paths can be arranged in two-dimensional arrays using connector structures such as those disclosed in U.S. patent application Ser. No. 16/816,171, filed on Mar. 11, 2020, published as US 2021/0286140, and incorporated herein by reference in its entirety.
Some end-to-end communication paths can pass through an optical power supply module 103 (e.g., see the communication path between the nodes 101_2 and 101_6). For example, the communication path between the nodes 101_2 and 101_6 can be jointly established by the optical fiber links 102_7 and 102_8, whereby light from the optical power supply module 103 is multiplexed onto the optical fiber links 102_7 and 102_8.
Some end-to-end communication paths can pass through one or more optical multiplexing units 104 (e.g., see the communication path between the nodes 101_2 and 101_6). For example, the communication path between the nodes 101_2 and 101_6 can be jointly established by the optical fiber links 102_10 and 102_11. Multiplexing unit 104 is also connected, through the link 102_9, to receive light from the optical power supply module 103 and, as such, can be operated to multiplex said received light onto the optical fiber links 102_10 and 102_11.
Some end-to-end communication paths can pass through one or more optical switching units 105 (e.g., see the communication path between the nodes 101_1 and 101_4). For example, the communication path between the nodes 101_1 and 101_4 can be jointly established by the optical fiber links 102_3 and 102_12, whereby light from the optical fiber links 102_3 and 102_4 is either statically or dynamically directed to the optical fiber link 102_12.
As used herein, the term “network element” refers to any element that generates, modulates, processes, or receives light within the system 100 for the purpose of communication. Example network elements include the node 101, the optical power supply module 103, the optical multiplexing unit 104, and the optical switching unit 105.
Some light distribution paths can pass through one or more network elements. For example, optical power supply module 103 can supply light to the node 1014 through the optical fiber links 1027, 102_4, and 102_12, letting the light pass through the network elements 101_2 and 105.
Various elements of the communication system 100 can benefit from the use of optical interconnects, which can use photonic integrated circuits comprising optoelectronic devices, co-packaged and/or co-integrated with electronic chips comprising integrated circuits.
As used herein, the term “photonic integrated circuit” (or PIC) should be construed to cover planar lightwave circuits (PLCs), integrated optoelectronic devices, wafer-scale products on substrates, individual photonic chips and dies, and hybrid devices. A substrate can be made of, e.g., one or more ceramic materials, or organic “high density build-up” (HDBU). The ceramic materials can include, e.g., low temperature co-fired ceramics (LTCC). Example material systems that can be used for manufacturing various photonic integrated circuits can include but are not limited to III-V semiconductor materials, silicon photonics, silica-on-silicon products, silica-glass-based planar lightwave circuits, polymer integration platforms, lithium niobate and derivatives, nonlinear optical materials, etc. Both packaged devices (e.g., wired-up and/or encapsulated chips) and unpackaged devices (e.g., dies) can be referred to as planar lightwave circuits.
Photonic integrated circuits are used for various applications in telecommunications, instrumentation, and signal-processing fields. In some implementations, a photonic integrated circuit uses optical waveguides to implement and/or interconnect various circuit components, such as for example, optical switches, couplers, routers, splitters, multiplexers/demultiplexers, filters, modulators, phase shifters, lasers, amplifiers, wavelength converters, optical-to-electrical (O/E) and electrical-to-optical (E/O) signal converters, etc. For example, a waveguide in a photonic integrated circuit can be an on-chip solid light conductor that guides light due to an index-of-refraction contrast between the waveguide's core and cladding. A photonic integrated circuit can include a planar substrate onto which optoelectronic devices are grown by an additive manufacturing process and/or into which optoelectronic devices are etched by a subtractive manufacturing processes, e.g., using a multi-step sequence of photolithographic and chemical processing steps.
In some implementations, an “optoelectronic device” can operate on both light and electrical currents (or voltages) and can include one or more of: (i) an electrically driven light source, such as a laser diode; (ii) an optical amplifier; (iii) an optical-to-electrical converter, such as a photodiode; and (iv) an optoelectronic component that can control the propagation and/or certain properties (e.g., amplitude, phase, polarization) of light, such as an optical modulator or a switch. The corresponding optoelectronic circuit can additionally include one or more optical elements and/or one or more electronic components that enable the use of the circuit's optoelectronic devices in a manner consistent with the circuit's intended function. Some optoelectronic devices can be implemented using one or more photonic integrated circuits.
As used herein, the term “integrated circuit” (IC) should be construed to encompass both a non-packaged die and a packaged die. In a typical integrated circuit-fabrication process, dies (chips) are produced in relatively large batches using wafers of silicon or other suitable material(s). Electrical and optical circuits can be gradually created on a wafer using a multi-step sequence of photolithographic and chemical processing steps. Each wafer is then cut (“diced”) into many pieces (chips, dies), each containing a respective copy of the circuit that is being fabricated. Each individual die can be appropriately packaged prior to being incorporated into a larger circuit or be left non-packaged.
The term “hybrid circuit” can refer to a multi-component circuit constructed of multiple monolithic integrated circuits, and possibly some discrete circuit components, all attached to each other to be mountable on and electrically connectable to a common base, carrier, or substrate. A representative hybrid circuit can include (i) one or more packaged or non-packaged dies, with some or all of the dies including optical, optoelectronic, and/or semiconductor devices, and (ii) one or more optional discrete components, such as connectors, resistors, capacitors, and inductors. Electrical connections between the integrated circuits, dies, and discrete components can be formed, e.g., using patterned conducting (such as metal) layers, ball-grid arrays, solder bumps, wire bonds, etc. Electrical connections can also be removable, e.g., by using land-grid arrays and/or compression interposers. The individual integrated circuits can include any combination of one or more respective substrates, one or more redistribution layers (RDLs), one or more interposers, one or more laminate plates, etc.
In some embodiments, individual chips can be stacked. As used herein, the term “stack” refers to an orderly arrangement of packaged or non-packaged dies in which the main planes of the stacked dies are substantially parallel to each other. A stack can typically be mounted on a carrier in an orientation in which the main planes of the stacked dies are parallel to each other and/or to the main plane of the carrier.
A “main plane” of an object, such as a die, a photonic integrated circuit, a substrate, or an integrated circuit, is a plane parallel to a substantially planar surface thereof that has the largest sizes, e.g., length and width, among all exterior surfaces of the object. This substantially planar surface can be referred to as a main surface. The exterior surfaces of the object that have one relatively large size, e.g., length, and one relatively small size, e.g., height, are typically referred to as the edges of the object.
Referring to
In some embodiments, the integrated optical communication device 210 can be connected to the electronic processor integrated circuit 240 using traces 231 embedded in one or more layers of the package substrate 230. In some embodiments, the processor integrated circuit 240 can include monolithically embedded therein an array of serializers/deserializers (SerDes) 247 electrically coupled to the traces 231. In some embodiments, the processor integrated circuit 240 can include electronic switching circuitry, electronic routing circuitry, network control circuitry, traffic control circuitry, computing circuitry, synchronization circuitry, time stamping circuitry, and data storage circuitry. In some implementations, the processor integrated circuit 240 can be a network switch, a central processing unit, a graphics processor unit, a tensor processing unit, a digital signal processor, or an application specific integrated circuit (ASIC).
Because the electronic processor integrated circuit 240 and the integrated communication device 210 are both mounted on the package substrate 230, the electrical connectors or traces 231 can be made shorter, as compared to mounting the electronic processor integrated circuit 240 and the integrated communication device 210 on separate circuit boards. Shorter electrical connectors or traces 231 can transmit signals that have a higher data rate with lower noise, lower distortion, and/or lower crosstalk.
In some implementations, the electrical connectors or traces can be configured as differential pairs of transmission lines, e.g., in a ground-signal-ground-signal-ground configuration. In some examples, the speed of such signal links can be 10 Gbps or more; 56 Gbps or more; 112 Gbps or more; or 224 Gbps or more.
In some implementations, the integrated optical communication device 210 further includes a first optical connector part 213 having a first surface 213_1 and a second surface 213_2. The connector part 213 is configured to receive a second optical connector part 223 of the fiber-optic connector assembly 220, optically coupled to the connector part 213 through the surfaces 213_1 and 213_2. In some embodiments the connector part 213 can be removably attached to the connector part 223, as indicated by a double-arrow 234, e.g., through a hole 235 in the package substrate 230. In some embodiments the connector part 213 can be permanently attached to the connector part 223. In some embodiments, the connector parts 213 and 223 can be implemented as a single connector element combining the functions of both the connector parts 213 and 223.
In some implementations, the optical connector part 223 is attached to an array of optical fibers 226. In some embodiments, the array of optical fibers 226 can include one or more of: single-mode optical fiber, multi-mode optical fiber, multi-core optical fiber, polarization-maintaining optical fiber, dispersion-compensating optical fiber, hollow-core optical fiber, or photonic crystal fiber. In some embodiments, the array of optical fibers 226 can be a linear (1D) array. In some other embodiments, the array of optical fibers 226 can be a two-dimensional (2D) array. For example, the array of optical fibers 226 can include 2 or more optical fibers, 4 or more optical fibers, 10 or more optical fibers, 100 or more optical fibers, 500 or more optical fibers, or 1000 or more optical fibers. Each optical fiber can include, e.g., 2 or more cores, or 10 or more cores, in which each core provides a distinct light path. Each light path can include a multiplex of, e.g., 2 or more, 4 or more, 8 or more, or 16 or more serial optical signals, e.g., by use of wavelength division multiplexing channels, polarization-multiplexed channels, coherent quadrature-multiplexed channels. The connector parts 213 and 223 are configured to establish light paths through the first main surface 211_1 of the substrate 211. For example, the array of optical fibers 226 can includes n1 optical fibers, each optical fiber can include n2 cores, and the connector parts 213 and 223 can establish n1×n2 light paths through the first main surface 211_1 of the substrate 211. Each light path can include a multiplex of n3 serial optical signals, resulting in a total of n1×n2×n3 serial optical signals passing through the connector parts 213 and 223. In some embodiments, the connector parts 213 and 223 can be implemented, e.g., as disclosed in U.S. patent application Ser. No. 16/816,171.
In some implementations, the integrated optical communication device 210 further includes a photonic integrated circuit 214 having a first main surface 214_1 and a second main surface 214_2. The photonic integrated circuit 214 is optically coupled to the connector part 213 through its first main surface 214_1, e.g., as disclosed in in U.S. patent application Ser. No. 16/816,171. For example, the connector part 213 can be configured to optically couple light to the photonic integrated circuit 214 using optical coupling interfaces, e.g., vertical grating couplers or turning mirrors. In the example above, a total of n1×n2×n3 serial optical signals can be coupled through the connector parts 213 and 223 to the photonic integrated circuit 214. Each serial optical signal is converted to a serial electrical signal by the photonic integrated circuit 214, and each serial electrical signal is transmitted from the photonic integrated circuit 214 to a deserializer unit, or a serializer/deserializer unit, described below.
In some embodiments, the connector part 213 can be mechanically connected (e.g., glued) to the photonic integrated circuit 214. The photonic integrated circuit 214 can contain active and/or passive optical and/or opto-electronic components including optical modulators, optical detectors, optical phase shifters, optical power splitters, optical wavelength splitters, optical polarization splitters, optical filters, optical waveguides, or lasers. In some embodiments, the photonic integrated circuit 214 can further include monolithically integrated active or passive electronic elements such as resistors, capacitors, inductors, heaters, or transistors.
In some implementations, the integrated optical communication device 210 further includes an electronic communication integrated circuit 215 configured to facilitate communication between the array of optical fibers 226 and the electronic processor integrated circuit 240. A first main surface 215_1 of the electronic communication integrated circuit 215 is electrically coupled to the second main surface 214_2 of the photonic integrated circuit 214, e.g., through solder bumps, copper pillars, etc. The first main surface 215_1 of the electronic communication integrated circuit 215 is further electrically connected to the second main surface 211_2 of the substrate 211 through the array of electrical contacts 212_2. In some embodiments, the electronic communication integrated circuit 215 can include electrical pre-amplifiers and/or electrical driver amplifiers electrically coupled, respectively, to photodetectors and modulators within the photonic integrated circuit 214 (see also
For example, the electronic communication integrated circuit 215 includes a first serializers/deserializers module that includes multiple serializer units and multiple deserializer units, and a second serializers/deserializers module that includes multiple serializer units and multiple deserializer units. The first serializers/deserializers module includes the first array of serializers/deserializers 216. The second serializers/deserializers module includes the second array of serializers/deserializers 217.
In some implementations, the first and second serializers/deserializers modules have hardwired functional units so that which units function as serializers and which units function as deserializers are fixed. In some implementations, the functional units can be configurable. For example, the first serializers/deserializers module is capable of operating as serializer units upon receipt of a first control signal, and operating as deserializer units upon receipt of a second control signal. Likewise, the second serializers/deserializers module is capable of operating as serializer units upon receipt of a first control signal, and operating as deserializer units upon receipt of a second control signal.
Signals can be transmitted between the optical fibers 226 and the electronic processor integrated circuit 240. For example, signals can be transmitted from the optical fibers 226 to the photonic integrated circuit 214, to the first array of serializers/deserializers 216, to the second array of serializers/deserializers 217, and to the electronic processor integrated circuit 240. Similarly, signals can be transmitted from the electronic processor integrated circuit 240 to the second array of serializers/deserializers 217, to the first array of serializers/deserializers 216, to the photonic integrated circuit 214, and to the optical fibers 226.
In some implementations, the electronic communication integrated circuit 215 is implemented as a first integrated circuit and a second integrated circuit that are electrically coupled each other. For example, the first integrated circuit includes the array of serializers/deserializers 216, and the second integrated circuit includes the array of serializers/deserializers 217.
In some implementations, the integrated optical communication device 210 is configured to receive optical signals from the array of optical fibers 226, generate electrical signals based on the optical signals, and transmit the electrical signals to the electronic processor integrated circuit 240 for processing. In some examples, the signals can also flow from the electronic processor integrated circuit 240 to the integrated optical communication device 210. For example, the electronic processor integrated circuit 240 can transmit electronic signals to the integrated optical communication device 210, which generates optical signals based on the received electronic signals, and transmits the optical signals to the array of optical fibers 226.
In some implementations, the photodetectors of the photonic integrated circuit 214 convert the optical signals transmitted in the optical fibers 226 to electrical signals. In some examples, the photonic integrated circuit 214 can include transimpedance amplifiers for amplifying the currents generated by the photodetectors, and drivers for driving output circuits (e.g., driving optical modulators). In some examples, the transimpedance amplifiers and drivers are integrated with the electronic communication integrated circuit 215. For example, the optical signal in each optical fiber 226 can be converted to one or more serial electrical signals. For example, one optical fiber can carry multiple signals by use of wavelength division multiplexing. The optical signals (and the serial electrical signals) can have a high data rate, such as 50 Gbps, 100 Gbps, or more. The first serializers/deserializers module 216 converts the serial electrical signals to sets of parallel electrical signals. For example, each serial electrical signal can be converted to a set of N parallel electrical signals, in which N can be, e.g., 2, 4, 8, 16, or more. The first serializers/deserializers module 216 conditions the serial electrical signals upon conversion into sets of parallel electrical signals, in which the signal conditioning can include, e.g., one or more of clock and data recovery, and signal equalization. The first serializers/deserializers module 216 sends the sets of parallel electrical signals to the second serializers/deserializers module 217 through the bus processing unit 218. The second serializers/deserializers module 217 converts the sets of parallel electrical signals to high speed serial electrical signals that are output to the electrical contacts 212_2 and 212_1.
The serializers/deserializers module (e.g., 216, 217) can perform functions such as fixed or adaptive signal pre-distortion on the serialized signal. Also, the parallel-to-serial mapping can use a serialization factor M different from N, e.g., 50 Gbps at the input to the first serializers/deserializers module 216 can become 50×1 Gbps on a parallel bus, and two such parallel buses from two serializers/deserializers modules 216 having a total of 100×1 Gbps can then be mapped to a single 100 Gbps serial signal by the serializers/deserializers module 217. An example of the bus processing unit 218 for performing such mapping is shown in
In some implementations, the package substrate 230 can include connectors on the bottom side that connects the package substrate 230 to another circuit board, such as a motherboard. The connection can use, e.g., fixed (e.g., by use of solder connection) or removable (e.g., by use of one or more snap-on or screw-on mechanisms). In some examples, another substrate can be provided between the electronic processor integrated circuit 240 and the package substrate 230.
Referring to
The system 250 is similar to the data processing system 200 of
Referring to
The connector parts 266 and 268 can be similar to the connector parts 213 and 223, respectively, of
The photonic integrated circuit 264 has a top main surface and bottom main surface. The terms “top” and “bottom” refer to the orientations shown in the figure. It is understood that the devices described in this document can be positioned in any orientation, so for example the “top surface” of a device can be oriented facing downwards or sideways, and the “bottom surface” of the device can be oriented facing upwards or sideways. A difference between the photonic integrated circuit 264 and the photonic integrated circuit 214 (
The integrated optical communication devices 252 (
Referring to
The integrated optical communication device 282 includes a photonic integrated circuit 284, a circuit board 286, a first serializers/deserializers module 216, a second serializers/deserializers module 217, and a control circuit 287. The photonic integrated circuit 284 can include components that perform functions similar to those of the photonic integrated circuit 214 (
The circuit board 286 has a top main surface 290 and a bottom main surface 292. The photonic integrated circuit 284 has a top main surface 294 and bottom main surface 296. The first and second serializers/deserializers modules 216, 217 are mounted on the top main surface 290 of the circuit board 286. The top main surface 294 of the photonic integrated circuit 284 has electrical terminals that are electrically coupled to corresponding electrical terminals on the bottom main surface 292 of the circuit board 286. In this example, the photonic integrated circuit 284 is mounted on a side of the circuit board 286 that is opposite to the side of the circuit board 286 on which the first and second serializers/deserializers modules 216, 217 are mounted. The photonic integrated circuit 284 is electrically coupled to the first serializers/deserializers 216 by electrical connectors 300 that pass through the circuit board 286 in the thickness direction. In some embodiments, the electrical connectors 300 can be implemented as vias.
The connector part 288 has dimensions that are configured such that the fiber-optic connector assembly 270 can be coupled to the connector part 288 without bumping into other components of the integrated optical communication device 282. The connector part 288 can be configured to optically couple light to the photonic integrated circuit 284 using optical coupling interfaces, e.g., vertical grating couplers or turning mirrors, similar to the way that the connector part 213 or 266 optically couples light to the photonic integrated circuit 214 or 264, respectively.
When the integrated optical communication device 282 is coupled to the package substrate 230, the photonic integrated circuit 284 and the control circuit 287 are positioned between the circuit board 286 and the package substrate 230. The integrated optical communication device 282 includes an array of contacts 298 arranged on the bottom main surface 292 of the circuit board 286. The array of contacts 298 is configured such that after the circuit board 286 is coupled to the package substrate 230, the array of contacts 298 maintains a thickness d3 between the circuit board 286 and the package substrate 230, in which the thickness d3 is slightly larger than the thicknesses of the photonic integrated circuit 284 and the control circuit 287.
An array of electrical terminals 312 arranged on the top main surface 294 of the photonic integrated circuit 284 are electrically coupled to an array of electrical terminals 314 arranged on the bottom main surface 292 of the circuit board 286. The array of electrical terminals 312 and the array of electrical terminals 314 have a fine pitch, in which the minimum distance between two adjacent electrical terminals can be as small as, e.g., 10 μm, 40 μm, or 100 μm. An array of electrical terminals 316 arranged on the bottom main surface of the first serializers/deserializers 216 are electrically coupled to an array of electrical terminals 318 arranged on the top main surface 290 of the circuit board 286. An array of electrical terminals 320 arranged on the bottom main surface of the second serializers/deserializers module 217 are electrically coupled an array of electrical terminals 322 arranged on the top main surface 290 of the circuit board 286.
For example, the arrays of electrical terminals 312, 314, 316, 318, 320, and 322 have a fine pitch (or fine pitches). For simplicity of description, in the example of
An array of electrical terminals 324 arranged on the bottom main surface of the circuit board 286 are electrically coupled to the array of contacts 298. The array of electrical terminals 324 can have a coarse pitch. For example, the minimum distance between adjacent electrical terminals is d1, which can be in the range of, e.g., 200 μm to 1 mm. The array of contacts 298 can be configured as a module that maintains a distance that is slightly larger than the thicknesses of the photonic integrated circuit 284 and the control circuit 287 (which is not shown in
An array 330 of optical coupling components 310 is provided to allow optical signals to be provided to the photonic integrated circuit 284 in parallel. The first serializers/deserializers 216 include an array 332 of electrical terminals 316 arranged on the bottom surface of the first serializers/deserializers 216. The second serializers/deserializers module 217 include an array 334 of electrical terminals 320 arranged on the bottom surface of the second serializers/deserializers module 217. The arrays 332 and 334 of electrical terminals 316, 320 have a fine pitch, and the minimum distance between adjacent terminals can be in the range of, e.g., 40 μm to 200 μm. An array 336 of electrical terminals 324 is arranged on the bottom main surface of the circuit board 286. The array 336 of electrical terminals 324 has a coarse pitch, and the minimum distance between adjacent terminals can be in the range of, e.g., 200 μm to 1 mm. For example, the array 336 of electrical terminals 324 can be part of a compression interposer that has a pitch of about 400 μm between terminals.
The electrical contacts of the serializers/deserializers blocks 216_1 to 216_12 and 217_1 to 217_12 have a fine pitch, and the minimum distance between adjacent terminals can be in the range of, e.g., 40 μm to 200 μm. The electrical contacts 212_1 have a coarse pitch, and the minimum distance between adjacent terminals can be in the range of, e.g., 200 μm to 1 mm.
The integrated optical communication device 374 includes a photonic integrated circuit 352, a combination of drivers and transimpedance amplifiers (D/T) 354, a first serializers/deserializers module 216, a second serializers/deserializers module 217, the first optical connector 356, a control module 358, and a substrate 360. The host application specific integrated circuit 240 includes an embedded third serializers/deserializers module 247.
In this example, the photonic integrated circuit 352, the drivers and transimpedance amplifiers 354, the first serializers/deserializers module 216, and the second serializers/deserializers module 217 are mounted on the top side of the substrate 360. In some embodiments, the drivers and transimpedance amplifiers 354, the first serializers/deserializers module 216, and the second serializers/deserializers module 217 can be monolithically integrated into a single electrical chip. The first optical connector 356 is optically coupled to the bottom side of the photonic integrated circuit 352. The control module 358 is electrically coupled to electrical terminals arranged on the bottom side of the substrate 360, whereas the photonic integrated circuit 352 is connected to electrical terminals arranged on the top side of the substrate 360. The control module 358 is electrically coupled to the photonic integrated circuit 352 through electrical connectors 362 that pass through the substrate 360 in the thickness direction. In some embodiments, the substrate 360 can be removably connected to the package substrate 230, e.g., using a compression interposer or a land grid array.
The photonic integrated circuit 352 is electrically coupled to the drivers and transimpedance amplifiers 354 through electrical connectors 364 on or in the substrate 360. The drivers and transimpedance amplifiers 354 are electrically coupled to the first serializers/deserializers module 216 by electrical connectors 366 on or in the substrate 360. The second serializers/deserializers module 216 has electrical terminals 370 on the bottom side that are electrically coupled to electrical terminals 366 arranged on the bottom side of the substrate 360 through electrical connectors 368 that pass through the substrate 360 in the thickness direction. The electrical terminals 370 have a fine pitch, whereas the electrical terminals 366 have a coarse pitch. The electrical terminals 366 are electrically coupled to the third serializers/deserializers module 247 through electrical connectors or traces 372 on or in the package substrate 230.
In some implementations, optical signals are converted by the photonic integrated circuit 352 to electrical signals, which are conditioned by the first serializers/deserializers module 216 (or the second serializers/deserializers module 217), and processed by the host application specific integrated circuit 240. The host application specific integrated circuit 240 generates electrical signals that are converted by the photonic integrated circuit 352 into optical signals.
The photonic integrated circuit 392 receives optical signals from a first optical connector 404, generates serial electrical signals based on the optical signals, sends the serial electrical signals to the first and second serializers/deserializers modules 394 and 398. The first and second serializers/deserializers modules 394 and 398 generate parallel electrical signals based on the received serial electrical signals, and send the parallel electrical signals to the third and fourth serializers/deserializers modules 396 and 400, respectively. The third and fourth serializers/deserializers modules 396 and 400 generate serial electrical signals based on the received parallel electrical signals, and send the serial electrical signals to electrical terminals 406 and 408, respectively, arranged on the bottom side of the substrate 410.
The first optical connector 404 is optically coupled to the bottom side of the photonic integrated circuit 392. In some embodiments, the optical connector 404 can also be placed on the top of the photonic integrated circuit 392 and couple light to the top side of the photonic integrated circuit 392 (not shown in the figure). The first optical connector 404 is optically coupled to a second optical connector, which in turn is optically coupled to a plurality of optical fibers. In the configuration shown in
In some implementations, the integrated optical communication device 402 (or 408) can be modified such that the first optical connector 404 couples optical signals to the top side of the photonic integrated circuit 392 (or 422).
A first serializers/deserializers module 394, a second serializers/deserializers module 396, a third serializers/deserializers module 398, and a fourth serializers/deserializers module 400 are mounted on the top side of the first slab 516. The photonic integrated circuit 524 is electrically coupled to the first and third serializers/deserializers modules 394 and 398 by electrical connectors 522 that pass through the substrate 514 in the thickness direction. For example, the electrical connectors 522 can be implemented as vias. In some examples, drivers and transimpedance amplifiers can be integrated in the photonic integrated circuit 524, or integrated in the serializers/deserializers modules 394 and 398. In some examples, the drivers and transimpedance amplifiers can be implemented in a separate chip (not shown in the figure) positioned between the photonic integrated circuit 524 and the serializers/deserializers modules 394 and 398, similar to the example in
Complementary metal oxide semiconductor (CMOS) transimpedance amplifier and driver blocks 424 are arranged on the right side of the photonic integrated circuit 422, and CMOS transimpedance amplifier and driver blocks 426 are arranged on the left side of the photonic integrated circuit 422. A first serializers/deserializers module 394 and a second serializers/deserializers module 396 are arranged on the right side of the CMOS transimpedance amplifier and driver blocks 424. A third serializers/deserializers module 398 and a fourth serializers/deserializers module 400 are arranged on the left side of the CMOS transimpedance amplifier and driver blocks 426.
In this example, each of the first, second, third, and fourth serializers/deserializers module 394, 396, 398, 400 includes 8 serial differential transmitter blocks and 8 serial differential receiver blocks. The integrated optical communication device 428 has a width of about 3.5 mm and a length of slightly more than about 3.6 mm.
In some implementations, the electrical terminals (e.g., 406 and 408) can be arranged in a configuration as shown in
The middle rectangle 1022 is a cutout that connects the photonic integrated circuit to the optics that leave from the top of the module. The bigger rectangle 1024 represents the photonic integrated circuit. The two gray rectangles 1026a, 1026b represent circuitry in a serializers/deserializers chip 1028a. The two gray rectangles 1026c, 1026d represent circuitry in another serializers/deserializers chip 1028b. The serializers/deserializers chips are positioned on the top of the package, and the photonic integrated circuit is positioned on the bottom of the package. The overlap between the photonic integrated circuit and the serializers/deserializers chips 1028a, 1028b is designed so that vias (not shown in the figure) can directly connect these integrated circuits through the package. In some implementations, the serializers/deserializers chips 1028a, 1028b and/or other electronic integrated circuits can be placed around three or four sides of the optical connector (represented by the rectangle 1022).
In the examples of the data processing systems shown in
In a first example, the data processing system includes a digital application specific integrated circuit 444 mounted on the top side of a substrate 442, and an integrated optical communication device 448 mounted on the bottom side of the first circuit board. In some implementations, the integrated optical communication device 448 includes a photonic integrated circuit 450 and a set of transimpedance amplifiers and drivers 452 that are mounted on the bottom side of a substrate 454 (e.g., a second circuit board). The top side of the photonic integrated circuit 450 is electrically coupled to the bottom side of the substrate 454. A first optical connector part 456 is optically coupled to the bottom side of the photonic integrated circuit 450. The first optical connector part 456 is configured to be optically coupled to a second optical connector part 458 that is optically coupled to a plurality of optical fibers (not shown in the figure). An array of electrical terminals 460 is arranged on the top side of the substrate 454 and configured to enable the integrated optical communication device 448 to be removably coupled to the substrate 442.
The optical signals from the optical fibers are processed by the photonic integrated circuit 450, which generates serial electrical signals based on the optical signals. The serial electrical signals are amplified by the set of transimpedance amplifiers and drivers 452, which drives the output signals that are transmitted to a serializers/deserializers module 446 embedded in the digital application specific integrated circuit 444.
In a second example, an integrated optical communication device 462 can be mounted on the bottom side of the substrate 442 to provide an optical/electrical communications interface between the optical fibers and the digital application specific integrated circuit 444. The integrated optical communication device 462 includes a photonic integrated circuit 464 that is mounted on the bottom side of a substrate 454 (e.g., a second circuit board). The top side of the photonic integrated circuit 464 is electrically coupled to the bottom side of the substrate 454. A first optical connector part 456 is optically coupled to the bottom side of the photonic integrated circuit 450. An array of electrical terminals 460 is arranged on the top side of the substrate 454 and configured to enable the integrated optical communication device 462 to be removably coupled to the substrate 442. The integrated optical communication device 462 is similar to the integrated optical communication device 448, except that either the photonic integrated circuit 464 or the serializers/deserializers module 446 includes the set of transimpedance amplifiers and driver circuitry. In some examples, the serializers/deserializers module 446 is configured to directly accept electrical signals emerging from photonic integrated circuit 464, e.g., by having a high enough receiver input impedance that converts the photocurrent generated within the photonic integrated circuit 464 to a voltage swing suitable for further electrical processing. For example, the serializers/deserializers module 446 is configured to have a low transmitter output impedance, and provide an output voltage swing that allows direct driving of optical modulators embedded within the photonic integrated circuit 464.
In a third example, an integrated optical communication device 466 can be mounted on the bottom side of the substrate 442 to provide an optical/electrical communications interface between the optical fibers and the digital application specific integrated circuit 444. The integrated optical communication device 466 includes a photonic integrated circuit 468 that is mounted on the top side of a substrate 470 (e.g., a second circuit board). The bottom side of the photonic integrated circuit 468 is electrically coupled to the top side of the substrate 470. A first optical connector part 456 is optically coupled to the bottom side of the photonic integrated circuit 468. An array of electrical terminals 460 is arranged on the top side of the substrate 470 and configured to enable the integrated optical communication device 466 to be removably coupled to the substrate 442. In some examples, either the photonic integrated circuit 468 or the serializers/deserializers module 446 includes the set of transimpedance amplifiers and driver circuitry. In some examples, the serializers/deserializers module 446 is configured to directly accept electrical signals emerging from the photonic integrated circuit 464.
In a fourth example, an integrated optical communication device 472 can be mounted on the bottom side of the substrate 442 to provide an optical/electrical communications interface between the optical fibers and the digital application specific integrated circuit 444. The integrated optical communication device 472 includes a photonic integrated circuit 474 and a set of transimpedance amplifiers and drivers 476 that are mounted on the top side of a substrate 470 (e.g., a second circuit board). The bottom side of the photonic integrated circuit 474 is electrically coupled to the top side of the substrate 470. A first optical connector part 456 is optically coupled to the bottom side of the photonic integrated circuit 468. An array of electrical terminals 460 is arranged on the top side of the substrate 470 and configured to enable the integrated optical communication device 466 to be removably coupled to the substrate 442. The integrated optical communication device 472 is similar to the integrated optical communication device 466, except that neither the photonic integrated circuit 464 nor the serializers/deserializers module 446 include a set of transimpedance amplifiers and driver circuitry, and the set of transimpedance amplifiers and drivers 476 is implemented as a separate integrated circuit.
In the examples described above, such as those shown in
For example, the bus processing unit 218 can re-map the lanes of signals and perform coding on the signals, such that the bit rate and/or modulation format of the serial signals output from the transmitters TX5, TX6, TX7, TX8 can be different from the bit rate and/or modulation format of the serial signals received at the receivers RX1, RX2, RX3, RX4. For example, 4 lanes of T Gbps NRZ serial signals received at the receivers RX1, RX2, RX3, RX4 can be re-encoded and routed to transmitters TX5, TX6 to output 2 lanes of 2× T Gbps PAM4 serial signals.
Similarly, serial electrical signals received at the receivers RX5, RX6, RX7, RX8 are converted to parallel electrical signals and routed by the bus processing unit 218 to the transmitters TX1, TX2, TX3, TX4, which convert the parallel electrical signals to serial electrical signals. For example, the electronic processor integrated circuit or host application specific integrated circuit can send serial electrical signals to the receivers RX5, RX6, RX7, RX8, and the transmitters TX1, TX2, TX3, TX4 can transmit serial electrical signals to the photonic integrated circuit.
For example, the bus processing unit 218 can re-map the lanes of signals and perform coding on the signals, such that the bit rate and/or modulation format of the serial signals output from the transmitters TX1, TX2, TX3, TX4 can be different from the bit rate and/or modulation format of the serial signals received at the receivers RX5, RX6, RX7, RX8. For example, 2 lanes of 2×T Gbps PAM4 serial signals received at receivers RX5, RX6 can be re-encoded and routed to the transmitters TX5, TX6, TX7, TX8 to output 4 lanes of T Gbps NRZ serial signals.
Similarly, serial electrical signals received at the receivers RX3, RX4, RX7, RX8 are converted to parallel electrical signals and routed by the bus processing unit 218 to the transmitters TX1, TX2, TX5, TX6, which convert the parallel electrical signals to serial electrical signals. For example, the electronic processor integrated circuit or host application specific integrated circuit can send serial electrical signals to the receivers RX3, RX4, RX7, RX8, and the transmitters TX1, TX2, TX5, TX6 can transmit serial electrical signals to the photonic integrated circuit.
In some implementations, the bus processing unit 218 can re-map the lanes of signals and perform coding on the signals, such that the bit rate and/or modulation format of the serial signals output from the transmitters TX3, TX4, TX7, TX8 can be different from the bit rate and/or modulation format of the serial signals received at the receivers RX1, RX2, RX5, RX6. Similarly, the bus processing unit 218 can re-map the lanes of signals and perform coding on the signals such that the bit rate and/or modulation format of the serial signals output from the transmitters TX1, TX2, TX5, TX6 can be different from the bit rate and/or modulation format of the serial signals received at the receivers RX4, RX4, RX7, RX8.
Multiple serializers/deserializers blocks can be electrically coupled to multiple serializers/deserializers blocks through a bus processing unit that can be, e.g., a parallel bus of electrical lanes, a static or a dynamically reconfigurable cross-connect device, or a re-mapping device (gearbox).
In some other examples, the bus processing unit 538 can allow for redundancy to increase reliability. For example, the first and the second serializers/deserializers blocks 532 and 534 can be jointly configured to serially interface to a total of N lanes of T×N/(N−k) Gbps electrical signals, while the third serializers/deserializers block 536 can be configured to serially interface to N lanes of T Gbps electrical signals. The bus processing unit 538 can then be configured to remap the data from only N−k out of the N lanes serially interfacing to the first and the second serializers/deserializers blocks 532 and 534 (carrying an aggregate bit rate of (N−k)×T×N/(N−k)=T×N) to the third serializers/deserializers block 536. This way, the bus processing unit 538 allows for k out of N serially interfacing electrical links to the first and the second serializers/deserializers blocks 532 and 534 to fail while still maintaining an aggregate of T×N Gbps of data serially interfacing to the third serializers/deserializers block 536. The number k is a positive integer. In some embodiments, k can be approximately 1% of N. In some other embodiments, k can be approximately 10% of N. In some embodiment, the selection of which N-k of the N serially interfacing electrical links to the first and the second serializers/deserializers blocks 532 and 534 to remap to the third serializers/deserializers block 536 using bus processing unit 538 can be dynamically selected, e.g., based on signal integrity and signal performance information extracted from the serially interfacing signals by the serializers/deserializers blocks 532 and 534. An example of the bus processing unit 538 is shown in
In some examples, using the redundancy technique discussed above, the bus processing unit 538 enables N lanes of T×N/(N−k) Gbps serial electrical signals to be remapped into N/M lanes of M×T Gbps serial electrical signals. The bus processing unit 538 enables k out of N serially interfacing electrical links to fail while still maintaining an aggregate of T×N Gbps of data serially interfacing to the third serializers/deserializers block 536.
The connector assembly 220 includes a connector 223 and a fiber array 226. The connector 223 can include multiple individual fiber-optic connectors 423_i (i∈{R1 . . . RM; S1 . . . SK; T1 . . . TN} with K, M, and N being positive integers). In some embodiments, some or all of the individual connectors 423_i can form a single physical entity. In some embodiments some or all of the individual connectors 423_i can be separate physical entities. When operating as part of the network element 101_1 of the system 100, (i) the connectors 423_S1 through 423_SK can be connected to optical power supply 103, e.g., through link 102_6, to receive supply light; (ii) the connectors 423_R1 through 423_RM can be connected to the transmitters of the node 101_2, e.g., through the link 102_1, to receive from the node 1012 optical communication signals; and (iii) the connectors 423_T1 through 423_TN can be connected to the receivers of the node 1012, e.g., through the link 102_1, to transmit to the node 1012 optical communication signals.
In some implementations, the communication device 210 includes an electronic communication integrated circuit 215, a photonic integrated circuit 214, a connector part 213, and a substrate 211. The connector part 213 can include multiple individual optical connectors 413_i to photonic integrated circuit 214 (i∈{R1 . . . RM; S1 . . . SK; T1 . . . TN} with K, M, and N being positive integers). In some embodiments, some or all of the individual connectors 413_i can form a single physical entity. In some embodiments some or all of the individual connectors 413_i can be separate physical entities. The optical connectors 413_i are configured to optically couple light to the photonic integrated circuit 214 using optical coupling interfaces 414, e.g., vertical grating couplers, turning mirrors, etc., as disclosed in U.S. patent application Ser. No. 16/816,171.
In operation, light entering the photonic integrated circuit 214 from the link 102_6 through coupling interfaces 414_S1 through 414_SK can be split using an optical splitter 415. The optical splitter 415 can be an optical power splitter, an optical polarization splitter, an optical wavelength demultiplexer, or any combination or cascade thereof, e.g., as disclosed in U.S. Pat. No. 11,153,670 and in U.S. patent application Ser. No. 16/888,890, filed on Jun. 1, 2020, published as US 2021/0376950, which is incorporated herein by reference in its entirety. In some embodiments, one or more splitting functions of the splitter 415 can be integrated into the optical coupling interfaces 414 and/or into optical connectors 413. For example, in some embodiments, a polarization-diversity vertical grating coupler can be configured to simultaneously act as a polarization splitter 415 and as a part of optical coupling interface 414. In some other embodiments, an optical connector that includes a polarization-diversity arrangement can simultaneously act as an optical connector 413 and as a polarization splitter 415.
In some embodiments, light at one or more outputs of the splitter 415 can be detected using a receiver 416, e.g., to extract synchronization information as disclosed in U.S. Pat. No. 11,153,670. In various embodiments, the receiver 416 can include one or more p-i-n photodiodes, one or more avalanche photodiodes, one or more self-coherent receivers, or one or more analog (heterodyne/homodyne) or digital (intradyne) coherent receivers. In some embodiments, one or more opto-electronic modulators 417 can be used to modulate onto light at one or more outputs of the splitter 415 data for communication to other network elements.
Modulated light at the output of the modulators 417 can be multiplexed in polarization or wavelength using a multiplexer 418 before leaving the photonic integrated circuit 214 through optical coupling interfaces 414_T1 through 414_TN. In some embodiments, the multiplexer 418 is not provided, i.e., the output of each modulator 417 can be directly coupled to a corresponding optical coupling interface 414.
On the receiver side, light entering the photonic integrated circuit 214 through a coupling interfaces 414_R1 through 414_RM from, e.g., the link 101_2, can first be demultiplexed in polarization and/or in wavelength using an optical demultiplexer 419. The outputs of the demultiplexer 419 are then individually detected using receivers 421. In some embodiments, the demultiplexer 419 is not provided, i.e., the output of each coupling interface 414_R1 through 414_RM can be directly coupled to a corresponding receiver 421. In various embodiments, the receiver 421 can include one or more p-i-n photodiodes, one or more avalanche photodiodes, one or more self-coherent receivers, or one or more analog (heterodyne/homodyne) or digital (intradyne) coherent receivers.
The photonic integrated circuit 214 is electrically coupled to the integrated circuit 215. In some implementations, the photonic integrated circuit 214 provides a plurality of serial electrical signals to the first serializers/deserializers module 216, which generates sets of parallel electrical signals based on the serial electrical signals, in which each set of parallel electrical signal is generated based on a corresponding serial electrical signal. The first serializers/deserializers module 216 conditions the serial electrical signals, demultiplexes them into the sets of parallel electrical signals and sends the sets of parallel electrical signals to the second serializers/deserializers module 217 through a bus processing unit 218. In some implementations, the bus processing unit 218 enables switching of signals and performs line coding and/or error-correcting coding functions. An example of the bus processing unit 218 is shown in
The second serializers/deserializers module 217 generates a plurality of serial electrical signals based on the sets of parallel electrical signals, in which each serial electrical signal is generated based on a corresponding set of parallel electrical signal. The second serializers/deserializers module 217 sends the serial electrical signals through electrical connectors that pass through the substrate 211 in the thickness direction to an array of electrical terminals 500 that are arranged on the bottom surface of the substrate 211. For example, the array of electrical terminals 500 configured to enable the integrated communication device 210 to be easily coupled to, or removed from, the package substrate 230.
In some implementations, the electronic processor integrated circuit 240 includes a data processor 502 and an embedded third serializers/deserializers module 504. The third serializers/deserializers module 504 receives the serial electrical signals from the second serializers/deserializers module 217, and generates sets of parallel electrical signals based on the serial electrical signals, in which each set of parallel electrical signal is generated based on a corresponding serial electrical signal. The data processor 502 processes the sets of parallel signals generated by the third serializers/deserializers module 504.
In some implementations, the data processor 502 generates sets of parallel electrical signals, and the third serializers/deserializers module 504 generates serial electrical signals based on the sets of parallel electrical signals, in which each serial electrical signal is generated based on a corresponding set of parallel electrical signal. The serial electrical signals are sent to the second serializers/deserializers module 217, which generates sets of parallel electrical signals based on the serial electrical signals, in which each set of parallel electrical signal is generated based on a corresponding serial electrical signal. The second serializers/deserializers module 217 sends the sets of parallel electrical signals to the first serializers/deserializers module 216 through the bus processing unit 218. The first serializers/deserializers module 216 generates serial electrical signals based on the sets of parallel electrical signals, in which each serial electrical signal is generated based on a corresponding set of parallel electrical signals. The first serializers/deserializers module 216 sends the serial electrical signals to the photonic integrated circuit 214. The opto-electronic modulators 417 modulate optical signals based on the serial electrical signals, and the modulated optical signals are output from the photonic integrated circuit 214 through optical coupling interfaces 414_T1 through 414_TN.
In some embodiments, supply light from the optical power supply 103 includes an optical pulse train, and synchronization information extracted by the receiver 416 can be used by the serializers/deserializers module 216 to align the electrical output signals of the serializers/deserializers module 216 with respective copies of the optical pulse trains at the outputs of the splitter 415 at the modulators 417. For example, the optical pulse train can be used as an optical power supply at the optical modulator. In some such implementations, the first serializers/deserializers module 216 can include interpolators or other electrical phase adjustment elements.
Referring to
At the front panel 544 are pluggable input/output interfaces 556 that allow the data processing chip 554 to communicate with other systems and devices. For example, the input/output interfaces 556 can receive optical signals from outside of the system 540 and convert the optical signals to electrical signals for processing by the data processing chip 554. The input/output interfaces 556 can receive electrical signals from the data processing chip 554 and convert the electrical signals to optical signals that are transmitted to other systems or devices. For example, the input/output interfaces 556 can include one or more of small form-factor pluggable (SFP), SFP+, SEP28, QSFP (quad SFP), QSFP28, or QSFP56 transceivers. The electrical signals from the transceiver outputs are routed to the data processing chip 554 through electrical connectors on or in the printed circuit board 558.
In the examples shown in
In some implementations, the integrated communication device 574 includes a photonic integrated circuit 586 and an electronic communication integrated circuit 588 mounted on a substrate 594. The electronic communication integrated circuit 588 includes a first serializers/deserializers module 590 and a second serializers/deserializers module 592. The printed circuit board 570 can be similar to the package substrate 230 (
In some examples, the integrated communication device 574 includes a photonic integrated circuit without serializers/deserializers modules, and drivers/transimpedance amplifiers (TIA) are provided separately. In some examples, the integrated communication device 574 includes a photonic integrated circuit and drivers/transimpedance amplifiers but without serializers/deserializers modules.
The integrated communication device 574 includes a first optical connector 578 that is configured to receive a second optical connector 580 that is coupled to a bundle of optical fibers 582. The integrated communication device 574 is electrically coupled to the data processing chip 572 through electrical connectors or traces 584 on or in the printed circuit board 570. Because the data processing chip 572 and the integrated communication device 574 are both mounted on the printed circuit board 570, the electrical connectors or traces 584 can be made shorter, compared to the electrical connectors that electrically couple the transceivers 556 to the data processing chip 554 of
In some examples, the bundle of optical fibers 582 can be firmly attached to the photonic integrated circuit 586 without the use of the first and second optical connectors 578, 580.
The printed circuit board 570 can be secured to the side panels 564 and 566, and the bottom and top panels of the housing using, e.g., brackets, screws, clips, and/or other types of fastening mechanisms. The surface of the printed circuit board 570 can be oriented perpendicular to bottom panel of the housing, or at an angle (e.g., between −60° to 60°) relative to the vertical direction (the vertical direction being perpendicular to the bottom panel). The printed circuit board 570 can have multiple layers, in which the outermost layer (i.e., the layer facing the user) has an exterior surface that is configured to be aesthetically pleasing.
The first optical connector 578, the second optical connector 580, and the bundle of optical fibers 582 can be similar to those shown in
Although
In some examples of the data processing system 540 (
In some implementations, the integrated communication device 612 includes a photonic integrated circuit 614 and an electronic communication integrated circuit 588 mounted on a substrate 618. The electronic communication integrated circuit 588 includes a first serializers/deserializers module 590 and a second serializers/deserializers module 592. The integrated communication device 612 includes a first optical connector 578 that is configured to receive a second optical connector 580 that is coupled to a bundle of optical fibers 582. The integrated communication device 612 is electrically coupled to the data processing chip 572 through electrical connectors or traces 616 that pass through the printed circuit board 610 in the thickness direction. Because the data processing chip 572 and the integrated communication device 612 are both mounted on the printed circuit board 610, the electrical connectors or traces 616 can be made shorter, thereby allowing the signals to have a higher data rate with lower noise, lower distortion, and/or lower crosstalk. Mounting the integrated communication device 612 on the outside of the printed circuit board 610 perpendicular to the bottom panel of the housing and accessible from outside the housing allows for more easily accessible connections to the integrated communication device 612 that may be removed and re-connected without, e.g., removing the housing from a rack.
In some examples, the integrated communication device 612 includes a photonic integrated circuit without serializers/deserializers modules, and drivers and transimpedance amplifiers (TIA) are provided separately. In some examples, the integrated communication device 612 includes a photonic integrated circuit and drivers/transimpedance amplifiers but without serializers/deserializers modules. In some examples, the bundle of optical fibers 582 can be firmly attached to the photonic integrated circuit 614 without the use of the first and second optical connectors 578, 580.
In some examples, the data processing chip 572 is mounted on the rear side of the substrate, and the integrated communication device 612 are removably attached to the front side of the substrate, in which the substrate provides high speed connections between the data processing chip 572 and the integrated communication device 612. For example, the substrate can be attached to a front side of a printed circuit board, in which the printed circuit board includes an opening that allows the data processing chip 572 to be mounted on the rear side of the substrate. The printed circuit board can provide from a motherboard electrical power to the substrate (and hence to the data processing chip 572 and the integrated communication device 612, and allow the data processing chip 572 and the integrated communication device 612 to connect to the motherboard using low-speed electrical links.
The printed circuit board 610 can be secured to the side panels 604 and 606, and the bottom and top panels of the housing using, e.g., brackets, screws, clips, and/or other types of fastening mechanisms. The surface of the printed circuit board 610 can be oriented perpendicular to bottom panel of the housing, or at an angle (e.g., between −60° to 60°) relative to the vertical direction (the vertical direction being perpendicular to the bottom panel). The printed circuit board 610 can have multiple layers, in which the portion of the outermost layer (i.e., the layer facing the user) not covered by the integrated communication device 612 has an exterior surface that is configured to be aesthetically pleasing.
The enclosure 632 has side panels 634 and 636, a rear panel 638, a top panel, and a bottom panel. In some examples, the circuit board 642 is perpendicular to the bottom panel. In some examples, the circuit board 642 is oriented at an angle in a range −60° to 60° relative to a vertical direction of the bottom panel. The side of the circuit board 642 facing the user is configured to be aesthetically pleasing.
The optical/electrical communication interface 644 is electrically coupled to the data processing chip 640 by electrical connectors or traces 646 on or in the circuit board 642. The circuit board 642 can be a printed circuit board that has one or more layers. The electrical connectors or traces 646 can be signal lines printed on the one or more layers of the printed circuit board 642 and provide high bandwidth data paths (e.g., one or more Gigabits per second per data path) between the data processing chip 640 and the optical/electrical communication interface 644.
In a first example, the data processing chip 640 receives electrical signals from the optical/electrical communication interface 644 and does not send electrical signals to the optical/electrical communication interface 644. In a second example, the data processing chip 640 receives electrical signals from, and sends electrical signals to, the optical/electrical communication interface 644. In the first example, the optical/electrical communication interface 644 receives optical signals from optical fibers, generates electrical signals based on the optical signals, and sends the electrical signals to the data processing chip 640. In the second example, the optical/electrical communication interface 644 also receives electrical signals from the data processing chip, generates optical signals based on the electrical signals, and sends the optical signals to the optical fibers.
An optical connector 648 is provided to couple optical signals from the optical fibers to the optical/electrical communication interface 644. In this example, the optical connector 648 passes through an opening in the circuit board 642. In some examples, the optical connector 648 is securely fixed to the optical/electrical communication interface 644. In some examples, the optical connector 648 is configured to be removably coupled to the optical/electrical communication interface 644, e.g., by using a pluggable and releasable mechanism, which can include one or more snap-on or screw-on mechanisms. In some other examples, an array of 10 or more fibers is securely or fixedly attached to the optical connector 648.
The optical/electrical communication interface 644 can be similar to, e.g., the integrated communication device 210 (
The enclosure 658 has side panels 660 and 662, a rear panel 664, a top panel, and a bottom panel. In some examples, the circuit board 654 and the front panel 656 are perpendicular to the bottom panel. In some examples, the circuit board 654 and the front panel 656 are oriented at an angle in a range −60° to 60° relative to a vertical direction of the bottom panel. In some examples, the circuit board 654 is substantially parallel to the front panel 656, e.g., the angle between the surface of the circuit board 654 and the surface of the front panel 656 can be in a range of −5° to 5°. In some examples, the circuit board 654 is at an angle relative to the front panel 656, in which the angle is in a range of −45° to 45°.
The optical/electrical communication interface 652 is electrically coupled to the data processing chip 670 by electrical connectors or traces 666 on or in the circuit board 654, similar to those of the system 630. The signal path between the data processing chip 670 and the optical/electrical communication interface 652 can be unidirectional or bidirectional, similar to that of the system 630.
An optical connector 668 is provided to couple optical signals from the optical fibers to the optical/electrical communication interface 652. In this example, the optical connector 668 passes through an opening in the front panel 656 and an opening in the circuit board 654. The optical connector 668 can be securely fixed, or releasably connected, to the optical/electrical communication interface 652, similar to that of the system 630.
The optical/electrical communication interface 652 can be similar to, e.g., the integrated communication device 210 (
In the examples of
The enclosure 688 has side panels 690 and 692, a rear panel 694, a top panel, and a bottom panel. In some examples, the circuit board 686 is perpendicular to the bottom panel. In some examples, the circuit board 686 is oriented at an angle in a range −60° to 60° (or −30° to 30°, or −10° to 10°, or −1° to 1°) relative to a vertical direction of the bottom panel.
Each of the optical/electrical communication interfaces 684 is electrically coupled to the data processing chip 682 by electrical connectors or traces 696 that pass through the circuit board 686 in the thickness direction. For example, the electrical connectors or traces 696 can be configured as vias of the circuit board 686. The signal paths between the data processing chip 682 and each of the optical/electrical communication interfaces 684 can be unidirectional or bidirectional, similar to those of the systems 630 and 650.
For example, the system 680 can be configured such that signals are transmitted unidirectionally between the data processing chip 682 and one of the optical/electrical communication interfaces 684, and bidirectionally between the data processing chip 682 and another one of the optical/electrical communication interfaces 684. For example, the system 680 can be configured such that signals are transmitted unidirectionally from the optical/electrical communication interface 684A to the data processing chip 682, and unidirectionally from the data processing chip to the optical/electrical communication interface 684B and/or optical/electrical communication interface 684C.
Optical connectors 698A, 698B, 698C (collectively referenced as 698) are provided to couple optical signals from the optical fibers to the optical/electrical communication interfaces 684A, 684B, 684C, respectively. The optical connectors 698 can be securely fixed, or releasably connected, to the optical/electrical communication interfaces 684, similar to those of the systems 630 and 650.
The optical/electrical communication interface 684 can be similar to, e.g., the integrated communication device 210 (
In some examples, the optical/electrical communication interfaces 684 are securely fixed (e.g., by soldering) to the circuit board 686. In some examples, the optical/electrical communication interfaces 684 are removably connected to the circuit board 686, e.g., by use of mechanical mechanisms such as one or more snap-on or screw-on mechanisms. An advantage of the system 680 is that in case of a malfunction at one of the optical/electrical communication interfaces 684, the faulty optical/electrical communication interface 684 can be replaced without opening the enclosure 688.
The enclosure 694b has side panels 695b and 696b, a rear panel 697b, a top panel, and a bottom panel. In some examples, the circuit board 693b is perpendicular to the bottom panel. In some examples, the circuit board 693b is oriented at an angle in a range −60° to 60° (or −30° to 30°, or −10° to 10°, or −1° to 1°) relative to a vertical direction of the bottom panel.
Each of the optical/electrical communication interfaces 692 is electrically coupled to the data processing chip 691b by electrical connectors or traces 698b that pass through the circuit board 693b in the thickness direction. For example, the electrical connectors or traces 698b can be configured as vias of the circuit board 693b. In this example, the electrical connectors or traces 698b extend to both sides of the circuit board 693b (e.g., for connecting to optical/electrical communication interfaces 692 located internal to and external of the enclosure 694b). The signal paths between the data processing chip 691b and each of the optical/electrical communication interfaces 692 can be unidirectional or bidirectional, similar to those of the systems 630, 650 and 680.
For example, the system 690b can be configured such that signals are transmitted unidirectionally between the data processing chip 691b and one of the optical/electrical communication interfaces 692, and bidirectionally between the data processing chip 691b and another one of the optical/electrical communication interfaces 692. For example, the system 690b can be configured such that signals are transmitted unidirectionally from the optical/electrical communication interface 692a to the data processing chip 691b, and unidirectionally from the data processing chip 691b to the optical/electrical communication interface 692b and/or optical/electrical communication interface 692c.
Optical connectors 699a, 699b, 699c (collectively referenced as 699) are provided to couple optical signals from the optical fibers to the optical/electrical communication interfaces 692a, 692b, 692c, respectively. The optical connectors 699 can be securely fixed, or releasably connected, to the optical/electrical communication interfaces 692, similar to those of the systems 630, 650, and 680. In this example, optical connector 699b and optical connector 699c can connect to optical fibers at the front of the enclosure 694b and the optical connector 699a can connect to optical fibers at the rear of the enclosure 694b. In the illustrated example, the optical connector 699a connects to an optical fiber at the rear of the enclosure 694b by being connected to a fiber 1000b that connects to a rear panel interface 1001b (e.g., a backplane, etc.) that is mounted to the rear panel 697b. In some examples, the optical connectors 699 can be securely or fixedly attached to communication interfaces 692. In some examples, the optical connectors 699 can be securely or fixedly attached to an array of optical fibers.
The optical/electrical communication interface 692 can be similar to, e.g., the integrated communication device 210 (
In some examples, the optical/electrical communication interfaces 692 are securely fixed (e.g., by soldering) to the circuit board 693b. In some examples, the optical/electrical communication interfaces 692 are removably connected to the circuit board 693b, e.g., by use of mechanical mechanisms such as one or more snap-on or screw-on mechanisms. An advantage of the system 690b is that in case of a malfunction at one of the optical/electrical communication interfaces 692, the faulty optical/electrical communication interface 692 can be replaced without opening the enclosure 694b.
The enclosure 694c has side panels 695c and 696c, a rear panel 697c, a top panel, and a bottom panel. In some examples, the circuit board 693c is perpendicular to the bottom panel. In some examples, the circuit board 693c is oriented at an angle in a range −60° to 60° (or −30° to 30°, or −10° to 10°, or −1° to 1°) relative to a vertical direction of the bottom panel.
Each of the optical/electrical communication interfaces 692 is electrically coupled to the data processing chip 691c by electrical connectors or traces 698c that pass through the circuit board 693c in the thickness direction. For example, the electrical connectors or traces 698c can be configured as vias of the circuit board 693c. In this example, the electrical connectors or traces 698c extend to both sides of the circuit board 693b (e.g., for connecting to optical/electrical communication interfaces 692 located internal to and external of the enclosure 694b. The signal paths between the data processing chip 691c and each of the optical/electrical communication interfaces 692 can be unidirectional or bidirectional, similar to those of the systems 630, 650 and 680.
For example, the system 690c can be configured such that signals are transmitted unidirectionally between the data processing chip 691c and one of the optical/electrical communication interfaces 692, and bidirectionally between the data processing chip 691c and another one of the optical/electrical communication interfaces 692. For example, the system 690c can be configured such that signals are transmitted unidirectionally from the optical/electrical communication interface 692d to the data processing chip 691c, and unidirectionally from the data processing chip 691c to the optical/electrical communication interface 692e and/or optical/electrical communication interface 692f.
Optical connectors 699d, 699e, 699f (collectively referenced as 699) are provided to couple optical signals from the optical fibers to the optical/electrical communication interfaces 692d, 692e, 692f, respectively. The optical connectors 699 can be securely fixed, or releasably connected, to the optical/electrical communication interfaces 692, similar to those of the systems 630, 650, and 680. In the illustrated example, the optical/electrical communication interfaces 692d and optical connector 699d are oriented differently compared to the optical/electrical communication interfaces 692a and optical connector 699a of
The optical/electrical communication interface 692 can be similar to, e.g., the integrated communication device 210 (
In some examples, the optical/electrical communication interfaces 692 are securely fixed (e.g., by soldering) to the circuit board 693c. In some examples, the optical/electrical communication interfaces 692 are removably connected to the circuit board 693c, e.g., by use of mechanical mechanisms such as one or more snap-on or screw-on mechanisms. An advantage of the system 690c is that in case of a malfunction at one of the optical/electrical communication interfaces 692, the faulty optical/electrical communication interface 692 can be replaced without opening the enclosure 694c.
The enclosure 710 has side panels 712 and 714, a rear panel 716, a top panel, and a bottom panel. In some examples, the circuit board 706 and the front panel 708 are oriented at an angle in a range −60° to 60° relative to a vertical direction of the bottom panel. In some examples, the circuit board 706 is substantially parallel to the front panel 708, e.g., the angle between the surface of the circuit board 706 and the surface of the front panel 708 can be in a range of −5° to 5°. In some examples, the circuit board 706 is at an angle relative to the front panel 708, in which the angle is in a range of −45° to 45°.
For example, the angle can refer to a rotation around an axis that is parallel to the larger dimension of the front panel (e.g., the width dimension in a typical 1 U, 2 U, or 4 U rackmount device), or a rotation around an axis that is parallel to the shorter dimension of the front panel (e.g., the height dimension in the 1 U, 2 U, or 4 U rackmount device). The angle can also refer to a rotation around an axis along any other direction. For example, the circuit board 706 is positioned relative to the front panel such that components such as the interconnection modules, including optical modules or photonic integrated circuits, mounted on or attached to the circuit board 706 can be accessed through the front side, either through one or more openings in the front panel, or by opening the front panel to expose the components, without the need to separate the top or side panels from the bottom panel. Such orientation of the circuit board (or a substrate on which a data processing module is mounted) relative to the front panel also applies to the examples shown in
Each of the optical/electrical communication interfaces 704 is electrically coupled to the data processing chip 702 by electrical connectors or traces 718 that pass through the circuit board 706 in the thickness direction, similar to those of the system 680 (
Optical connectors 716a, 716b, 716c (collectively referenced as 716) are provided to couple optical signals from the optical fibers to the optical/electrical communication interfaces 704a, 704b, 704c, respectively. The optical connectors 716 can be securely fixed, or releasably connected, to the optical/electrical communication interfaces 704, similar to those of the systems 630, 650, and 680.
The optical/electrical communication interface 704 can be similar to, e.g., the integrated communication device 210 (
In some examples, the optical/electrical communication interfaces 704 are securely fixed (e.g., by soldering) to the circuit board 706. In some examples, the optical/electrical communication interfaces 704 are removably connected to the circuit board 706, e.g., by use of mechanical mechanisms such as one or more snap-on or screw-on mechanisms. An advantage of the system 700 is that in case of a malfunction at one of the optical/electrical communication interfaces 704, the faulty optical/electrical communication interface 704 can unplugged or decoupled from the circuit board 706 and replaced without opening the enclosure 710.
n some implementations, the optical/electrical communication interfaces 704 do not protrude through openings in the front panel 708. For example, each optical/electrical communication interface 704 can be at a distance behind the front panel 708, and a fiber patchcord or pigtail can connect the optical/electrical communication interface 704 to an optical connector on the front panel 708, similar to the examples shown in
The enclosure 732 has side panels 736 and 738, a rear panel 740, a top panel, and a bottom panel. In some examples, the circuit board 730 is perpendicular to the bottom panel. In some examples, the circuit board 730 is oriented at an angle in a range −60° to 60° relative to a vertical direction of the bottom panel.
The optical/electrical communication interface 724 includes a photonic integrated circuit 726 mounted on a substrate 728 that is electrically coupled to the circuit board 730. The optical/electrical communication interface 724 is electrically coupled to the data processing chip 722 by electrical connectors or traces 742 that pass through the circuit board 730 in the thickness direction. For example, the electrical connectors or traces 742 can be configured as vias of the circuit board 730. The signal paths between the data processing chip 722 and the optical/electrical communication interface 724 can be unidirectional or bidirectional, similar to those of the systems 630, 650, 680, and 700.
An optical connector 744 is provided to couple optical signals from the optical fibers 734 to the optical/electrical communication interface 724. The optical connector 744 can be securely fixed, or removably connected, to the optical/electrical communication interface 744, similar to those of the systems 630, 650, 680, and 700.
In some implementations, the optical/electrical communication interface 724 can be similar to, e.g., the integrated communication device 448, 462, 466, and 472 of
The optical connector 744 includes a first optical connector 746 and a second optical connector 748, in which the second optical connector 748 is optically coupled to the optical fibers 734. The first optical connector 746 can be similar to, e.g., the first optical connector part 213 (
In some examples, the optical/electrical communication interface 724 is securely fixed (e.g., by soldering) to the circuit board 730. In some examples, the optical/electrical communication interface 724 is removably connected to the circuit board 730, e.g., by use of mechanical mechanisms such as one or more snap-on or screw-on mechanisms. An advantage of the system 720 is that in case of a malfunction of the optical/electrical communication interface 724, the faulty optical/electrical communication interface 724 can be replaced without opening the enclosure 732.
The technique of using a fiber patchcord or pigtail to optically couple the photonic integrated circuit to the optical connector attached to the inner side of the front panel can also be applied to the data processing system 700 of
In the examples of
In each of the examples in
The data processing chips 758 can be similar to, e.g., the electronic processor integrated circuit, data processing chip, or host application specific integrated circuit 240 (
Although the figure shows that the optical/electrical communication interfaces 760 are mounted on the side of the circuit board 752 facing the front panel 754, the optical/electrical communication interfaces 760 can also be mounted on the side of the circuit board 752 facing the interior of the enclosure 756. The optical/electrical communication interfaces 760 can be similar to, e.g., the integrated communication devices 210 (
The circuit board 752 is positioned near a front panel 754 of an enclosure 756, and optical signals are coupled to the optical/electrical communication interfaces 760 through optical paths that pass through openings in the front panel 754. This allows users to conveniently removably connect optical fiber cables 762 to the input/output interfaces 760. The position and orientation of the circuit board 752 relative to the enclosure 756 can be similar to, e.g., those of the circuit board 654 (
In some implementations, the data processing system 750 can include multiple types of optical/electrical communication interfaces 760. For example, some of the optical/electrical communication interfaces 760 can be mounted on the same side of the circuit board 752 as the corresponding data processing chip 758, and some of the optical/electrical communication interfaces 760 can be mounted on the opposite side of the circuit board 752 as the corresponding data processing chip 758. Some of the optical/electrical communication interfaces 760 can include first and second serializers/deserializers modules, and the corresponding data processing chips 758 can include third serializers/deserializers modules, similar to the examples in
Other types of connections may be present and associated with circuit board 752 and other boards included in the enclosure 756. For example, two or more circuit boards (e.g., vertically mounted circuit boards) can be connected which may or may not include the circuit board 752. For instances in which circuit board 752 is connected to at least one other circuit board (e.g., vertically mounted in the enclosure 756), one or more connection techniques can be employed. For example, an optical/electrical communication interface (e.g., similar to optical/electrical communication interfaces 760) can be used to connect data processing chips 758 to other circuit boards. Interfaces for such connections can be located on the same side of the circuit board 752 that the processing chips 758 are mounted. In some implementations, interfaces can be located on another portion of the circuit board (e.g., a side that is opposite from the side that the processing chips 758 are mounted). Connections can utilize other portions of the circuit board 752 and/or one or more other circuit boards present in the enclosure 756. For example an interface can be located on an edge of one or more of the boards (e.g., an upper edge of a vertically mounted circuit board) and the interface can connect with one or more other interfaces (e.g., the optical/electrical communication interfaces 760, another edge mounted interface, etc.). Through such connections, two or more circuit boards can connect, receive and send signals, etc.
In the example shown in
In this example, the system 2000 includes vertically mounted line cards 2040, 2042, 2044. In this particular example, line card 2040 includes an electrical connection sockets/connector 2046 that is connected to electrical cable 2036, and line card 2042 includes an electrical connection sockets/connector 2048 that is connected to electrical cable 2032. Line card 2044 includes an electrical connection sockets/connector 2050. Each of the line cards 2040, 2042, 2044 include pluggable optical modules 2052, 2054, 2056 that can implement various interface techniques (e.g., QSFP, QSFP-DD (QSFP-double density), XFP (10 gigabit small form factor pluggable), SFP, CFP (C form-factor pluggable)).
In this particular example, the printed circuit board 2002 is approximate to a forward panel 2058 of the system 2000; however, the printed circuit board 2002 can be positioned in other locations within the system 2000. Multiple printed circuit boards can also be included in the system 2000. For example, a second printed circuit board 2060 (e.g., a backplane) is included in the system 2000 and is located approximate to a back panel 2062. By locating the printed circuit board 2060 towards the rear, signals (e.g., data signals) can be sent to and received from other systems (e.g., another switch box) located, for example, in the same switch rack or other location as the system 2000. In this example, a data processing chip 2064 is mounted to the printed circuit board 2060 that can perform various operations (e.g., data processing, prepare data for transmission, etc.). Similar to the printed circuit board 2002 located forward in the system 2000, the printed circuit board 2060 includes an optical/electrical communication interface 2066 that communicates with the optical/electrical communication interface 2008 (located on the same side on printed circuit board 2002 as data processing chip 2004) using optical fibers 2068. The printed circuit board 2060 includes electrical connection sockets/connectors 2070 that uses the electrical connection cable 2034 to send electrical signals to and receive electrical signals from the electrical connection sockets/connectors 2024. The printed circuit board 2060 can also communicate with other components of the system 2000, for example, one or more of the line cards. As illustrated in the figure, electrical connection sockets/connectors 2072 located on the printed circuit board 2060 uses the electrical connection cable 2074 to send electrical signals to and/or receive electrical signals from the electrical connection sockets/connector 2050 of the line card 2044. Similar to the printed circuit board 2002, other portions of the system 2000 can include timing modules. For example, the line cards 2040, 2042, and 2044 can include timing modules (respectively identified with symbol “*”, “**”, and “***”). Similarly, the second circuit board 2060 can include timing modules such as timing modules 2076 and 2078 for regenerating data, re-timing data, maintaining signal integrity, etc.
A feature of some of the systems described in this document is that the main data processing module(s) of a system, such as switch chip(s) in a switch server, and the communication interface modules that support the main data processing module(s), are configured to allow convenient access by users. In the examples shown in
In some implementations, for a single rack of rackmount servers where there is open space at the front, rear, left, and right side of the rack, in each rackmount server, it is possible to place a first main data processing module and the communication interface modules supporting the first main data processing module near the front panel, place a second main data processing module and the communication interface modules supporting the second main data processing module near the left panel, place a third main data processing module and the communication interface modules supporting the third main data processing module near the right panel, and place a fourth main data processing module and the communication interface modules supporting the fourth main data processing module near the rear panel. The thermal solutions, including the placement of fans and heat dissipating devices, and the configuration of airflows around the main data processing modules and the communication interface modules, are adjusted accordingly.
For example, if a data processing server is mounted to the ceiling of a room or a vehicle, the main data processing module and the communication interface modules can be positioned near the bottom panel for easy access. For example, if a data processing server is mounted beneath the floor panel of a room or a vehicle, the main data processing module and the communication interface modules can be positioned near the top panel for easy access. The housing of the data processing system does not have to be in a box shape. For example, the housing can have curved walls, be shaped like a globe, or have an arbitrary three-dimensional shape.
In some implementations, the photonic integrated circuit 772, the first serializers/deserializers module 776, and the second serializers/deserializers module 780 can be mounted on a substrate of an integrated communication device, an optical/electrical communication interface, or an input/output interface module. The first serializers/deserializers module 776 and the second serializers/deserializers module 780 can be implemented in a single chip. In some implementations, the third serializers/deserializers module 784 can be embedded in the data processor 788, or the third serializers/deserializers module 784 can be separate from the data processor 788.
The data processor 788 generates an eighth set of parallel signals 790 that is sent to the third serializers/deserializers module 784, which generates a sixth serial electrical signal 792 based on the eighth set of parallel signals 790. The sixth serial electrical signal 792 is provided to the second serializers/deserializers module 780, which generates a fourth set of parallel signals 794 based on the sixth serial electrical signal 792. The second serializers/deserializers module 780 can condition the serial electrical signal 792 upon conversion into the fourth set of parallel electrical signals 794. The fourth set of parallel signals 794 is provided to the first serializers/deserializers module 780, which generates a second serial electrical signal 796 based on the fourth set of parallel signals 794 that is sent to the photonic integrated circuit 772. The photonic integrated circuit 772 generates a second optical signal 798 based on the second serial electrical signal 796, and sends the second optical signal 798 to an optical fiber. The first and second optical signals 770, 798 can travel on the same optical fiber or on different optical fibers.
A feature of the system 800 is that the electrical signal paths traveled by the first, fifth, sixth, and second serial electrical signals 774, 782, 792, 796 are short (e.g., less than 5 inches), to allow the first, fifth, sixth, and second serial electrical signals 782, 792 to have a high data rate (e.g., up to 50 Gbps).
In some examples, the data processor 812 processes first data carried in the first optical signal received at the first photonic integrated circuit 772, and generates second data that is carried in the fourth optical signal output from the second photonic integrated circuit 814.
The examples in
In some implementations, signals are transmitted unidirectionally from the photonic integrated circuit 772 to the data processor 788 (
It should be appreciated by those of ordinary skill in the art that the various embodiments described herein in the context of coupling light from one or more optical fibers, e.g., 226 (
The example optical systems disclosed herein should only be viewed as some of many possible embodiments that can be used to perform polarization demultiplexing and independent array pattern scaling, array geometry re-arrangement, spot size scaling, and angle-of-incidence adaptation using diffractive, refractive, reflective, and polarization-dependent optical elements, 3D waveguides and 3D printed optical components. Other implementations achieving the same set of functionalities are also covered by the spirit of this disclosure.
For example, the optical fibers can be coupled to the edges of the photonic integrated circuits, e.g., using fiber edge couplers. The signal conditioning (e.g., clock and data recovery, signal equalization, or coding) can be performed on the serial signals, the parallel signals, or both. The signal conditioning can also be performed during the transition from serial to parallel signals.
In some implementations, the data processing systems described above can be used in, e.g., data center switching systems, supercomputers, internet protocol (IP) routers, Ethernet switching systems, graphics processing work stations, and systems that apply artificial intelligence algorithms.
In the examples described above in which the figures show a first serializers/deserializers module (e.g., 216) placed adjacent to a second serializers/deserializers module (e.g., 217), it is understood that a bus processing unit 218 can be positioned between the first and second serializers/deserializers modules and perform, e.g., switching, re-routing, and/or coding functions described above.
In some implementations, the data processing systems described above includes multiple data generators that generate large amounts of data that are sent through optical fibers to the data processors for processing. For example, an autonomous driving vehicle (e.g., car, truck, train, boat, ship, submarine, helicopter, drone, airplane, space rover, or space ship) or a robot (e.g., an industrial robot, a helper robot, a medical surgery robot, a merchandise delivery robot, a teaching robot, a cleaning robot, a cooking robot, a construction robot, an entertainment robot) can include multiple high resolution cameras and other sensors (e.g., LIDARs (Light Detection and Ranging), radars) that generate video and other data that have a high data rate. The cameras and/or sensors can send the video data and/or sensor data to one or more data processing modules through optical fibers. The one or more data processing modules can apply artificial intelligence technology (e.g., using one or more neural networks) to recognize individual objects, collections of objects, scenes, individual sounds, collections of sounds, and/or situations in the environment of the vehicle and quickly determine appropriate actions for controlling the vehicle or robot.
In some implementations, a data center includes multiple systems, in which each system incorporates the techniques disclosed in
The example of
For example, the photon supply 1256 can correspond to the optical power supply 103 of
The implementation shown in
An external optical power supply or photon supply 1266 provides optical power supply signals, which can be continuous-wave light, one or more trains of periodic optical pulses, or one or more trains of non-periodic optical pulses. The power supply light is provided from the photon supply 1266 to the optical interconnect modules 1258 through optical fibers 1744, 1746a, 1746b, 1746c, respectively. For example, the optical power supply 1266 can provide both pulsed light for data modulation and synchronization, as described in U.S. Pat. No. 11,153,670. This allows the high-capacity chip 1262 to be synchronized with the lower-capacity chips 1264a, 1264b, and 1264c.
An external optical power supply or photon supply 1274 provides optical power supply signals, which can be continuous-wave light, one or more trains of periodic optical pulses, or one or more trains of non-periodic optical pulses. For example, the optical power supply 1274 can provide both pulsed light for data modulation and synchronization, as described in U.S. Pat. No. 11,153,670. This allows the high-capacity chip 1262 to be synchronized with the lower-capacity chips 1264a and 1264b.
Some aspects of the systems 1250, 1260, and 1270 are described in more detail in connection with
Additional optical modules with connectors can be used. The data processing system can be similar to, e.g., the data processing system 680 (
The optical module with connector 868 can be inserted into a first grid structure 870, which can function as both (i) a heat spreader/heat sink and (ii) a mechanical holding fixture for the optical modules with connectors 868. The first grid structure 870 includes an array of receptors, and each receptor can receive an optical module with connector 868. When assembled, the first grid structure 870 is connected to the printed circuit board 862. The first grid structure 870 can be firmly held in place relative to the printed circuit board 862 by sandwiching the printed circuit board 862 in between the first grid structure 870 and a second structure 872 (e.g., a second grid structure) located on the opposite side of the printed circuit board 862 and connected to the first grid structure 870 through the printed circuit board 862, e.g., by use of screws. Thermal vias between the first grid structure 870 and the second structure 872 can conduct heat from the front-side of the printed circuit board 862 to the heat sink 866 on the back-side of the printed circuit board 862. Additional heat sinks can also be mounted directly onto the first grid structure 870 to provide cooling in the front.
The printed circuit board 862 includes electrical contacts 876 configured to electrically connect to the removable optical module with connectors 868 after the removable optical module with connectors 868 are inserted into the first grid structure 870. The first grid structure 870 can include an opening 874 at the location in which the host application specific integrated circuit 864 is mounted on the other side of the printed circuit board 862 to allow for components such as voltage regulators, filters, and/or decoupling capacitors to be mounted on the printed circuit board 862 in immediate lateral vicinity to the host application specific integrated circuit 864.
In some examples, the host application specific integrated circuit 864 is mounted on a substrate (e.g., a ceramic substrate), and the substrate is attached to the circuit board 862, similar to the examples shown in
The optical module 880 can have any of various configurations, including an optical module containing silicon photonics integrated optics, indium phosphide integrated optics, one or more vertical-cavity surface-emitting lasers (VCSEL)s, one or more direct-detection optical receivers, or one or more coherent optical receivers. The optical module 880 can include any of the optical modules, co-packaged optical modules, integrated optical communication devices (e.g., 448, 462, 466, or 472 of
The optical connector part 882 is inserted through an opening 888 of a substrate 890 and optically coupled to a photonic integrated circuit 896 mounted on the underside of the substrate 890. The substrate 890 can be similar to the substrate 514 of
In some implementations, the upper mechanical part 904, at its underside, is brought in thermal contact with the first serializers/deserializers chip 892 and the second serializers/deserializers chip 894. The upper mechanical part 904 is also brought in thermal contact with the lower mechanical part 902. The lower mechanical part 902 includes a removable latch mechanism, e.g., two wings 906 that can be elastically bent inwards (the movement of the wings 906 are represented by a double-arrow 908 in
Referring to
To remove the optical module 880 from the first grid structure 870, the user can pull the optical fiber connector 950 and cause the balls 962 to disengage from the detents 964. The user can then bend the wings 906 inwards so that the tongues 910 disengage from the grooves 920 on the walls of the first grid structure 870.
In some implementations, the co-packaged optical module 982 includes a mechanical connector structure 984 and a smart optical assembly 986. The smart optical assembly 986 includes, e.g., a photonic integrated circuit (e.g., 896 of
In some examples, the fiber connector 983 includes guide pins 998 that are inserted into holes in the smart optical assembly 986 to improve alignment of optical components (e.g., waveguides and/or lenses) in the fiber connector 983 to optical components (e.g., optical couplers and/or waveguides) in the smart optical assembly 986. In some examples, the guide pins 998 can be chamfered shaped, or elliptical shaped that reduces wear.
In some implementations, after the fiber connector 983 is installed in the co-packaged optical module 982, the fiber connector 983 prevents the co-packaged optical module latches 990 from bending inwards, thus preventing the co-packaged optical module 982 from being inserted into, or released from, the co-packaged optical port 1000. To couple the fiber cable 996 to the data processing system, the co-packaged optical module 982 is first inserted into the co-packaged optical port 1000 without the fiber connector 983, then the fiber connector 983 is inserted into the mechanical connector structure 984. To remove the fiber cable 996 from the data processing system, the fiber connector 983 can be removed from the mechanical connector structure 984 while the co-packaged optical module 982 is still coupled to the co-packaged optical port 1000.
In some implementations, the nested connection latches can be designed to allow the co-packaged optical module 982 to be inserted in, or removed from, the co-packaged optical port 1000 when a fiber cable is connected to the co-packaged optical module 982.
The following describes rack unit thermal architectures for rackmount systems (e.g., 560 of
The rackmount systems and rackmount devices described in this document can include, and are not limited to, e.g., rackmount computer servers, rackmount network switches, rackmount controllers, and rackmount signal processors.
Referring to
For example, the data server 1300 can be a network switch server, and the at least one data processing chip 1044 can include at least one switch chip configured to process data having a total bandwidth of, e.g., about 51.2 Tbps. The at least one switch chip 1044 can be mounted on a substrate 1054 having dimensions of, e.g., about 100 mm×100 mm, and co-packaged optical modules 1056 can be mounted near the edges of the substrate 1054. The co-packaged optical modules 1056 convert input optical signals received from the optical interconnect cables 1036 to input electrical signals that are provided to the at least one switch chip 1044, and converts output electrical signals from the at least one switch chip 1044 to output optical signals that are provided to the optical interconnect cables 1036. When any of the co-packaged optical modules 1056 fails, the user needs to remove the network switch server 1030 from the server rack and open the housing 1142 in order to repair or replace the faulty co-packaged optical module 1056.
Referring to
In some implementations, the front panel 1064 includes a second printed circuit board 1068 that is oriented in a vertical direction, e.g., substantially perpendicular to the first circuit board 1066 and the bottom panel 1038. In the following, the second printed circuit board 1068 is referred to as the vertical printed circuit board 1068. The figures show that the second printed circuit board 1066 forms part of the front panel 1064, but in some examples the second printed circuit board 1066 can also be attached to the front panel 1064, in which the front panel 1064 includes openings to allow input/output connectors to pass through. The second printed circuit board 1066 includes a first side facing the front direction relative to the housing 1062 and a second side facing the rear direction relative to the housing 1062. At least one data processing chip 1070 is electrically coupled to the second side of the vertical printed circuit board 1068, and a heat dissipating device or heat sink 1072 is thermally coupled to the at least one data processing chip 1070. In some examples, the at least one data processing chip 1070 is mounted on a substrate (e.g., a ceramic substrate), and the substrate is attached to the printed circuit board 1068.
Co-packaged optical modules 1074 (also referred to as the optical/electrical communication interfaces) are attached to the first side (i.e., the side facing the front exterior of the housing 1062) of the vertical printed circuit board 1068 for connection to external fiber cables 1076. Each fiber cable 1076 can include an array of optical fibers. By placing the co-packaged optical modules 1074 on the exterior side of the front panel 1064, the user can conveniently service (e.g., repair or replace) the co-packaged optical modules 1074 when needed. Each co-packaged optical module 1074 is configured to convert input optical signals received from the external fiber cable 1076 into input electrical signals that are transmitted to the at least one data processing chip 1070 through signal lines in or on the vertical circuit board 1068. The co-packaged optical module 1074 also converts output electrical signals from the at least one data processing chip 1070 into output optical signals that are provided to the external fiber cables 1076. Warm air inside the housing 1062 is vented out of the housing 1062 through the exhaust fans 1050 mounted at the rear panel 1036.
For example, the at least one data processing chip 1070 can include a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, or an application specific integrated circuit (ASIC). The rackmount server can be, and not limited to, e.g., a rackmount computer server, a rackmount switch, a rackmount controller, a rackmount signal processor, a rackmount storage server, a rackmount multi-purpose processing unit, a rackmount graphics processor, a rackmount tensor processor, a rackmount neural network processor, or a rackmount artificial intelligence accelerator. For example, each co-packaged optical module 1074 can include a module similar to the integrated optical communication device 448, 462, 466, or 472 of
For example, the co-packaged optical module 1074 can include a first optical connector part (e.g., 456 of
In some examples, the fiber cable 1076 can include, e.g., 10 or more cores of optical fibers, and the first optical connector part is configured to couple 10 or more channels of optical signals to the photonic integrated circuit. In some examples, the fiber cable 1076 can include 100 or more cores of optical fibers, and the first optical connector part is configured to couple 100 or more channels of optical signals to the photonic integrated circuit. In some examples, the fiber cable 1076 can include 500 or more cores of optical fibers, and the first optical connector part is configured to couple 500 or more channels of optical signals to the photonic integrated circuit. In some examples, the fiber cable 1076 can include 1000 or more cores of optical fibers, and the first optical connector part is configured to couple 1000 or more channels of optical signals to the photonic integrated circuit.
In some implementations, the photonic integrated circuit can be configured to generate first serial electrical signals based on the received optical signals, in which each first serial electrical signal is generated based on one of the channels of first optical signals. Each co-packaged optical module 1074 can include a first serializers/deserializers module that includes serializer units and deserializer units, in which the first serializers/deserializers module is configured to generate sets of first parallel electrical signals based on the first serial electrical signals and condition the electrical signals, and each set of first parallel electrical signals is generated based on a corresponding first serial electrical signal. Each co-packaged optical module 1074 can include a second serializers/deserializers module that includes serializer units and deserializer units, in which the second serializers/deserializers module is configured to generate second serial electrical signals based on the sets of first parallel electrical signals, and each second serial electrical signal is generated based on a corresponding set of first parallel electrical signals.
In some examples, the rackmount server 1060 can include 4 or more co-packaged optical modules 1074 that are configured to be removably coupled to corresponding second optical connector parts that are attached to corresponding fiber cables 1076. For example, the rackmount server 1060 can include 16 or more co-packaged optical modules 1074 that are configured to be removably coupled to corresponding second optical connector parts that are attached to corresponding fiber cables 1076. In some examples, each fiber cable 1076 can include 10 or more cores of optical fibers. In some examples, each fiber cable 1076 can include 100 or more cores of optical fibers. In some examples, each fiber cable 1076 can include 500 or more cores of optical fibers. In some examples, each fiber cable 1076 can include 1000 or more cores of optical fibers. Each optical fiber can transmit one or more channels of optical signals. For example, the at least one data processing chip 1070 can include a network switch that is configured to receive data from an input port associated with a first one of the channels of optical signals, and forward the data to an output port associated with a second one of the channels of optical signals.
In some implementations, the co-packaged optical modules 1074 are removably coupled to the vertical printed circuit board 1068. For example, the co-packaged optical modules 1074 can be electrically coupled to the vertical printed circuit board 1068 using electrical contacts that include, e.g., spring-loaded elements, compression interposers, or land-grid arrays.
Referring to
The inlet fans do not necessarily have to be attached to the front panel, and can also be positioned at a distance front the front panel. The vertical printed circuit board 1068 can be positioned at a distance from the front panel, and the position of the inlet fans can be adjusted accordingly to maximize the efficiency for transferring heat away from the heat sink 1072.
In some implementations, a left air louver 1088a and a right air louver 1088b are installed in the housing 1082 to direct airflow toward the heat dissipating device 1072. The air louvers 1088a, 1088b (collectively referenced as 1088) partition the space in the housing 1082 and force air to flow from the inlet fans 1086a and 1086b, pass over surfaces of fins of the heat dissipating device 1072, and towards an opening 1090 between distal ends of the air louvers 1088. The directions of air flow near the inlet fans 1086a and 1086b are represented by arrows 1092a and 1092b. The air louvers 1088 increase the amount of air flows across the surfaces of the heat sink fins and enhance the efficiency of heat removal. The heat sink fins are oriented to extend along planes that are substantially parallel to the bottom surface 1038 of the housing 1082. For example, the air louvers 1088 can have a curved shape, e.g., an S-shape as shown in the figure. The curved shape of the air louvers 1088 can be configured to maximize the efficiency of the heat sink. In some examples, the air louvers 1088 can also have a linear shape.
For example, the heat sink can be a plate-fin heat sink, a pin-fin heat sink, or a plate-pin-fin heat sink. The pins can have a square or circular cross section. The heat sink configuration (e.g., pin pitch, length of pins or fins) and the louver configuration can be designed to optimize heat sink efficiency.
For example, the co-packaged optical modules 1074 can be electrically coupled to the vertical printed circuit board 1068 using electrical contacts that include, e.g., spring-loaded elements, compression interposers, or land-grid arrays. For example, when compression interposers are used, the vertical circuit board 1068 can be positioned such that the face of compression interposers of the co-packaged optical module 1074 is coplanar with the face plate 1064 and the inlet fans 1086.
Referring to
In some implementations heat removal efficiency can be improved by positioning the vertical circuit board 1068 and the heat dissipating device 1072 further toward the rear of the housing so that a larger amount of air flows across the surface of the fins of the heat dissipating device 1072.
Referring to
By providing the inset portion 1106 in the front panel 1104, the fins of the heat dissipating device 1072 can be more optimally positioned to be closer to the main air flow generated by the inlet fans 1086, while maintaining serviceability of the co-packaged optical modules 1074, e.g., allowing the user to repair or replace damaged co-packaged optical modules 1074 without opening the housing 1102. The heat sink configuration (e.g., pin pitch, length of pins or fins) and the louver configuration can be designed to optimize heat sink efficiency. In addition, the front panel inset distance d can be optimized to improve heat sink efficiency.
Referring to
Referring to
Each vertical printed circuit board 1126 has a first surface and a second surface. The first surface defines the length and width of the vertical printed circuit board 1126. The distance between the first and second surfaces defines the thickness of the vertical printed circuit board 1126. The vertical printed circuit board 1126a or 1126b is oriented such that the first surface extends along a plane that is substantially parallel to the front-to-rear direction relative to the housing 1122. At least one data processing chip 1128a or 1128b is electrically coupled to the first surface of the vertical printed circuit board 1126a or 1126b, respectively. In some examples, the at least one data processing chip 1128a or 1128b is mounted on a substrate (e.g., a ceramic substrate), and the substrate is attached to the printed circuit board 1126a or 1126b. A heat dissipating device 1130a or 1130b is thermally coupled to the at least one data processing chip 1128a or 1128b, respectively. The heat dissipating device 1130 includes fins that extend along planes that are substantially parallel to the bottom panel 1038 of the housing 1122. The heat sinks 1130a and 1130b are positioned directly behind to the inlet fans 1086a and 1086b, respectively, to maximize air flow across the fins and/or pins of the heat sinks 1130.
At least one co-packaged optical module 1132a or 1132b is mounted on the second side of the vertical printed circuit board 1126a or 1126b, respectively. The co-packaged optical modules 1132 are optically coupled, through optical interconnection links, to optical interfaces (not shown in the figure) mounted on the front panel 1124. The optical interfaces are optically coupled to external fiber cables. The orientations of the vertical printed circuit boards 1126 and the fins of the heat dissipating devices 1130 are selected to maximize heat removal.
Referring to
For example, the inset portion 1158 includes a first wall 1162, a second wall 1164, and a third wall 1166. The first wall 1162 is substantially parallel to the second wall 1164, and the third wall 1166 is positioned between the first wall 1162 and the second wall 1164. For example, the first wall 1162 extends along a direction that is substantially parallel to the front-to-rear direction relative to the housing 1122. The vertical printed circuit board 1152a is attached to the first wall 1162 of the inset portion 1158, and the vertical printed circuit board 1152b is attached to the first wall 1162 of the inset portion 1158. The first wall 1162 includes openings to allow the co-packaged optical modules 1160a to pass through, and the second wall 1164 includes openings to allow the co-packaged optical modules 1160b to pass through. For example, an inlet fan 1086c can be mounted on the third wall 1166.
Each vertical printed circuit board 1152 has a first surface and a second surface. The first surface defines the length and width of the vertical printed circuit board 1152. The distance between the first and second surfaces defines the thickness of the vertical printed circuit board 1152. The vertical printed circuit board 1152a or 1152b is oriented such that the first surface extends along a plane that is substantially parallel to the front-to-rear direction relative to the housing 1154. At least one data processing chip 1170a or 1170b is electrically coupled to the first surface of the vertical printed circuit board 1152a or 1152b, respectively. In some examples, the at least one data processing chip 1170a or 1170b is mounted on a substrate (e.g., a ceramic substrate), and the substrate is attached to the printed circuit board 1152a or 1152b. A heat dissipating device 1168a or 1168b is thermally coupled to the at least one data processing chip 1170a or 1170b, respectively. The heat dissipating device 1168 includes fins that extend along planes that are substantially parallel to the bottom panel 1038 of the housing 1154. The heat sinks 1168a and 1168b are positioned directly behind to the inlet fans 1086a and 1086b, respectively, to maximize air flow across the fins and/or pins of the heat sinks 1168a and 1168b.
Referring to
For example, a first vertical printed circuit board 1152a is attached to the first wall 1188, and a second vertical printed circuit board 1152b is attached to the second wall 1190. Comparing the rackmount server 1180 with the rackmount servers 1060 of
Positioning the first and second walls 1188, 1190 at an angle between 0 and 90° relative to the nominal plane of the front panel improves access and field serviceability of the co-packaged optical modules. Comparing the rackmount server 1180 with the rackmount server 1150 of
For examples, intake fans 1086a and 1086b can be mounted on the front panel 1184. Outside air is drawn in by the intake fans 1086a, 1086b, passes through the surfaces of the fins and/or pins of the heatsinks 1168a, 1168b, and flows towards the rear of the housing 1182. Examples of the flow directions for the air entering through the intake fans 1186a and 1186b are represented by arrows 1198a, 1198b, 1198c, and 1198d.
Referring to
For example, fiber cables connected to the co-packaged optical modules 1074 can block air flow for the intake fan 1086c if the intake fan 1086c is configured to receive air through openings directly in front of the intake fan 1086c. By using the upper air vent 1194a, the lower air vent 1194b, and the baffles to direct air flow as described above, the heat dissipating efficiency of the system can be improved (as compared to not having the air vents 1194 and the baffles).
Referring to
In some implementations, the examples of rackmount servers shown in in
Referring to
Co-packaged optical modules 1074 (also referred to as the optical/electrical communication interfaces) are attached to the first side (i.e., the side facing the front exterior of the housing 1222) of the vertical printed circuit board 1230. In some examples, the co-packaged optical modules 1074 are mounted on a substrate that is attached to the vertical printed circuit board 1230, in which electrical contacts on the substrate are electrically coupled to corresponding electrical contacts on the vertical printed circuit board 1230. In some examples, the at least one data processing chip 1070 is mounted on the rear side of the substrate, and the co-packaged optical modules 1074 are removably attached to the front side of the substrate, in which the substrate provides high speed connections between the at least one data processing chip 1070 and the co-packaged optical modules 1074. For example, the substrate can be attached to a front side of the printed circuit board 1068, in which the printed circuit board 1068 includes one or more openings that allow the at least one data processing chip 1070 to be mounted on the rear side of the substrate. The printed circuit board 1068 can provide from a motherboard electrical power to the substrate (and hence to the at least one data processing chip 1070 and the co-packaged optical modules 1074, and allow the at least one data processing chip 1070 and the co-packaged optical modules 1074 to connect to the motherboard using low-speed electrical links. An array of co-packaged optical modules 1074 can be mounted on the vertical printed circuit board 1230 (or the substrate), similar to the examples shown in
In some implementations, the rackmount server 1220 is pre-populated with co-packaged optical modules 1074, and the user does not need to access the co-packaged optical modules 1074 unless the modules need maintenance. During normal operation of the rackmount server 1220, the user mostly accesses the first fiber connector parts 1232 on the front panel 1224 to connect to fiber cables 1238.
One or more intake fans, e.g., 1086a, 1086b, can be mounted on the front panel 1224, similar to the examples shown in
The rackmount server 1220 can have a number of advantages. By placing the vertical printed circuit board 1230 at a recessed position inside the housing 1222, the vertical printed circuit board 1230 is better protected by the housing 1222, e.g., preventing users from accidentally bumping into the circuit board 1230. By orienting the vertical printed circuit board 1230 substantially parallel to the front panel 1224 and mounting the co-packaged optical modules 1074 on the side of the circuit board 1230 facing the front direction, the co-packaged optical modules 1074 can be accessible to users for maintenance without the need to remove the rackmount server 1220 from the rack.
In some implementations, the front panel 1224 is coupled to the bottom panel 1038 using a hinge 1228 and configured such that the front panel 1224 can be securely closed during normal operation of the rackmount server 1220 and easily opened for maintenance. For example, if a co-packaged optical module 1074 fails, a technician can open and rotate the front panel 1224 down to a horizontal position to gain access to the co-packaged optical module 1074 to repair or replace it. For example, the movements of the front panel 1224 is represented by the bi-directional arrow 1250. In some implementations, different fiber jumpers 1234 can have different lengths, depending on the distance between the parts that are connected by the fiber jumpers 1234. For example, the distance between the co-packaged optical module 1074 and the first fiber connector part 1232 connected by the fiber jumper 1234a is less than the distance between the co-packaged optical module 1074 and the first fiber connector part 1232 connected by the fiber jumper 1234b, so the fiber jumper 1234a can be shorter than the fiber jumper 1234b. This way, by using fiber jumpers with appropriate lengths, it is possible to reduce the clutter caused by the fiber jumpers 1234 inside the housing 1222 when the front panel 1224 is closed and in its vertical position.
In some implementations, the front panel 1224 can be configured to be opened and lifted upwards using lift-up hinges. This can be useful when the rackmount server is positioned near the top of the rack. In some examples, the front panel 1224 can be coupled to the side panel 1040 by using a hinge so that the front panel 1224 can be opened and rotated sideways. In some examples, the front panel can include a left front subpanel and a right front subpanel, in which the left front subpanel is coupled to the left side panel 1040 by using a first hinge, and the right front subpanel is coupled to the right panel 1040 by using a second hinge. The left front subpanel can be opened and rotated towards the left side, and the right front subpanel can be opened and rotated towards the right side. These various configurations for the front panel enable protection of the vertical printed circuit board 1230 and convenient access to the co-packaged optical modules 1074.
In some examples, the front panel can have an inset portion, similar to the example shown in
Referring to
For example, the first wall 1242a can be coupled to the bottom or top panel through hinges so that the first wall 1242a can be closed during normal operation of the rackmount server 1240 and opened for maintenance of the server 1240. The distance w2 between the first wall 1242a and the second wall 1242b is selected to be sufficiently large to enable the first wall 1242a and the second wall 1242b to be opened properly. This design has advantages similar to those of the rackmount server 1220 in
In some implementations, a rackmount server can be similar to the rackmount server 1180 shown in
A feature of the thermal architecture for the rackmount units (e.g., the rackmount servers 1060 of
In some implementations, for the examples shown in
In some implementations, for the examples shown in
In the examples shown in
Referring to
A heat dissipating module 1846, e.g., a heat sink, is thermally coupled to the data processor 1844 and configured to dissipate heat generated by the data processor 1828 during operation. The heat dissipating module 1846 can be similar to the heat dissipating device 1072 of
In some implementations, the active airflow management system includes an inlet fan 1848 that is positioned at a left side of the heat dissipating module 1846 and oriented to blow incoming air to the right toward the heat dissipating module 1846. A front opening 1850 provides incoming air for the inlet fan 1848. The front opening 1850 can be positioned to the left of the inlet fan 1848. In the example of
In some implementations, a baffle or an air louver 1852 (or internal panel or internal wall) is provided to guide the air entering the opening 1850 towards the inlet fan 1848. An arrow 1854 shows the general direction of airflow from the opening 1850 to the inlet fan 1848. In some examples, the air louver 1852 extends from the left side panel 1828 of the housing 1840 to a rear edge of the inlet fan 1848. The air louver 1852 can be straight or curved. In some examples, the air louver 1852 can be configured to guide the inlet air blown from the inlet fan 1848 towards the heat dissipating module 1846. For example, the air louver 1852 can extend from the left side panel 1828 to the left edge of the heat dissipating module 1846. For example, the air louver 1852 can extend from the left side panel 1828 to a position at or near the rear of the heat dissipating module 1846, in which the position can be anywhere from the left rear portion of the heat dissipating module 1846 to the right rear portion of the heat dissipating module 1846. The air louver 1852 can extend from the bottom panel 1841 to the top panel 1843 in the vertical direction. An arrow 1856 shows the general direction of air flow through and out of the heating dissipating module 1846.
For example, the air louver 1852, a front portion of the left side panel 1828, the front panel 1826, the circuit board 1822, a front portion of the bottom panel 1841, and a front portion of the top panel 1843 can form an air duct that guides the incoming cool air to flow across the heat dissipating surface of the heat dissipating module 1846. Depending on the design, the air duct can extend to the left edge of the heat dissipating module 1846, to a middle portion of the heat dissipating module 1846, or extend approximately the entire length (from left to right) of the heat dissipating module 1846.
The inlet fan 1848 and the air louver 1852 are designed to improve airflow across the heat dissipating surface of the heat dissipating module 1846 to optimize or maximize heat dissipation from the data processor 1844 through the heat dissipating module 1846 to the ambient air. Different rackmount servers can have vertically mounted circuit boards with different lengths, can have data processors with different heat dissipation requirements, and can have heat dissipating modules with different designs. For example, the heat sink fins and/or pins can have different configurations. The inlet fan 1848 and the air louver 1852 can also have any of various configurations in order to optimize or maximize the heat dissipation from the data processor 1844. In the example of
In some examples, orienting the inlet fan to face towards the side direction instead of the front direction (as in the examples shown in
The front panel 1826 includes openings or interface ports 1860 that allow the rackmount server 1820 to be coupled to optical fiber cables and/or electrical cables. In some implementations, co-packaged optical modules 1870 can be inserted into the interface ports 1860, in which the co-packaged optical modules 1870 function as optical/electrical communication interfaces for the data processor 1844. The co-packaged optical modules have been described earlier in this document.
In some implementations, the active airflow management system includes an inlet fan 1894 that is positioned at a left side of the heat dissipating module 1846 and oriented to blow inlet air to the right toward the heat dissipating module 1846. A front opening 1850 allows incoming air to pass to the inlet fan 1894. The front opening 1850 can be positioned to the left of the inlet fan 1894. For example, the inlet fan 1894 can have a rotational axis that is at an angle θ relative to the front panel 1826, in which θ≤45°. In some examples, θ≤25°. In some examples, θ≤5°. In some examples, the circuit board 1822 is substantially parallel to the front panel 1826, and the rotational axis of the inlet fan 1894 is substantially parallel to the circuit board 1822.
In some implementations, a first baffle or air louver 1892 is provided to guide air from the opening 1850 towards the inlet fan 1894, and from the inlet fan 1894 towards the heat dissipating module 1846. A second baffle or air louver 1908 is provided to guide air from the right portion of the heat dissipating module 1846 toward the rear of the rackmount server 1890. The first and second air louvers 1892, 1894 can extend from the bottom panel to the top panel in the vertical direction.
An arrow 1902 shows a general direction of airflow from the opening 1850 to the inlet fan 1894. An arrow 1904 shows a general direction of airflow from the inlet fan 1894 to, and through, a center portion the heat dissipating module 1846. An arrow 1906 shows a general direction of airflow through, and exiting, the right portion of the heat dissipating module 1846. The first air louver 1892, a front portion of the left panel, a front portion of the top panel, a front portion of the bottom panel, the front panel 1826, the circuit board 1822, and the second air louver 1908 in combination form a duct that channels the air to flow through the entire heat dissipating module 1846, or a substantial portion of the heat dissipating module 1846, thereby increasing the efficiency of heat dissipation from the data processor 1844.
In this example, the first air louver 1892 includes a left curved section 1896, a middle straight section 1898, and a right curved section 1900. The left curved section 1896 extends from the left side panel to the inlet fan 1894. The left curved section 1896 directs incoming air to turn from flowing in the front to rear direction to flowing in the left-to-right direction. The middle straight section 1898 is positioned to the rear of the heat dissipating module 1846 and extends from the inlet fan 1894 to beyond the center portion of the heat dissipating module 1846. The middle straight section 1898 directs the air to flow generally in a left-to-right direction through a substantial portion (e.g., more than half) of the heat dissipating module 1846. The right curved section 1900 and the second air louver 1908 in combination guide the air to turn from flowing in the left-to-right direction to flowing in a front to rear direction. The designs of the first and second air louvers 1892, 1908 are selected to optimize the heat dissipation efficiency. The heat dissipating module 1846 can have a design that is different from what is shown in the figure, and the first and second air louvers 1892, 1908 can also be modified accordingly.
In the example of
Rackmount devices are typically installed in a rack such that the bottom panel is parallel to the horizontal direction, and the front panel has a width and a height in which the width is much larger than the height. For example, the housing of a rackmount device that has a 2 rack unit form factor can have a width of about 482.6 mm (19 inches) and a height of about 88.9 mm (3.5 inches). In some implementations, the rackmount device can be oriented differently, e.g., the housing can be rotated 900 about an axis that is parallel to the front-to-rear direction such that the nominal top and bottom panels become parallel to the vertical direction, and the nominal side panels become parallel to the horizontal direction. In some implementations, the housing can be turned an arbitrary angle θ about an axis that is parallel to the front-to-rear direction such that the nominal bottom panel is at the angle θ relative to the horizontal direction. For rackmount devices that are oriented such that the nominal bottom panel is not parallel to the horizontal direction, the inlet fan(s), the air louvers, and the heat sinks are designed to take into account that hot air rises in the upward direction. The inlet fan(s) is/are positioned at a lower position or lower positions than the heat sink and blow(s) incoming cool air upwards towards the heat sink.
A first external photon supply 1286 provides optical power supply light to the first communication transponder 1282 through a first optical power supply link 1292, and a second external photon supply 1288 provides optical power supply light to the second communication transponder 1284 through a second optical power supply link 1294. In one example embodiment, the first external photon supply 1286 and the second external photon supply 1288 provide continuous wave laser light at the same optical wavelength. In another example embodiment, the first external photon supply 1286 and the second external photon supply 1288 provide continuous wave laser light at different optical wavelengths. In yet another example embodiment, the first external photon supply 1286 provides a first sequence of optical frame templates to the first communication transponder 1282, and the second external photon supply 1288 provides a second sequence of optical frame templates to the second communication transponder 1284. For example, as described in U.S. Pat. No. 11,153,670, each of the optical frame templates can include a respective frame header and a respective frame body, and the frame body includes a respective optical pulse train. The first communication transponder 1282 receives the first sequence of optical frame templates from the first external photon supply 1286, loads data into the respective frame bodies to convert the first sequence of optical frame templates into a first sequence of loaded optical frames that are transmitted through the first optical communication link 1290 to the second communication transponder 1284. Similarly, the second communication transponder 1284 receives the second sequence of optical frame templates from the second external photon supply 1288, loads data into the respective frame bodies to convert the second sequence of optical frame templates into a second sequence of loaded optical frames that are transmitted through the first optical communication link 1290 to the first communication transponder 1282.
In some implementations, each co-packaged optical module (e.g., 1312, 1316) includes a photonic integrated circuit configured to convert input optical signals to input electrical signals that are provided to a data processor, and convert output electrical signals from the data processor to output optical signals. The co-packaged optical module can include an electronic integrated circuit configured to process the input electrical signals from the photonic integrated circuit before the input electrical signals are transmitted to the data processor, and to process the output electrical signals from the data processor before the output electrical signals are transmitted to the photonic integrated circuit. In some implementations, the electronic integrated circuit can include a plurality of serializers/deserializers configured to process the input electrical signals from the photonic integrated circuit, and to process the output electrical signals transmitted to the photonic integrated circuit. The electronic integrated circuit can include a first serializers/deserializers module having multiple serializer units and deserializer units, in which the first serializers/deserializers module is configured to generate a plurality of sets of first parallel electrical signals based on a plurality of first serial electrical signals provided by the photonic integrated circuit, and condition the electrical signals, in which each set of first parallel electrical signals is generated based on a corresponding first serial electrical signal. The electronic integrated circuit can include a second serializers/deserializers module having multiple serializer units and deserializer units, in which the second serializers/deserializers module is configured to generate a plurality of second serial electrical signals based on the plurality of sets of first parallel electrical signals, and each second serial electrical signal is generated based on a corresponding set of first parallel electrical signals. The plurality of second serial electrical signals can be transmitted toward the data processor.
The first switch box 1302 includes an external optical power supply 1322 (i.e., external to the co-packaged optical module) that provides optical power supply light through an optical connector array 1324. In this example, the optical power supply 1322 is located internal of the housing of the switch box 1302. Optical fibers 1326 are optically coupled to an optical connector 1328 (of the optical connector array 1324) and the co-packaged optical module 1312. The optical power supply 1322 sends optical power supply light through the optical connector 1328 and the optical fibers 1326 to the co-packaged optical module 1312. For example, the co-packaged optical module 1312 includes a photonic integrated circuit that modulates the power supply light based on data provided by a data processor to generate a modulated optical signal, and transmits the modulated optical signal to the co-packaged optical module 1316 through one of the optical fibers in the fiber bundle 1318.
In some examples, the optical power supply 1322 is configured to provide optical power supply light to the co-packaged optical module 1312 through multiple links that have built-in redundancy in case of malfunction in some of the optical power supply modules. For example, the co-packaged optical module 1312 can be designed to receive N channels of optical power supply light (e.g., N1 continuous wave light signals at the same or at different optical wavelengths, or N1 sequences of optical frame templates), N1 being a positive integer, from the optical power supply 1322. The optical power supply 1322 provides N1+M1 channels of optical power supply light to the co-packaged optical module 1312, in which M1 channels of optical power supply light are used for backup in case of failure of one or more of the N1 channels of optical power supply light, M1 being a positive integer.
The second switch box 1304 receives optical power supply light from a co-located optical power supply 1330, which is, e.g., external to the second switch box 1304 and located near the second switch box 1304, e.g., in the same rack as the second switch box 1304 in a data center. The optical power supply 1330 includes an array of optical connectors 1332. Optical fibers 1334 are optically coupled to an optical connector 1336 (of the optical connectors 1332) and the co-packaged optical module 1316. The optical power supply 1330 sends optical power supply light through the optical connector 1336 and the optical fibers 1334 to the co-packaged optical module 1316. For example, the co-packaged optical module 1316 includes a photonic integrated circuit that modulates the power supply light based on data provided by a data processor to generate a modulated optical signal, and transmits the modulated optical signal to the co-packaged optical module 1312 through one of the optical fibers in the fiber bundle 1318.
In some examples, the optical power supply 1330 is configured to provide optical power supply light to the co-packaged optical module 1316 through multiple links that have built-in redundancy in case of malfunction in some of the optical power supply modules. For example, the co-packaged optical module 1316 can be designed to receive N2 channels of optical power supply light (e.g., N2 continuous wave light signals at the same or at different optical wavelengths, or N2 sequences of optical frame templates), N2 being a positive integer, from the optical power supply 1322. The optical power supply 1322 provides N2+M2 channels of optical power supply light to the co-packaged optical module 1312, in which M2 channels of optical power supply light are used for backup in case of failure of one or more of the N2 channels of optical power supply light, M2 being a positive integer.
The optical cable assembly 1340 includes a first optical fiber connector 1342, a second optical fiber connector 1344, a third optical fiber connector 1346, and a fourth optical fiber connector 1348. The first optical fiber connector 1342 is designed and configured to be optically coupled to the first co-packaged optical module 1312. For example, the first optical fiber connector 1342 can be configured to mate with a connector part of the first co-packaged optical module 1312, or a connector part that is optically coupled to the first co-packaged optical module 1312. The first, second, third, and fourth optical fiber connectors 1342, 1344, 1346, 1348 can comply with an industry standard that defines the specifications for optical fiber interconnection cables that transmit data and control signals, and optical power supply light.
The first optical fiber connector 1342 includes optical power supply (PS) fiber ports, transmitter (TX) fiber ports, and receiver (RX) fiber ports. The optical power supply fiber ports provide optical power supply light to the co-packaged optical module 1312. The transmitter fiber ports allow the co-packaged optical module 1312 to transmit output optical signals (e.g., data and/or control signals), and the receiver fiber ports allow the co-packaged optical module 1312 to receive input optical signals (e.g., data and/or control signals). Examples of the arrangement of the optical power supply fiber ports, the transmitter ports, and the receiver ports in the first optical fiber connector 1342 are shown in
The second optical fiber connector 1344 is designed and configured to be optically coupled to the second co-packaged optical module 1316. The second optical fiber connector 1344 includes optical power supply fiber ports, transmitter fiber ports, and receiver fiber ports. The optical power supply fiber ports provide optical power supply light to the co-packaged optical module 1316. The transmitter fiber ports allow the co-packaged optical module 1316 to transmit output optical signals, and the receiver fiber ports allow the co-packaged optical module 1316 to receive input optical signals. Examples of the arrangement of the optical power supply fiber ports, the transmitter ports, and the receiver ports in the second optical fiber connector 1344 are shown in
The third optical connector 1346 is designed and configured to be optically coupled to the power supply 1322. The third optical connector 1346 includes optical power supply fiber ports (e.g., 1757) through which the power supply 1322 can output the optical power supply light. The fourth optical connector 1348 is designed and configured to be optically coupled to the power supply 1330. The fourth optical connector 1348 includes optical power supply fiber ports (e.g., 1762) through which the power supply 1322 can output the optical power supply light.
In some implementations, the optical power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports in the first and second optical fiber connectors 1342, 1344 are designed to be independent of the communication devices, i.e., the first optical fiber connector 1342 can be optically coupled to the second switch box 1304, and the second optical fiber connector 1344 can be optically coupled to the first switch box 1302 without any re-mapping of the fiber ports. Similarly, the optical power supply fiber ports in the third and fourth optical fiber connectors 1346, 1348 are designed to be independent of the optical power supplies, i.e., if the first optical fiber connector 1342 is optically coupled to the second switch box 1304, the third optical fiber connector 1346 can be optically coupled to the second optical power supply 1330. If the second optical fiber connector 1344 is optically coupled to the first switch box 1302, the fourth optical fiber connector 1348 can be optically coupled to the first optical power supply 1322.
The optical cable assembly 1340 includes a first optical fiber guide module 1350 and a second optical fiber guide module 1352. The optical fiber guide module depending on context is also referred to as an optical fiber coupler or splitter because the optical fiber guide module combines multiple bundles of fibers into one bundle of fibers, or separates one bundle of fibers into multiple bundles of fibers. The first optical fiber guide module 1350 includes a first port 1354, a second port 1356, and a third port 1358. The second optical fiber guide module 1352 includes a first port 1360, a second port 1362, and a third port 1364. The fiber bundle 1318 extends from the first optical fiber connector 1342 to the second optical fiber connector 1344 through the first port 1354 and the second port 1356 of the first optical fiber guide module 1350 and the second port 1362 and the first port 1360 of the second optical fiber guide module 1352. The optical fibers 1326 extend from the third optical fiber connector 1346 to the first optical fiber connector 1342 through the third port 1358 and the first port 1354 of the first optical fiber guide module 1350. The optical fibers 1334 extend from the fourth optical fiber connector 1348 to the second optical fiber connector 1344 through the third port 1364 and the first port 1360 of the second optical fiber guide module 1352.
A portion (or section) of the optical fibers 1318 and a portion of the optical fibers 1326 extend from the first port 1354 of the first optical fiber guide module 1350 to the first optical fiber connector 1342. A portion of the optical fibers 1318 extend from the second port 1356 of the first optical fiber guide module 1350 to the second port 1362 of the second optical fiber guide module 1352, with optional optical connectors (e.g., 1320) along the paths of the optical fibers 1318. A portion of the optical fibers 1326 extend from the third port 1358 of the first optical fiber connector 1350 to the third optical fiber connector 1346. A portion of the optical fibers 1334 extend from the third port 1364 of the second optical fiber connector 1352 to the fourth optical fiber connector 1348.
The first optical fiber guide module 1350 is designed to restrict bending of the optical fibers such that the bending radius of any optical fiber in the first optical fiber guide module 1350 is greater than the minimum bending radius specified by the optical fiber manufacturer to avoid excess optical light loss or damage to the optical fiber. For example, the minimum bend radii can be 2 cm, 1 cm, 5 mm, or 2.5 mm. Other bend radii are also possible. For example, the fibers 1318 and the fibers 1326 extend outward from the first port 1354 along a first direction, the fibers 1318 extend outward from the second port 1356 along a second direction, and the fibers 1326 extend outward from the third port 1358 along a third direction. A first angle is between the first and second directions, a second angle is between the first and third directions, and a third angle is between the second and third directions. The first optical fiber guide module 1350 can be designed to limit the bending of optical fibers so that each of the first, second, and third angles is in a range from, e.g., 30° to 180°.
For example, the portion of the optical fibers 1318 and the portion of the optical fibers 1326 between the first optical fiber connector 1342 and the first port 1354 of the first optical fiber guide module 1350 can be surrounded and protected by a first common sheath 1366. The optical fibers 1318 between the second port 1356 of the first optical fiber guide module 1350 and the second port 1362 of the second optical fiber guide module 1352 can be surrounded and protected by a second common sheath 1368. The portion of the optical fibers 1318 and the portion of the optical fibers 1334 between the second optical fiber connector 1344 and the first port 1360 of the second optical fiber guide module 1352 can be surrounded and protected by a third common sheath 1369. The optical fibers 1326 between the third optical fiber connector 1346 and the third port 1358 of the first optical fiber guide module 1350 can be surrounded and protected by a fourth common sheath 1367. The optical fibers 1334 between the fourth optical fiber connector 1348 and the third port 1364 of the second optical fiber guide module 1352 can be surrounded and protected by a fifth common sheath 1370. Each of the common sheaths can be laterally flexible and/or laterally stretchable, as described in, e.g., U.S. patent application Ser. No. 16/822,103.
One or more optical cable assemblies 1340 (
One or more optical cable assemblies 1340 and other optical cable assemblies (e.g., 1400 of
An external photon supply 1382 provides optical power supply light to the first communication transponder 1282 through a first optical power supply link 1384, and provides optical power supply light to the second communication transponder 1284 through a second optical power supply link 1386. In one example, the external photon supply 1382 provides continuous wave light to the first communication transponder 1282 and to the second communication transponder 1284. In one example, the continuous wave light can be at the same optical wavelength. In another example, the continuous wave light can be at different optical wavelengths. In yet another example, the external photon supply 1382 provides a first sequence of optical frame templates to the first communication transponder 1282, and provides a second sequence of optical frame templates to the second communication transponder 1284. Each of the optical frame templates can include a respective frame header and a respective frame body, and the frame body includes a respective optical pulse train. The first communication transponder 1282 receives the first sequence of optical frame templates from the external photon supply 1382, loads data into the respective frame bodies to convert the first sequence of optical frame templates into a first sequence of loaded optical frames that are transmitted through the first optical communication link 1290 to the second communication transponder 1284. Similarly, the second communication transponder 1284 receives the second sequence of optical frame templates from the external photon supply 1382, loads data into the respective frame bodies to convert the second sequence of optical frame templates into a second sequence of loaded optical frames that are transmitted through the first optical communication link 1290 to the first communication transponder 1282.
As discussed above in connection with
In an example embodiment, the first switch box 1302 includes an external optical power supply 1322 that provides optical power supply light to both the co-packaged optical module 1312 in the first switch box 1302 and the co-packaged optical module 1316 in the second switch box 1304. In another example embodiment, the optical power supply can be located outside the switch box 1302 (cf. 1330,
The optical cable assembly 1400 includes a first optical fiber connector 1402, a second optical fiber connector 1404, and a third optical fiber connector 1406. The first optical fiber connector 1402 is similar to the first optical fiber connector 1342 of
In some examples, optical connector array 1324 of the optical power supply 1322 can include a first type of optical connectors that accept optical fiber connectors having 4 optical power supply fiber ports, as in the example of
The port mappings of the optical fiber connectors shown in
The optical cable assembly 1400 includes an optical fiber guide module 1408, which includes a first port 1410, a second port 1412, and a third port 1414. The optical fiber guide module 1408 depending on context is also referred as an optical fiber coupler (for combining multiple bundles of optical fibers into one bundle of optical fiber) or an optical fiber splitter (for separating a bundle of optical fibers into multiple bundles of optical fibers). The fiber bundle 1318 extends from the first optical fiber connector 1402 to the second optical fiber connector 1404 through the first port 1410 and the second port 1412 of the optical fiber guide module 1408. The optical fibers 1392 extend from the third optical fiber connector 1406 to the first optical fiber connector 1402 through the third port 1414 and the first port 1410 of the optical fiber guide module 1408. The optical fibers 1394 extend from the third optical fiber connector 1406 to the second optical fiber connector 1404 through the third port 1414 and the second port 1412 of the optical fiber guide module 1408.
A portion of the optical fibers 1318 and a portion of the optical fibers 1392 extend from the first port 1410 of the optical fiber guide module 1408 to the first optical fiber connector 1402. A portion of the optical fibers 1318 and a portion of the optical fibers 1394 extend from the second port 1412 of the optical fiber guide module 1408 to the second optical fiber connector 1404. A portion of the optical fibers 1394 extend from the third port 1414 of the optical fiber connector 1408 to the third optical fiber connector 1406.
The optical fiber guide module 1408 is designed to restrict bending of the optical fibers such that the radius of curvature of any optical fiber in the optical fiber guide module 1408 is greater than the minimum radius of curvature specified by the optical fiber manufacturer to avoid excess optical light loss or damage to the optical fiber. For example, the optical fibers 1318 and the optical fibers 1392 extend outward from the first port 1410 along a first direction, the optical fibers 1318 and the optical fibers 1394 extend outward from the second port 1412 along a second direction, and the optical fibers 1392 and the optical fibers 1394 extend outward from the third port 1414 along a third direction. A first angle is between the first and second directions, a second angle is between the first and third directions, and a third angle is between the second and third directions. The optical fiber guide module 1408 is designed to limit the bending of optical fibers so that each of the first, second, and third angles is in a range from, e.g., 30° to 180°.
For example, the portion of the optical fibers 1318 and the portion of the optical fibers 1392 between the first optical fiber connector 1402 and the first port 1410 of the optical fiber guide module 1408 can be surrounded and protected by a first common sheath 1416. The optical fibers 1318 and the optical fibers 1394 between the second optical fiber connector 1404 and the second port 1412 of the optical fiber guide module 1408 can be surrounded and protected by a second common sheath 1418. The optical fibers 1392 and the optical fibers 1394 between the third optical fiber connector 1406 and the third port 1414 of the optical fiber guide module 1408 can be surrounded and protected by a third common sheath 1420. Each of the common sheaths can be laterally flexible and/or laterally stretchable.
An external photon supply 1446 provides optical power supply light to the first communication transponder 1432 through a first optical power supply link 1448, provides optical power supply light to the second communication transponder 1434 through a second optical power supply link 1450, provides optical power supply light to the third communication transponder 1436 through a third optical power supply link 1452, and provides optical power supply light to the fourth communication transponder 1438 through a fourth optical power supply link 1454.
In one example embodiment, the first switch box 1462 includes an external optical power supply 1322 that provides optical power supply light through an optical connector array 1324. In another example embodiment, the optical power supply can be located external to switch box 1462 (cf. 1330,
Optical fibers that are optically coupled to the optical fiber connectors 1500 and 1492 enable the optical power supply 1322 to provide the optical power supply light to the co-packaged optical module 1312. Optical fibers that are optically coupled to the optical fiber connectors 1500 and 1494 enable the optical power supply 1322 to provide the optical power supply light to the co-packaged optical module 1472. Optical fibers that are optically coupled to the optical fiber connectors 1500 and 1496 enable the optical power supply 1322 to provide the optical power supply light to the co-packaged optical module 1474. Optical fibers that are optically coupled to the optical fiber connectors 1500 and 1498 enable the optical power supply 1322 to provide the optical power supply light to the co-packaged optical module 1476.
Optical fiber guide modules 1502, 1504, 1506, and common sheaths are provided to organize the optical fibers so that they can be easily deployed and managed. The optical fiber guide module 1502 is similar to the optical fiber guide module 1408 of
The optical fibers 1480 that extend from the include optical fibers that extend from the optical 1482 are surrounded and protected by a common sheath 1508. At the optical fiber guide module 1502, the optical fibers 1480 separate into a first group of optical fibers 1510 and a second group of optical fibers 1512. The first group of optical fibers 1510 extend to the first optical fiber connector 1492. The second group of optical fibers 1512 extend toward the optical fiber guide modules 1504, 1506, which together function as a 1:3 splitter that separates the optical fibers 1512 into a third group of optical fibers 1514, a fourth group of optical fibers 1516, and a fifth group of optical fibers 1518. The group of optical fibers 1514 extend to the optical fiber connector 1494, the group of optical fibers 1516 extend to the optical fiber connector 1496, and the group of optical fibers 1518 extend to the optical fiber connector 1498. In some examples, instead of using two 1:2 split optical fiber guide modules 1504, 1506, it is also possible to use a 1:3 split optical fiber guide module that has four ports, e.g., one input port and three output ports. In general, separating the optical fibers in a 1:N split (N being an integer greater than 2) can occur in one step or multiple steps.
Referring to
Optical fibers connect the servers 1552 to the tier-1 switches 1556 and the optical power supply 1558. In this example, a bundle 1562 of 9 optical fibers is optically coupled to a co-packaged optical module 1564 of a server 1552, in which 1 optical fiber provides the optical power supply light, and 4 pairs of (a total of 8) optical fibers provide 4 bi-directional communication channels, each channel having a 100 Gbps bandwidth, for a total of 4×100 Gbps bandwidth in each direction. Because there are 32 servers 1552 in each rack 1554, there are a total of 256+32=288 optical fibers that extend from each rack 1554 of servers 1552, in which 32 optical fibers provide the optical power supply light, and 256 optical fibers provide 128 bi-directional communication channels, each channel having a 100 Gbps bandwidth.
For example, at the server rack side, optical fibers 1566 (that are connected to the servers 1552 of a rack 1554) terminate at a server rack connector 1568. At the switch rack side, optical fibers 1578 (that are connected to the switch boxes 1556 and the optical power supply 1558) terminate at a switch rack connector 1576. An optical fiber extension cable 1572 is optically coupled to the server rack side and the switch rack side. The optical fiber extension cable 1572 includes 256+32=288 optical fibers. The optical fiber extension cable 1572 includes a first optical fiber connector 1570 and a second optical fiber connector 1574. The first optical fiber connector 1570 is connected to the server rack connector 1568, and the second optical fiber connector 1574 is connected to the switch rack connector 1576. At the switch rack side, the optical fibers 1578 include 288 optical fibers, of which 32 optical fibers 1580 are optically coupled to the optical power supply 1558. The 256 optical fibers that carry 128 bi-directional communication channels (each channel having a 100 Gbps bandwidth in each direction) are separated into four groups of 64 optical fibers, in which each group of 64 optical fibers is optically coupled to a co-packaged optical module 1582 in one of the switch boxes 1556. The co-packaged optical module 1582 is configured to have a bandwidth of 32×100 Gbps=3.2 Tbps in each direction (input and output). Each switch box 1556 is connected to each server 1552 of the rack 1554 through a pair of optical fibers that carry a bandwidth of 100 Gbps in each direction.
The optical power supply 1558 provides optical power supply light to co-packaged optical modules 1582 at the switch boxes 1556. In this example, the optical power supply 1558 provides optical power supply light through 4 optical fibers to each co-packaged optical module 1582, so that a bundle 1581 having a total of 16 optical fibers is used to provide the optical power supply light to the 4 switch boxes 1556. A bundle of optical fibers 1584 is optically coupled to the co-packaged optical module 1582 of the switch box 1556. The bundle of optical fibers 1584 includes 64+16=80 fibers. In some examples, the optical power supply 1558 can provide additional optical power supply light to the co-packaged optical module 1582 using additional optical fibers. For example, the optical power supply 1558 can provide optical power supply light to the co-packaged optical module 1582 using 32 optical fibers with built-in redundancy.
In some implementations, the server rack on which the servers 1552 are mounted is provided with a server rack connector 1568 attached to the server rack chassis, and an optical fiber cable system that includes the optical fibers 1566 optically connected to the server rack connector 1568, in which the optical fibers 1566 divides into separate bundles 1562 of optical fibers that are optically connected to the servers 1552.
Similarly, the server rack on which the switch boxes 1556 are mounted is provided with switch rack connectors 1576 attached to the switch rack chassis, and corresponding optical fiber cable systems that each includes the optical fibers 1578 optically connected to the corresponding switch rack connector 1576, in which the optical fibers 1578 divides into separate bundles of optical fibers that are optically connected to the switch boxes 1556 and the optical power supply 1558. For example, a switch rack that is configured to connect up to 32 racks of servers 1552 can include 32 built-in switch rack connectors 1576, and 32 corresponding optical fiber cable systems that are optically connected to 32 co-packaged optical modules in each of the switch boxes 1556, and 32 laser sources in the optical power supply 1556.
When an operator sets up a first rack of servers 1552, the operator connects the bundles 1562 of optical fibers (that is provided with the first server rack) to the servers 1552 in the first rack, connects the optical fiber connector 1570 of a first optical fiber extension cable 1572 to the server rack connector 1568 at the first server rack, and connects the optical fiber connector 1574 of the first optical fiber extension cable 1572 to a first one of the switch rack connectors 1578 at the switch rack. When the operator sets up a second rack of servers 1552, the operator connects the bundles 1562 of optical fibers (that is provided with the second server rack) to the servers 1552 in the second rack, connects the optical fiber connector 1570 of a second optical fiber extension cable 1572 to the server rack connector 1568 at the second server rack, and connects the optical fiber connector 1574 of the second optical fiber extension cable 1572 to a second one of the switch rack connectors 1578, and so forth.
In some implementations, the optical power supply 1558 can be any optical power supply described above, and the power supply light can include any control signals and/or optical frame templates described above.
Referring to
The following figures show enlarged portions of
Referring to
Referring to
The 8 data optical fibers of the second bundle 13612 (optically connected to the second server 1552) are optically connected to the 4 switch boxes 1556 in a similar manner, in which a first pair of data optical fibers are optically connected to a second co-packaged optical module of the first switch box 1556, a second pair of data optical fibers are optically connected to a second co-packaged optical module of the second switch box 1556, a third pair of data optical fibers are optically connected to a second co-packaged optical module of the third switch box 1556, and a fourth pair of data optical fibers are optically connected to a second co-packaged optical module of the fourth switch box 1556, and so forth.
For example, each co-packaged optical module 13624 in the switch box 1556 is optically connected to a total of 64 data optical fibers from the 32 servers 1552. Each co-packaged optical module 13624 is optically connected to a pair of data optical fibers from each server 1552, allowing the co-packaged optical module 13624 to be in optical communication with every one of the 32 servers 1552 in a server rack. For example, each switch box 1556 can include 32 co-packaged optical modules 13624, in which each co-packaged optical module 13624 is in optical communication with 32 servers in a server rack, and different co-packaged optical modules 13624 are in optical communication with the servers in different server racks. This way, each server 1552 is in optical communication with each of the 4 switch boxes 1556, and each switch box 1556 is in optical communication with every server 1552 in every server rack.
Each co-packaged optical module 13624 in the switch box 1556 is also optically connected to 4 power supply optical fibers 13616 (see
In some implementations, the first segment 13702 includes an optical fiber connector 13712 that is optically coupled to an optical fiber connector 13714 of the third segment 13706. The first segment 13702 includes 32 optical fiber connectors 13708 that are optically coupled to 32 servers 1552. The optical fiber connector 13712 includes 32 power supply fiber ports, 128 transmitter fiber ports, and 128 receiver fiber ports, and each optical fiber connector 13708 includes 1 power supply fiber port, 4 transmitter fiber ports, and 4 receiver fiber ports. The second segment 13704 includes an optical fiber connector 13718 that is optically coupled to an optical fiber connector 13720 of the third segment 13706.
In some implementations, the second segment 13704 includes 4 optical fiber connectors 13710 that are optically coupled to 4 switch boxes 1556 and 1 optical fiber connector 13722 that is optically coupled to the optical power supply 1558. The optical fiber connector 13720 includes 32 power supply fiber ports, 128 transmitter fiber ports, and 128 receiver fiber ports. The optical fiber connector 13722 includes 48 power supply fiber ports. Each optical fiber connector 13710 includes 4 power supply fiber ports, 32 transmitter fiber ports, and 32 receiver fiber ports.
The number of power supply fiber ports, transmitter fiber ports, and receiver fiber ports described above are used as examples only, it is possible to have different numbers of power supply fiber ports, transmitter fiber ports, and receiver fiber ports depending on application. It is also possible to have different numbers of optical fiber connectors 13708, 13710, and 13722 depending on application.
For example, when a data center is set up to include a first rack of servers 1552 and a rack of switch boxes 1556 and optical power supply 1558, the optical fiber cable 13700 can be used to optically connect the servers 1552 in the first rack to the switch boxes 1556 and the optical power supply 1558. When a second rack of servers 1552 is set up in the data center, another optical fiber cable 13700 can be used to optically connect the servers 1552 in the second rack to the switch boxes 1556 and the optical power supply 1558, and so forth.
Referring to
In this example, the data processing system 13800 includes N=1024 servers 13802 spread across K=32 racks 13804, in which each rack 13804 includes N/K=1024/32=32 servers 13802. There are 4 tier-1 switches 13806 and an optical power supply 13808 that is co-located in a rack 13810.
Optical fibers connect the servers 13802 to the tier-1 switches 13806 and the optical power supply 13808. In this example, a bundle 13812 of 3 optical fibers is optically coupled to a co-packaged optical module 113814 of a server 13802, in which 1 optical fiber provides the optical power supply light, and 1 pair of optical fibers provide 4 bi-directional communication channels by using 4 different wavelengths per fiber, each channel having a 100 Gbps bandwidth, for a total of 4×100 Gbps bandwidth in each direction. Because there are 32 servers 13802 in each rack 13804, there are a total of 64+32=96 optical fibers that extend from each rack 13804 of servers 13802, in which 32 optical fibers provide the optical power supply light, and 64 optical fibers provide 128 bi-directional communication channels using 4 different wavelengths, each channel having a 100 Gbps bandwidth.
For example, at the server rack side, optical fibers 13816 (that are connected to the servers 153802 of a rack 13804) terminate at a server rack connector 13818. At the switch rack side, optical fibers 13820 (that are connected to the switch boxes 13806 and the optical power supply 13808) terminate at a switch rack WDM translator 13822. The switch rack WDM translator 13822 includes 4×4 wavelength/space shuffle matrices. A 4×4 wavelength/space shuffle matrix shuffles the WDM signals between 4 servers and 4 switch boxes 13806 so that (i) 4 signals having 4 different wavelengths from a sever 13802 are sent to 4 switch boxes 13806, (ii) 4 single-wavelength signals from 4 different servers 13802 are sent to a single switch box 13806, (iii) 4 signals having 4 different wavelengths from a switch box 13806 are sent to 4 different servers 13802, and (iv) 4 single-wavelength signals from 4 different switch boxes 13806 are sent to a single server 13802. The switch rack WDM translator 13822 is described in more detail below.
An optical fiber extension cable 13824 is optically coupled to the server rack side and the switch rack side. The optical fiber extension cable 13824 includes 64+32=96 optical fibers. The optical fiber extension cable 13824 includes a first optical fiber connector 13826 and a second optical fiber connector 13828. The first optical fiber connector 13826 is connected to the server rack connector 13818, and the second optical fiber connector 13828 is connected to the switch rack WDM translator 13822. At the switch rack side, the optical fibers 13820 include 72 optical fibers, of which 8 optical fibers 13832 are optically coupled to the optical power supply 13808. The 64 optical fibers that carry 128 bi-directional communication channels (each channel having a 100 Gbps bandwidth in each direction) are separated into four groups of 16 optical fibers, in which each group of 16 optical fibers is optically coupled to a co-packaged optical module 13834 in one of the switch boxes 13806. The co-packaged optical module 13834 is configured to have a bandwidth of 32×100 Gbps=3.2 Tbps in each direction (input and output). Each switch box 13806 is connected to each server 13802 of the rack 13804 through a pair of optical fibers that carry a bandwidth of 100 Gbps in each direction. In this example, each switch box 13806 is capable of switching data from the 32 servers 13802, and each switch box 13806 has a 32×32×100 Gbps=102 Tbps bandwidth.
The optical power supply 13810 provides optical power supply light to co-packaged optical modules 13834 at the switch boxes 13806. In this example, the optical power supply 13808 provides optical power supply light through 2 optical fibers to each co-packaged optical module 13834, so that a total of 8 optical fibers are used to provide the optical power supply light to the 4 switch boxes 13834. A bundle of optical fibers 13836 is optically coupled to the co-packaged optical module 13834 of the switch box 13806. The bundle of optical fibers 13836 includes 16+2=18 fibers. In some examples, the optical power supply 13808 can provide additional optical power supply light to the co-packaged optical module 13834 using additional optical fibers. For example, the optical power supply 13808 can provide optical power supply light to the co-packaged optical module 13834 using 4 optical fibers with built-in redundancy.
An optical fiber guide module, similar to the module 1590 in
In some implementations, the server rack on which the servers 13802 are mounted is provided with a server rack connector 13818 attached to the server rack chassis, and an optical fiber cable system that includes the optical fibers 13816 optically connected to the server rack connector 13818, in which the optical fibers 13816 divide into separate bundles 13812 of optical fibers that are optically connected to the servers 13802.
In some implementations, the server rack on which the switch boxes 13806 are mounted is provided with switch rack WDM translators 13822 attached to the switch rack chassis, and corresponding optical fiber cable systems that each includes the optical fibers 13820 optically connected to the corresponding switch rack WDM translator 13822, in which the optical fibers 13820 divide into separate bundles of optical fibers that are optically connected to the switch boxes 13806 and the optical power supply 13808. For example, a switch rack that is configured to connect up to 32 racks of servers 13802 can include 32 built-in switch rack WDM translators 13822, and 32 corresponding optical fiber cable systems that are optically connected to 32 co-packaged optical modules in each of the switch boxes 13806, and 32 laser sources in the optical power supply 13808.
When an operator sets up a first rack of servers 13802, the operator connects the bundles 13812 of optical fibers (that is provided with the first server rack) to the servers 13802 in the first rack, connects the optical fiber connector 13826 of a first optical fiber extension cable 13824 to the server rack connector 13826 at the first server rack, and connects the optical fiber connector 13828 of the first optical fiber extension cable 13824 to a first one of the switch rack WDM translators 13822 at the switch rack. When the operator sets up a second rack of servers 13802, the operator connects the bundles 13812 of optical fibers (that is provided with the second server rack) to the servers 13802 in the second rack, connects the optical fiber connector 13826 of a second optical fiber extension cable 13824 to the server rack connector 13818 at the second server rack, and connects the optical fiber connector 13828 of the second optical fiber extension cable 13824 to a second one of the switch rack WDM translators 13822, and so forth.
In some implementations, the optical power supply 13808 can be any optical power supply described above, and the power supply light can include any control signals and/or optical frame templates described above.
In this example, the switch rack WDM translator 13822 includes eight 4×4 wavelength/space shuffle matrices 13970 to process the WDM signals from and to the 32 servers 13802. A first 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers 13972a, 13972b, 13972c, 13972d (collectively referenced as 13972) that process the WDM signals from and to servers 1 to 4. A second 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers that process the WDM signals from and to servers 5 to 8. A third 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers that process the WDM signals from and to servers 9 to 12, and so forth. The first 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers 13974a, 13974b, 13974c, 13974d (collectively referenced as 13974) that process the WDM signals from and to switches 1 to 4. The second 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers that process the WDM signals from and to switches 5 to 8. The third 4×4 wavelength/space shuffle matrix 13970 includes 4 multiplexer/demultiplexers that process the WDM signals from and to switches 9 to 12, and so forth.
In the first 4×4 wavelength/space shuffle matrix 13970, the multiplexer/demultiplexer 13972a receives WDM signals from server 1 through optical fiber 13976a1, and sends WDM signals to server 1 through optical fiber 13976a2. The multiplexer/demultiplexer 13972b receives WDM signals from server 2 through optical fiber 13976b1, and sends WDM signals to server 2 through optical fiber 13976b2. The multiplexer/demultiplexer 13972c receives WDM signals from server 3 through optical fiber 13976c1, and sends WDM signals to server 3 through optical fiber 13976c2. The multiplexer/demultiplexer 13972d receives WDM signals from server 4 through optical fiber 13976d1, and sends WDM signals to server 4 through optical fiber 13976d2.
The multiplexer/demultiplexer 13974a receives WDM signals from switch 1 through optical fiber 13978a1, and sends WDM signals to switch 1 through optical fiber 13978a2. The multiplexer/demultiplexer 13974b receives WDM signals from switch 2 through optical fiber 13978b1, and sends WDM signals to switch 2 through optical fiber 13978b2. The multiplexer/demultiplexer 13974c receives WDM signals from switch 3 through optical fiber 13978c1, and sends WDM signals to switch 3 through optical fiber 13978c2. The multiplexer/demultiplexer 13974d receives WDM signals from switch 4 through optical fiber 13978d1, and sends WDM signals to switch 4 through optical fiber 13978d2.
The following describes the signal paths from the servers 13802 to the switches 13806. The multiplexer/demultiplexer 13972a demultiplexes the WDM signal received from server 1 and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13974a, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13974b, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13974c, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13974d.
The multiplexer/demultiplexer 13972b demultiplexes the WDM signal received from server 2 and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13974b, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13974c, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13974d, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13974a.
The multiplexer/demultiplexer 13972c demultiplexes the WDM signal received from server 3 and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13974c, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13974d, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13974a, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13974b.
The multiplexer/demultiplexer 13972d demultiplexes the WDM signals received from server 4 and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13974d, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13974a, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13974b, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13974c.
The multiplexer/demultiplexer 13974a receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13972a, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13972d, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13972c, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13972b, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to switch 1 through the optical fiber 13978a1.
The multiplexer/demultiplexer 13974b receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13972b, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13972a, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13972d, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13972c, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to switch 2 through the optical fiber 13978b1.
The multiplexer/demultiplexer 13974c receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13972c, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13972b, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13972a, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13972d, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to switch 3 through the optical fiber 13978c1.
The multiplexer/demultiplexer 13974d receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13972d, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13972c, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13972b, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13972a, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to switch 4 through the optical fiber 13978d1.
The following describes the signal paths from the switches 13806 to the servers 13802. The multiplexer/demultiplexer 13974a receives a WDM signal from switch 1, demultiplexes the WDM signal, and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13972a, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13972d, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13972c, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13972b.
The multiplexer/demultiplexer 13974b receives a WDM signal from switch 2, demultiplexes the WDM signal, and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13972b, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13972a, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13974d, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13974c.
The multiplexer/demultiplexer 13974c receives a WDM signal from switch 3, demultiplexes the WDM signal, and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13972c, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13972b, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13972a, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13972d.
The multiplexer/demultiplexer 13974d receives a WDM signal from switch 4, demultiplexes the WDM signal, and provides a signal having the wavelength w1 to the multiplexer/demultiplexer 13972d, provides a signal having the wavelength w2 to the multiplexer/demultiplexer 13972c, provides a signal having the wavelength w3 to the multiplexer/demultiplexer 13972b, and provides a signal having the wavelength w4 to the multiplexer/demultiplexer 13972a.
The multiplexer/demultiplexer 13972a receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13974a, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13974b, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13974c, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13974d, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to sever 1 through the optical fiber 13976a2.
The multiplexer/demultiplexer 13972b receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13974b, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13974c, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13974d, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13974a, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to sever 2 through the optical fiber 13976b2.
The multiplexer/demultiplexer 13972c receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13974c, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13974d, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13974a, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13974b, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to sever 3 through the optical fiber 13976c2.
The multiplexer/demultiplexer 13972d receives a signal having the wavelength w1 from the multiplexer/demultiplexer 13974d, receives a signal having the wavelength w2 from the multiplexer/demultiplexer 13974a, receives a signal having the wavelength w3 from the multiplexer/demultiplexer 13974b, receives a signal having the wavelength w4 from the multiplexer/demultiplexer 13974c, combines the signals having the wavelengths w1, w2, w3, w4 into a WDM signal having wavelengths w1, w2, w3, w4, and sends the WDM signal to sever 4 through the optical fiber 13976d2.
16 data optical fibers are used to connect the switch rack WDM translator 13822 to a co-packaged optical module of a switch 13806. Each of 8 data optical fiber transmits a WDM signal have 4 wavelengths carrying signals from 4 servers 13802 to the switch 13806. Each of 8 data optical fiber transmits a WDM signal have 4 wavelengths carrying signals from the switch 13806 to 4 servers 13802.
In some implementations, the power supply optical fibers pass through the switch rack WDM translator 13822 without being affected by the wavelength/space shuffle matrices 13970. In some implementations, the power supply optical signals do not pass through the switch rack WDM translator 13822, in which the power supply optical fibers are combined with the data fibers at a location external to the WDM translator 13822.
The WDM translator 13822 includes a first interface that is optically coupled to the plurality of optical fibers that are optically to the servers 13802. The WDM translator 13822 includes a second interface that is optically coupled to the plurality of optical fibers that are optically to the switches 13806 and the optical power supply 13808. In
The second interface of the WDM translator 13822 includes a third set of optical fiber ports, a fourth set of optical fiber ports, and a second set of power supply fiber ports. The third set of optical fiber ports are optically coupled to optical fibers that transmit WDM signals to the switches 13806. The fourth set of optical fiber ports are optically coupled to optical fibers that transmit WDM signals from the switches 13806. The second set of power supply fiber ports are optically coupled to optical fibers that are optically coupled to the optical power supply 13808.
The first set of optical fiber ports and the second set of optical fiber ports are optically coupled to the multiplexer/demultiplexers 13972 of the wavelength/space shuffle matrix 13970. The third set of optical fiber ports and the fourth set of optical fiber ports are optically coupled to the multiplexer/demultiplexers 13974 of the wavelength/space shuffle matrix 13970. The first set of power supply fiber ports are optically coupled to the second set of power supply fiber ports, in which the power supply light is transmitted from the optical power supply 13808 to the servers 13802 through the second set of power supply fiber ports and the first set of power supply fiber ports.
In the signal paths from the servers 13802 to the switches 13806, each multiplexer/demultiplexer 13972 functions as a demultiplexer that demultiplexes a WDM signal (from a corresponding server 13802) having multiple wavelengths into the component signals, in which each component signal has a single wavelength, and the different component signals are sent to different switches 13806. Each multiplexer/demultiplexer 13974 functions as re-multiplexer that multiplexes the component signals from different servers 13802 into a WDM signal having multiple wavelengths that is sent to a corresponding switch 13806.
In the signal paths from the switches 13806 to the servers 13802, each multiplexer/demultiplexer 13974 functions as a demultiplexer that demultiplexes a WDM signal (from a corresponding switch 13806) having multiple wavelengths into the component signals, in which each component signal has a single wavelength, and the different component signals are sent to different servers 13802. Each multiplexer/demultiplexer 13972 functions as re-multiplexer that multiplexes the component signals from different switches 13806 into a WDM signal having multiple wavelengths that is sent to a corresponding server 13802.
In some implementations, the data processing system includes N switches 13806 and uses WDM signals that include N different wavelengths w1, w2, . . . , wn that are transmitted between the servers 13802 and the switches 13806. In this example, the WDM translator includes N×N wavelength/space shuffle matrices. The first interface of the WDM translator includes a first set of optical fiber ports that output WDM signals having N wavelengths to the servers 13802, a second set of optical fiber ports that receive WDM signals having N wavelengths from the servers 13802, and a first set of power supply fiber ports that provide power supply light to the photonic integrated circuits of the servers 13802. The second interface of the WDM translator includes a third set of optical fiber ports that output WDM signals having N wavelengths to the switches 13806, a fourth set of optical fiber ports that receive WDM signals having N wavelengths from the switches 13806, and a second set of power supply fiber ports that are optically coupled to the optical power supply module 13808.
In some implementations, the optical power supply 13808 provides power supply light having multiple wavelengths that correspond to the wavelengths in the WDM signals transmitted by the servers 13802 and the switches 13806. Any technique for providing power supply light for supporting photonic integrated circuits that process WDM signals can be used.
The following describes the components of the data processing system 13800 in greater detail.
Referring to
Referring to
The power supply optical fiber 13840 extends towards the optical power supply 13810. Power supply optical fibers 13844 extend from the optical power supply 13810 toward the switch boxes 13806 and are used to carry power supply light to the switch boxes 13806. In this example, a bundle 13846 of 40 power supply optical fibers are used to carry power supply light from the optical power supply 13810 to the servers 13802 and the switch boxes 13806. The bundle 13846 of power supply optical fibers includes a bundle 13848 of 32 power supply optical fibers 13840 that provide power supply light to the 32 servers 13802, and a bundle 13850 of 8 power supply optical fibers 13844 that provide power supply light to the 4 switch boxes 13806, in which each switch box 13806 receives power supply light from 2 power supply optical fibers 13844.
Referring to
The bundle 13912 of optical fibers includes eight pairs of data optical fibers and a pair of power supply optical fibers that are optically coupled to a co-packaged optical module 13914 of the first switch box 13806, eight pairs of data optical fibers and a pair of power supply optical fibers that are optically coupled to a co-packaged optical module 13914 of the second switch box 13806, eight pairs of data optical fibers and a pair of power supply optical fibers that are optically coupled to a co-packaged optical module 13914 of the third switch box 13806, and eight pairs of data optical fibers and a pair of power supply optical fibers that are optically coupled to a co-packaged optical module 13914 of the fourth switch box 13806.
Among the eight pairs of data optical fibers that are optically coupled to each switch box 13806, the first pair of data optical fibers carry WDM signals from and to servers 1 to 4, the second pair of data optical fibers carry WDM signals from and to servers 5 to 8, the third pair of data optical fibers carry WDM signals from and to servers 9 to 12, and so forth. This allows the co-packaged optical module 13914 to communicate with every one of the 32 servers 13802 in a server rack. For example, each switch box 13806 can include 32 co-packaged optical modules 13914, in which each co-packaged optical module 13914 is capable of communicating with 32 servers in a server rack, and different co-packaged optical modules 13914 are capable of communicating with the servers in different server racks. This way, each server 13802 is in optical communication with each of the 4 switch boxes 13806, and each switch box 13806 is in optical communication with every one of the 32 servers 13802 in every one of the 32 server racks.
In this example, each co-packaged optical module 1391 in the switch box 13806 is optically connected to 2 power supply optical fibers 13844 (see
In some implementations, the first segment 14102 includes an optical fiber connector 14114 that is optically coupled to an optical fiber connector 14116 of the optical fiber extension cable 14106. The first segment 14102 includes 32 optical fiber connectors 14108 that are optically coupled to the 32 servers 13802. The optical fiber connector 14114 includes 32 power supply fiber ports, 32 transmitter fiber ports, and 32 receiver fiber ports. Each optical fiber connector 14108 includes 1 power supply fiber port, 1 transmitter fiber port, and 1 receiver fiber port. The second segment 14104 includes a switch rack WDM translator 14118 that is optically coupled to an optical fiber connector 14120 of the optical fiber extension cable 14106.
In some implementations, the second segment 14104 includes 4 optical fiber connectors 14110 that are optically coupled to 4 switch boxes 13806 and 1 optical fiber connector 14112 that is optically coupled to the optical power supply 13808. The switch rack WDM translator 14118 includes 32 power supply fiber ports, 32 transmitter fiber ports, and 32 receiver fiber ports. The optical fiber connector 14112 includes 40 power supply fiber ports. Each optical fiber connector 14110 includes 2 power supply fiber ports, 8 transmitter fiber ports, and 8 receiver fiber ports.
The number of power supply fiber ports, transmitter fiber ports, and receiver fiber ports described above are used as examples only, it is possible to have different numbers of power supply fiber ports, transmitter fiber ports, and receiver fiber ports depending on application. It is also possible to have different numbers of optical fiber connectors 14108, 14110, and 14112 depending on application.
The data processing system 13800 of
In the example of
In some implementations, the mapping of the fiber ports of the optical fiber connectors 1602, 1604 are designed such that the interconnection cable 1600 can have the most universal use, in which each fiber port of the optical fiber connector 1602 is mapped to a corresponding fiber port of the optical fiber connector 1604 with a 1-to-1 mapping and without transponder-specific port mapping that would require fibers 1606 to cross over. This means that for an optical transponder that has an optical fiber connector compatible with the interconnection cable 1600, the optical transponder can be connected to either the optical fiber connector 1602 or the optical fiber connector 1604. The mapping of the fiber ports is designed such that each transmitter port of the optical fiber connector 1602 is mapped to a corresponding receiver port of the optical fiber connector 1604, and each receiver port of the optical fiber connector 1602 is mapped to a corresponding transmitter port of the optical fiber connector 1604.
The first optical fiber connector 1662 includes transmitter fiber ports (e.g., 1614a, 1616a), receiver fiber ports (e.g., 1618a, 1620a), and optical power supply fiber ports (e.g., 1622a, 1624a). The second optical fiber connector 1664 includes transmitter fiber ports (e.g., 1614b, 1616b), receiver fiber ports (e.g., 1618b, 1620b), and optical power supply fiber ports (e.g., 1622b, 1624b). For example, assume that the first optical fiber connector 1662 is connected to a first optical transponder, and the second optical fiber connector 1664 is connected to a second optical transponder. The first optical transponder transmits first data and/or control signals through the transmitter ports (e.g., 1614a, 1616a) of the first optical fiber connector 1662, and the second optical transponder receives the first data and/or control signals from the corresponding receiver fiber ports (e.g., 1618b, 1620b) of the second optical fiber connector 1664. The transmitter ports 1614a, 1616a are optically coupled to the corresponding receiver fiber ports 1618b, 1620b through optical fibers 1628, 1630, respectively. The second optical transponder transmits second data and/or control signals through the transmitter ports (e.g., 1614b, 1616b) of the second optical fiber connector 1664, and the first optical transponder receives the second data and/or control signals from the corresponding receiver fiber ports (1618a, 1620a) of the first optical fiber connector 1662. The transmitter port 1616b is optically coupled to the corresponding receiver fiber port 1620a through an optical fiber 1632.
A first optical power supply transmits optical power supply light to the first optical transponder through the power supply fiber ports of the first optical fiber connector 1662. A second optical power supply transmits optical power supply light to the second optical transponder through the power supply fiber ports of the second optical fiber connector 1664. The first and second power supplies can be different (such as the example of
In the following description, when referring to the rows and columns of fiber ports of the optical fiber connector, the uppermost row is referred to as the 1st row, the second uppermost row is referred to as the 2nd row, and so forth. The leftmost column is referred to as the 1st column, the second leftmost column is referred to as the 2nd column, and so forth.
For an optical fiber interconnection cable having a pair of optical fiber connectors (i.e., a first optical fiber connector and a second optical fiber connector) to be universal, i.e., either one of the pair of optical fiber connectors can be connected to a given optical transponder, the arrangement of the transmitter fiber ports, the receiver fiber ports, and the power supply fiber ports in the optical fiber connectors have a number of properties. These properties are referred to as the “universal optical fiber interconnection cable port mapping properties.” The term “mapping” here refers to the arrangement of the transmitter fiber ports, the receiver fiber ports, and the power supply fiber ports at particular locations within the optical fiber connector. The first property is that the mapping of the transmitter, receiver, and power supply fiber ports in the first optical fiber connector is the same as the mapping of the transmitter, receiver, and power supply fiber ports in the second optical fiber connector (as in the example of
In the example of
In some implementations, each of the optical fiber connectors includes a unique marker or mechanical structure, e.g., a pin, that is configured to be at the same spot on the co-packaged optical module, similar to the use of a “dot” to denote “pin 1” on electronic modules. In some examples, such as those shown in
The mapping of the fiber ports of the optical fiber connectors of a “universal optical fiber interconnection cable” has a second property: When mirroring the port map of an optical fiber connector and replacing each transmitter port with a receiver port as well as replacing each receiver port with a transmitter port in the mirror image, the original port mapping is recovered. The mirror image can be generated with respect to a reflection axis at either connector edge, and the reflection axis can be parallel to the row direction or the column direction. The power supply fiber ports of the first optical fiber connector are mirror images of the power supply fiber ports of the second optical fiber connector.
The transmitter fiber ports of the first optical fiber connector and the receiver fiber ports of the second optical fiber connector are pairwise mirror images of each other, i.e., each transmitter fiber port of the first optical fiber connector is mirrored to a receiver fiber port of the second optical fiber connector. The receiver fiber ports of the first optical fiber connector and the transmitter fiber ports of the second optical fiber connector are pairwise mirror images of each other, i.e., each receiver fiber port of the first optical fiber connector is mirrored to a transmitter fiber port of the second optical fiber connector.
Another way of looking at the second property is as follows: Each optical fiber connector is transmitter port-receiver port (TX-RX) pairwise symmetric and power supply port (PS) symmetric with respect to one of the main or center axes, which can be parallel to the row direction or the column direction. For example, if an optical fiber connector has an even number of columns, the optical fiber connector can be divided along a center axis parallel to the column direction into a left half portion and a right half portion. The power supply fiber ports are symmetric with respect to the main axis, i.e., if there is a power supply fiber port in the left half portion of the optical fiber connector, there will also be a power supply fiber port at the mirror location in the right half portion of the optical fiber connector. The transmitter fiber ports and the receiver fiber ports are pairwise symmetric with respect to the main axis, i.e., if there is a transmitter fiber port in the left half portion of the optical fiber connector, there will be a receiver fiber port at a mirror location in the right half portion of the optical fiber connector. Likewise, if there is a receiver fiber port in the left half portion of the optical fiber connector, there will be a transmitter fiber port at a mirror location in the right half portion of the optical fiber connector.
For example, if an optical fiber connector has an even number of rows, the optical fiber connector can be divided along a center axis parallel to the row direction into an upper half portion and a lower half portion. The power supply fiber ports are symmetric with respect to the main axis, i.e., if there is a power supply fiber port in the upper half portion of the optical fiber connector, there will also be a power supply fiber port at the mirror location in the lower half portion of the optical fiber connector. The transmitter fiber ports and the receiver fiber ports are pairwise symmetric with respect to the main axis, i.e., if there is a transmitter fiber port in the upper half portion of the optical fiber connector, there will be a receiver fiber port at a mirror location in the lower half portion of the optical fiber connector. Likewise, if there is a receiver fiber port in the upper half portion of the optical fiber connector, there will be a transmitter fiber port at a mirror location in the lower half portion of the optical fiber connector.
The mapping of the transmitter fiber ports, receiver fiber ports, and power supply fiber ports follow a symmetry requirement that can be summarized as follows:
Essentially, a viable port map is TX-RX pairwise symmetric and PS symmetric with respect to one of the main axes.
The properties of the mapping of the fiber ports of the optical fiber connectors can be mathematically expressed as follows:
In some implementations, if a universal optical fiber interconnection cable has a first optical fiber connector and a second optical fiber connector that are mirror images of each other after swapping the transmitter fiber ports to receiver fiber ports and swapping the receiver fiber ports to transmitter fiber ports in the mirror image, and the mirror image is generated with respect to a reflection axis parallel to the column direction, as in the example of
In some implementations, a universal optical fiber interconnection cable:
In some implementations, a universal optical module connector has the following properties:
In
The optical fiber connectors 1662 and 1664 have the second universal optical fiber interconnection cable port mapping property described above. The port mapping of the optical fiber connector 1662 is a mirror image of the port mapping of the optical fiber connector 1664 after swapping each transmitter port to a receiver port and swapping each receiver port to a transmitter port in the mirror image. The mirror image is generated with respect to a reflection axis 1626 at the connector edge that is parallel to the column direction. The power supply fiber ports (e.g., 1662a, 1624a) of the optical fiber connector 1662 are mirror images of the power supply fiber ports (e.g., 1622b, 1624b) of the optical fiber connector 1664. The transmitter fiber ports (e.g., 1614a, 1616a) of the optical fiber connector 1662 and the receiver fiber ports (e.g., 1618b, 1620b) of the optical fiber connector 1664 are pairwise mirror images of each other, i.e., each transmitter fiber port (e.g., 1614a, 1616a) of the optical fiber connector 1662 is mirrored to a receiver fiber port (e.g., 1618b, 1620b) of the optical fiber connector 1664. The receiver fiber ports (e.g., 1618a, 1620a) of the optical fiber connector 1662 and the transmitter fiber ports (e.g., 1618b, 1620b) of the optical fiber connector 1664 are pairwise mirror images of each other, i.e., each receiver fiber port (e.g., 1618a, 1620a) of the optical fiber connector 1662 is mirrored to a transmitter fiber port (e.g., 1618b, 1620b) of the optical fiber connector 1664.
For example, the power supply fiber port 1622a at row 1, column 1 of the optical fiber connector 1662 is a mirror image of the power supply fiber port 1624b at row 1, column 12 of the optical fiber connector 1664 with respect to the reflection axis 1626. The power supply fiber port 1624a at row 1, column 12 of the optical fiber connector 1662 is a mirror image of the power supply fiber port 1622b at row 1, column 1 of the optical fiber connector 1664. The transmitter fiber port 1614a at row 1, column 3 of the optical fiber connector 1662 and the receiver fiber port 1618b at row 1, column 10 of the optical fiber connector 1604 are pairwise mirror images of each other. The receiver fiber port 1618a at row 1, column 10 of the optical fiber connector 1662 and the transmitter fiber port 1614b at row 1, column 3 of the optical fiber connector 1664 are pairwise mirror images of each other. The transmitter fiber port 1616a at row 3, column 3 of the optical fiber connector 1662 and the receiver fiber port 1620b at row 3, column 10 of the optical fiber connector 1664 are pairwise mirror images of each other. The receiver fiber port 1620a at row 3, column 10 of the optical fiber connector 1662 and the transmitter fiber port 1616b at row 3, column 3 of the optical fiber connector 1664 are pairwise mirror images of each other.
In addition, and as an alternate view of the second property, each optical fiber connector 1662, 1664 is TX-RX pairwise symmetric and PS symmetric with respect to the center axis that is parallel to the column direction. Using the first optical fiber connector 1662 as an example, the power supply fiber ports (e.g., 1622a, 1624a) are symmetric with respect to the center axis, i.e., if there is a power supply fiber port in the left half portion of the first optical fiber connector 1662, there will also be a power supply fiber port at the mirror location in the right half portion of the first optical fiber connector 1662. The transmitter fiber ports and the receiver fiber ports are pairwise symmetric with respect to the main axis, i.e., if there is a transmitter fiber port in the left half portion of the first optical fiber connector 1662, there will be a receiver fiber port at a mirror location in the right half portion of the first optical fiber connector 1662. Likewise, if there is a receiver fiber port in the left half portion of the optical fiber connector 1662, there will be a transmitter fiber port at a mirror location in the right half portion of the optical fiber connector 1662.
If the port mapping of the first optical fiber connector 1662 is represented by port matrix M with entries PS=0, TX=+1, RX=−1, then −=M, in which represents the column-mirror operation, e.g., generating a mirror image with respect to the reflection axis 1626.
First property: The mapping of the transmitter, receiver, and power supply fiber ports in the first optical fiber connector 1672 is the same as the mapping of the transmitter, receiver, and power supply fiber ports in the second optical fiber connector 1674.
Second property: The port mapping of the first optical fiber connector 1672 is a mirror image of the port mapping of the second optical fiber connector 1674 after swapping each transmitter port to a receiver port and swapping each receiver port to a transmitter port in the mirror image. The mirror image is generated with respect to a reflection axis 1640 at the connector edge parallel to the row direction.
Alternative view of the second property: Each of the first and second optical fiber connectors 1672, 1674 is TX-RX pairwise symmetric and PS symmetric with respect to the central axis that is parallel to the row direction. For example, the optical fiber connector 1672 can be divided in two halves along a central axis parallel to the row direction. The power supply fiber ports (e.g., 1678, 1680) are symmetric with respect to the center axis. The transmitter fiber ports (e.g., 1682, 1684) and the receiver fiber ports (e.g., 1686, 1688) are pairwise symmetric with respect to the center axis, i.e., if there is a transmitter fiber port (e.g., 1682 or 1684) in the upper half portion of the first optical fiber connector 1672, then there will be a receiver fiber port (e.g., 1686, 1688) at a mirror location in the lower half of the optical fiber connector 1672. Likewise, if there is a receiver fiber port in the upper half portion of the optical fiber connector 1672, then there is a transmitter fiber port at a mirror location in the lower half portion of the optical fiber connector 1672. In the example of
In general, if the port mapping of the first optical fiber connector is a mirror image of the port mapping of the second optical fiber connector after swapping the transmitter and receiver ports in the mirror image, the mirror image is generated with respect to a reflection axis at the connector edge parallel to the row direction (as in the example of
In the example of
The optical fiber connector of a universal optical fiber interconnection cable does not have be a rectangular shape as shown in the examples of
In the examples of
As described above, universal optical fiber connectors have symmetrical properties, e.g., each optical fiber connector is TX-RX pairwise symmetric and PS symmetric with respect to one of the main or center axes, which can be parallel to the row direction or the column direction. The fiber array connector also has the same symmetrical properties, e.g., each fiber array connector is TX-RX pairwise symmetric and PS symmetric with respect to one of the main or center axes, which can be parallel to the row direction or the column direction.
In some implementations, a restriction can be imposed on the port mapping of the optical fiber connectors of the optical cable assembly such that the optical fiber connector can be pluggable when rotated by 180 degrees, or by 90 degrees in the case of a square connector. This results in further port mapping constraints.
Referring to
In the examples of
In some implementations, the one or more fans can have a height that is smaller than the height of the housing (e.g., 1824) of the rackmount server (e.g., 1820). The co-packaged optical modules (e.g., 1074) can occupy a region on the printed circuit board (e.g., 1068) that extends in the height direction greater than the height of the one or more fans. One or more baffles can be provided to guide the cool air from the one or more fans or intake air duct to the heatsink and the co-packaged optical modules. One or more baffles can be provided to guide the warm air from the heatsink and the co-packaged optical modules to an air duct that directs the air toward the rear of the housing.
When the one or more fans have a height that is smaller than the height of the housing (e.g., 1824), the space above and/or below the one or more fans can be used to place one or more remote laser sources. The remote laser sources can be positioned near the front panel and also near the co-packaged optical modules. This allows the remote laser sources to be serviced conveniently.
In this example, the first and second fans 1942, 1944 have a height that is smaller than the height of the housing of the rackmount device 1940. Remote laser sources 1956 can be positioned above and below the fans. Remote laser sources 1956 can also be positioned above and below the air duct 1950.
For example, a switch device having a 51.2 Tbps bandwidth can use thirty-two 1.6 Tbps co-packaged optical modules. Two to four power supply fibers (e.g., 1326 in
For example, the area 1958a above the fans 1942, 1944 can have an area (measured along a plane parallel to the front panel) of about 16 cm×5 cm and can fit about 28 QSFP cages, and the area 1958b below the fans can have an area of about 16 cm×5 cm and can fit about 28 QSFP cages. The area 1958c above the air duct 1950 can have an area of about 8 cm×5 cm and can fit about 12 QSFP cages, and the area 1958d below the air duct 1950 can have an area of about 8 cm×5 cm and can fit about 12 QSFP cages. Each QSFP cage can include a laser module. In this example, a total of 80 QSFP cages can be fit above and below the fans and the air duct, allowing 80 laser modules to be positioned near the front panel and near the co-packaged optical modules, making it convenient to service the laser modules in the event of malfunction or failure.
Referring to
When the laser modules 1956 are oriented at an angle θ relative to the front-to-rear direction, 0<θ<90°, fewer laser modules 1956 can be placed in the spaces above and below the fans 1942, 1944 and the air duct 1950, as compared to the example of
Referring to
The upper baffle 2002 includes a cutout or opening 2006 that allows optical fibers 2008 to pass through. As shown in
Referring to
Referring to
Referring to
The vertically mounted processor blade 12300 includes one or more optical interconnect modules or co-packaged optical modules 12310 mounted on the second side 12306 of the substrate 12302. For example, the optical interconnect module 12310 includes an optical port configured to receive optical signals from an external optical fiber cable, and a photonic integrated circuit configured to generate electrical signals based on the received optical signals, and transmit the electrical signals to the electronic processor 12308. The photonic integrated circuit can also be configured to generate optical signals based on electrical signals received from the electronic processor 12308, and transmit the optical signals to the external optical fiber cable. The optical interconnect module or co-packaged optical module 12310 can be similar to, e.g., the integrated optical communication device 262 of
For example, the substrate 12302 can include electrical connectors that extend from the first side 12304 to the second side 12306 of the substrate 12302, in which the electrical connectors pass through the substrate 12302 in a thickness direction. For example, the electrical connectors can include vias of the substrate 12302. The optical interconnect module 12310 is electrically coupled to the electronic processor 12308 by the electrical connectors.
For example, the vertically mounted processor blade 12300 can include an optional optical fiber connector 12312 for connection to an optical fiber cable bundle. The optical fiber connector 12312 can be optically coupled to the optical interconnector modules 12310 through optical fiber cables 12314. The optical fiber cables 12314 can be connected to the optical interconnect modules 12310 through a fixed connector (in which the optical fiber cable 12314 is securely fixed to the optical interconnect module 12310) or a removable connector in which the optical fiber cable 12314 can be easily detached from the optical interconnect module 12310, such as with the use of an optical connector part 266 as shown in
For example, the substrate 12302 can be positioned near the front panel of the housing of the server that includes the vertically mounted processor blade 12300, or away from the front panel and located anywhere inside the housing. For example, the substrate 12302 can be parallel to the front panel of the housing, perpendicular to the front panel, or oriented in any angle relative to the front panel. For example, the substrate 12302 can be oriented vertically to facilitate the flow of hot air and improve dissipation of heat generated by the electronic processor 12308 and/or the optical interconnect modules 12310.
For example, the optical interconnect module or co-packaged optical module 12310 can receive optical signals through vertical or edge coupling.
For example, the optical interconnect modules 12310 can receive optical power from an optical power supply, such as 1322 of
In some implementations, the vertically mounted processor blades 12300 can include blade pairs, in which each blade pair includes a switch blade and a processor blade. The electronic processor of the switch blade includes a switch, and the electronic processor of the processor blade is configured to process data provided by the switch. For example, the electronic processor of the processor blade is configured to send processed data to the switch, which switches the processed data with other data, e.g., data from other processor blades.
In the examples shown in
In the example of
Referring to
In the example of
For example, the electronic processor 12312 can be a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, or an application specific integrated circuit (ASIC). For example, the electronic processor 12312 can be a memory device or a storage device. In this context, processing of data includes writing data to, or reading data from, the memory or storage device, and optionally performing error correction. The memory device can be, e.g., random access memory (RAM), which can include, e.g., dynamic RAM (DRAM) or static RAM (SRAM). The storage device can include, e.g., solid state memory or drive, which can include, e.g., one or more non-volatile memory (NVM) Express® (NVMe) SSD (solid state drive) modules, or Intel® Optane™ persistent memory. The example of
The co-packaged optical module (or optical interconnect module) 12316 can be similar to, e.g., the integrated optical communication device 262 of
For example, the fiber connector 15928 can be connected to the backside of the front panel 15908 during replacement of the CPO module 15922. The CPO module 15922 can be unplugged from the connector (e.g., an LGA socket) on the package substrate 15916, and be disconnected from the first fiber connector part 15924.
For example, one or more rows of pluggable external laser sources (ELS) 15932 can be in standard pluggable form factor accessible from the lower fixed part 15930 of the front panel with rear blind-mate connectors. Optical fibers 15934 transmit the power supply light from the laser sources 15932 to the CPO modules 15922. The external laser sources 15932 are electrically connected to a conventionally (horizontal) oriented system printed circuit board or the vertically oriented daughterboard. In this example, the row(s) of pluggable external laser sources 15932 is/are positioned below the datapath optical connection. The pluggable external laser sources 15932 do not need to connect to the CPO substrate because there are no high-speed signals that require proximity.
In some implementations, as shown in
The first MPO connector 16100 is optically coupled to the CPO module 15922 and includes, e.g., 36 fiber ports (e.g., 3 rows of fiber ports, each row having 12 fiber ports, similar to the fiber ports shown in
In this example, the CPO module 15922 is configured to support 4×400 Gb/s=1.6 Tb/s data rate. The jumper cable 16106 includes four (4) power supply optical fibers 15934 that optically connect four (4) power supply fiber ports of the laser supply MPO connector 16102 to the corresponding power supply fiber ports of the first MPO connector 16100. The jumper cable 16106 includes four (4) sets of eight (8) data optical fibers. The eight (8) data optical fibers 16106 optically connect eight (8) transmit or receive fiber ports of each datapath MPO connector 16104 to the corresponding transmit or receive fiber ports of the first MPO connector 16100. For example, the power supply optical fibers 15934 can be polarization maintaining optical fibers. The fan-out cable 16106 can handle multiple functions including merging the external laser source and data paths, splitting of external light source between multiple CPO modules 15922, and handling polarization. Regarding the force requirement on the CPO module's connector, the optical connector leverages an MPO type connection and can have a similar or smaller force as compared to a standard MPO connector.
Referring to
For example, the housing 12302 can include guide rails or guide cage 12412 that help guide the pluggable modules 12404 so that the electrical connectors of the co-packaged optical modules 12316 are aligned with the electrical connectors on the printed circuit board.
In some implementations, the rackmount server 12400 has inlet fans mounted near the front panel 12402 and blow air in a direction substantially parallel to the front panel 12402, similar to the examples shown in
A front view 12512 (at the upper right of
A front view 12524 (at the middle right of
A top view 12536 (at the lower right of
The front view 12524 (at the middle right of
As shown in the front view 12512 (at the upper right of the
A left side view 12550 (at the middle left of
A left side view 12558 of the front portion of the rackmount server 12500 shows pluggable modules 12560 that correspond to the left group of array connectors 12520 in the front view 12512 and the left group of electrical contacts 12532 in the front view 12524.
In this example, the fiber guides 12510 for the pluggable modules 12502 that correspond to the left and right groups of array connectors 12520, 12522, and the left and right groups of electrical contacts 12532, 12534 are designed to have smaller heights so that there are gaps between adjacent fiber guides 12510 in the vertical direction to allow air to flow through.
In some implementations, each co-packaged optical module can receive optical signals from a large number of fiber cores, and each co-packaged optical module can be optically coupled to external fiber optic cables through three or more array connectors that occupy an overall area at the front panel that is larger than the overall area occupied by the co-packaged optical module on the printed circuit board.
Referring to
A front view 12612 (at the upper right of
A left side view 12616 (at the middle left of
For example, the rackmount server 12400, 12500, 12600 can be provided to customers with or without the pluggable modules. The customer can insert as many pluggable modules as needed.
Referring to
In some implementations, to prevent the light from the laser source 12708 from harming operators of the rackmount server 12706, a safety shut-off mechanism is provided. For example, a mechanical shutter can be provided on disconnection of the blind-mate connector 12702 from the optical connector 12712. As another example, electrical contact sensing can be used, and the laser can be shut off upon detecting disconnection of the blind-mate connector 12702 from the optical connector 12712.
Referring to
Electrical connections (not shown in the figure) can be used to provide electrical power to the one or more photon supplies 12800. In some implementations, the electrical connections are configured such that when the co-packaged optical module 12316 is removed from the substrate 12310, the electrical power to the one or more photon supplies 12800 is turned off. This prevents light from the one or more photon supplies 12800 from harming operators. Additional signals lines (not shown in the figure) can provide control signals to the photon supply 12800. In some embodiments, electrical connections to the photon supplies 12800 are made to the system through the CPO module 12316. In some embodiments, electrical connections to the photon supplies 12800 use parts of the fiber guide 12408, which in some embodiments is made from electrically conductive materials. In some embodiments, the fiber guide 12408 is made of multiple parts, some of which are made from electrically conductive materials and some of which are made from electrically insulating materials. In some embodiments, two electrically conductive parts are mechanically connected but electrically separated by an electrical insulating part.
For example, the photon supply 12800 is thermally coupled to the fiber guide 12408, and the fiber guide 12408 can help dissipate heat from the photon supply 12800.
In some examples, the CPO module 12316 is coupled to spring-loaded elements or compression interposers mounted on the substrate 12310. The force required to press the CPO module 12316 into the spring-loaded elements or the compression interposers can be large. The following describes mechanisms to facilitate pressing the CPO module 12361 into the spring-loaded elements or the compression interposers.
Referring to
Clamp mechanisms 12908, such as screws, are used to fasten the guide rails/cage 12900 to the front portion of the fiber guide 12408. After the CPO module 12316 is initially pressed into the spring-loaded elements or the compression interposers, the screws 12908 are tightened, which pulls the guide rails/cage 12900 forward, thereby pulling the bolster plate 12914 forward and provide a counteracting force that pushes the spring-loaded elements or the compression interposers in the direction of the CPO module 12316. Springs 12910 can be provided between the guide rails 12900 and the front portion of the fiber guide 12408 to provide some tolerance in the positioning of the front portion of the fiber guide 12408 relative to the guide rails 12900.
The right side of
The following describes examples of rackmount servers having various thermal solutions to assist in dissipating heat generated from the data processors and the co-packaged optical modules coupled to the vertically oriented circuit boards or substrates positioned near the front panel.
In the examples shown in
The following describes an example in which the communication interface(s) support memory modules mounted in smaller circuit boards that are electrically coupled to a larger circuit board positioned near the front panel.
For example, each optical interface module 16214 can support up to 1.6 Tbps bandwidth. When N optical interface modules 16214 are used (N being a positive integer), the total bandwidth can be up to N×1.6 Tbps. One or more fans 16216 can be mounted near the front panel 16204 to assist in removing heat generated by the various components (e.g., the optical interface modules 16212 and the memory modules 16206) coupled to the circuit board 16202. The technologies for implementing the optical interface modules 16212 and configuring the fans 16216 and airflows for optimizing heat removal have been described above and not repeated here.
In some implementations, the memory modules 16206 on the carrier card 16202 can be used as, e.g., computer memory, disaggregated memory, or a memory pool. For example, the system 16200 can provide a large memory bank or memory pool that is accessible by more than one central processing unit. A data processing system can be implemented as a spatially co-located solution, e.g., 4 sets of the memory modules 16206 supporting 4 processors sitting in a common box or housing. A data processing system can also be implemented as a spatially separated solution, e.g., a rack full of processors, connected by optical fiber cables to another rack full of DIMMs (or other memory). In this example, the rack full of memory modules can includes multiple systems 16200. For example, the system 16200 is useful for implementing memory disaggregation to decouple physical memory allocated to virtual servers (e.g., virtual machines or containers or executors) at their initialization time from the runtime management of the memory. The decoupling allows a server under high memory usage to use the idle memory either from other servers hosted on the same physical node (node level memory disaggregation) or from remote nodes in the same cluster (cluster level memory disaggregation).
Referring to
The carrier card 16202 and the memory modules 16206 can be any of a variety of sizes depending on the available space in the housing. The capacity of the memory modules 16206 can vary depending on application. As memory technology improves in the future, it is expected that the capacity of the memory modules 16206 will increase in the future. For example, the carrier card 16202 can have dimensions of 20 cm×20 cm, each memory module 16206 can have dimensions of 10 cm×2 cm, and each memory module can have a capacity of 64 GB. A spacing of 6 mm can be provided between memory modules 16206. The memory modules 16206 can occupy both sides of the carrier card 16202. In this example, the carrier card 16202 has a height of 20 cm and can support 2 rows of memory modules 16206, with each memory module 16206 extending 10 cm in the vertical direction. With a carrier card width of 20 cm and a 6 mm spacing between memory modules 16206, there can be about 32 memory modules per row, and about 64 memory modules per side of the carrier card 16202. When the memory modules are mounted on both sides of the carrier card 16202, there can be up to a total of about 128 memory modules 16206 per carrier card. With up to 64 GB capacity for each memory module 16206, the carrier card 16202 can support up to about 8 TB memory in a space approximately the size of 1,600 cm3.
While this disclosure includes references to illustrative embodiments, this specification is not intended to be construed in a limiting sense. Various modifications of the described embodiments, as well as other embodiments within the scope of the disclosure, which are apparent to persons skilled in the art to which the disclosure pertains are deemed to lie within the principle and scope of the disclosure, e.g., as expressed in the following claims.
For example, the techniques described above for improving the operations of systems that include rackmount servers (see
In some implementations, the devices 1464, 1466, and 1468 can be rackmount servers mounted on a same rack, the switch box 1462 can be a top-of-rack switch 1462, and the servers (e.g., 1464, 1466, 1468) in the rack communicate with each other through the top-of-rack switch 1462. In this example, the co-packaged optical modules or optical communication interfaces are configured to receive power supply light provided by the optical power supply 1322 and/or 1332.
For example, in
For example, in
For example, in
For example, the data processing system 1550 of
Similarly, one or more of the switch boxes 13806 of
For example, the processor blades 12300 of the rack systems 12400 can include data processors that implement a variety of services, such as cloud computing, database processing, audio/video hosting and streaming, electronic mail, data storage, web hosting, social networking, supercomputing, scientific research computing, healthcare data processing, financial transaction processing, logistics management, weather forecasting, simulation, hosting virtual worlds, or hosting one or more metaverses, to list a few examples. Such services may require fast access to large amounts of data. For example, implementing a metaverse platform may require access to vast amounts of stored data that are used to simulate virtual worlds and interactions among users and objects in the virtual worlds. Such data can be stored across multiple storage systems 16200 across multiple racks. The optical fiber cables 13700 allow the processor blades 12300 to access the data stored in the storage systems 16200 through high-bandwidth optical links.
Additional details of the components used in the data processing systems described in this document, e.g., the co-packaged optical modules, the optical modules, the optical communication interfaces, the photonic integrated circuits, the electronic integrated circuits, etc., can be found in U.S. patent application Ser. No. 17/478,483, filed on Sep. 17, 2021; U.S. patent application Ser. No. 17/495,338, filed on Oct. 6, 2021; U.S. patent application Ser. No. 17/531,470, filed on Nov. 19, 2021; PCT application PCT/US2021/021953, filed on Mar. 11, 2021, published as WO 2021/183792; PCT application PCT/US2021/022730, filed on Mar. 17, 2021, published as WO 2021/188648; PCT application PCT/US2021/027306, filed on Apr. 14, 2021, published as WO 2021/211725; and PCT application PCT/US2021/035179, filed on Jun. 1, 2021, published as WO 2021/247521. The entire contents of the above applications are incorporated by reference.
Some embodiments can be implemented as circuit-based processes, including possible implementation on a single integrated circuit.
Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value or range.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this disclosure can be made by those skilled in the art without departing from the scope of the disclosure, e.g., as expressed in the following claims.
The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
Although the elements in the following method claims, if any, are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.”
Unless otherwise specified herein, the use of the ordinal adjectives “first,” “second,” “third,” etc., to refer to an object of a plurality of like objects merely indicates that different instances of such like objects are being referred to, and is not intended to imply that the like objects so referred-to have to be in a corresponding order or sequence, either temporally, spatially, in ranking, or in any other manner.
Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements.
As used herein in reference to an element and a standard, the term compatible means that the element communicates with other elements in a manner wholly or partially specified by the standard, and would be recognized by other elements as sufficiently capable of communicating with the other elements in the manner specified by the standard. The compatible element does not need to operate internally in a manner specified by the standard.
The described embodiments are to be considered in all respects as only illustrative and not restrictive. In particular, the scope of the disclosure is indicated by the appended claims rather than by the description and figures herein. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The description and drawings merely illustrate the principles of the disclosure. It will thus be appreciated that those of ordinary skill in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its spirit and scope. Furthermore, all examples recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass equivalents thereof.
The functions of the various elements shown in the figures, including any functional blocks labeled or referred to as “processors” and/or “controllers,” can be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions can be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which can be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and can implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, can also be included. Similarly, any switches shown in the figures are conceptual only. Their function can be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
As used in this application, the term “circuitry” can refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry); (b) combinations of hardware circuits and software, such as (as applicable): (i) a combination of analog and/or digital hardware circuit(s) with software/firmware and (ii) any portions of hardware processor(s) with software (including digital signal processor(s)), software, and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions); and (c) hardware circuit(s) and or processor(s), such as a microprocessor(s) or a portion of a microprocessor(s), that requires software (e.g., firmware) for operation, but the software does not need to be present when it is not needed for operation.” This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
It should be appreciated by those of ordinary skill in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure.
Although the present invention is defined in the attached claims, it should be understood that the present invention can also be defined in accordance with the following sets of embodiments:
Embodiment 1: A system comprising:
Embodiment 2: The system of embodiment 1 in which the at least one laser module is positioned between the at least one inlet fan and at least one of the upper panel or the lower panel.
Embodiment 3: The system of embodiment 1 or 2 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 4: The system of embodiment 1 or 2 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 5: The system of embodiment 1 or 2 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 6: The system of any of embodiments 1 to 5 in which at least 5 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 7: The system of embodiment 6 in which at least 10 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 8: The system of embodiment 7 in which at least 20 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 9: The system of any of embodiments 1 to 8 in which at least 5 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 10: The system of embodiment 9 in which at least 10 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 11: The system of embodiment 10 in which at least 20 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 12: The system of any of embodiments 1 to 11 in which each of at least some of the laser modules is placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 13: The system of any of embodiments 1 to 12, comprising at least one air duct to direct warm air from the surface of at least one of (i) the at least one data processor, (ii) the heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
Embodiment 14: The system of any of embodiments 1 to 13 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 15: The system of any of embodiments 1 to 13 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 16: The system of any of embodiments 1 to 13 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 17: The system of any of embodiments 13 to 16 in which at least 5 laser modules are positioned between the air duct and the upper panel.
Embodiment 18: The system of embodiment 17 in which at least 10 laser modules are positioned between the air duct and the upper panel.
Embodiment 19: The system of embodiment 18 in which at least 20 laser modules are positioned between the air duct and the upper panel.
Embodiment 20: The system of any of embodiments 13 to 19 in which at least 5 laser modules are positioned between the air duct and the lower panel.
Embodiment 21: The system of embodiment 20 in which at least 10 laser modules are positioned between the air duct and the lower panel.
Embodiment 22: The system of embodiment 21 in which at least 20 laser modules are positioned between the air duct and the lower panel.
Embodiment 23: The system of any of embodiments 1 to 22 in which each of at least some of the laser modules is placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 24: The system of any of embodiments 1 to 23, comprising an air baffle to divide a space in a vicinity of the first circuit board or substrate into a first region and a second region, in which the first region is in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module,
Embodiment 25: The system of embodiment 24 in which the air baffle defines a cutout or an opening to allow the at least one optical fiber to extend from the first region to the second region through the cutout or opening.
Embodiment 26: The system of embodiment 24 or 25 in which the air baffle enables a portion of the at least one optical fiber to be positioned away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reducing an amount of obstruction of air flow, and improving heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 27: The system of any of embodiments 1 to 26 in which the first circuit board or substrate is positioned at a distance behind the front panel.
Embodiment 28: The system of embodiment 27, comprising an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector, in which the first fiber connector is optically coupled to one of the at least one optical module, the second fiber connector is optically coupled to one of the at least one laser module, and the third fiber connector is optically coupled a fiber connector part at the front panel.
Embodiment 29: The system of embodiment 27 or 28, comprising a sensor that detects an opening of the front panel, and a controller that in response to detecting the opening of the front panel, reduces or turns off power to the at least one laser module.
Embodiment 30: The system of any of embodiments 1 to 29 in which the at least one optical module is coupled to a front side of the first circuit board or substrate, the at least one data processor is coupled to a rear side of the first circuit board or substrate, the at least one inlet fan comprises a first inlet fan and a second inlet fan, the first inlet fan is configured to blow incoming air towards the at least one optical module or the heat dissipating device thermally coupled to the at least one optical module, and the second inlet fan is configured to blow incoming air toward the at least one data processor or the heat dissipating device thermally coupled to the at least one data processor.
Embodiment 31: The system of any of embodiments 1 to 30 in which the first circuit board or substrate has a first surface that defines a length and a width of the first circuit board or substrate, and the first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
Embodiment 32: The system of any of embodiments 1 to 31 in which the at least one data processor is immersed in a coolant, and the at least one inlet fan is configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 33: The system of any of embodiments 1 to 32 in which the optical module comprises a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
Embodiment 34: The system of any of embodiments 1 to 33 in which the at least one data processor comprises at least one million transistors.
Embodiment 35: The system of embodiment 34 in which the at least one data processor comprises at least ten million transistors.
Embodiment 36: The system of embodiment 35 in which the at least one data processor comprises at least one hundred million transistors.
Embodiment 37: The system of embodiment 36 in which the at least one data processor comprises at least one billion transistors.
Embodiment 38: The system of any of embodiments 1 to 37 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 100 watts of electric power for at least ten minutes during operation.
Embodiment 39: The system of embodiment 38 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 200 watts of electric power for at least ten minutes during operation.
Embodiment 40: The system of embodiment 39 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 300 watts of electric power for at least ten minutes during operation.
Embodiment 41: The system of embodiment 40 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 400 watts of electric power for at least ten minutes during operation.
Embodiment 42: The system of embodiment 41 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 500 watts of electric power for at least ten minutes during operation.
Embodiment 43: The system of embodiment 42 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 600 watts of electric power for at least ten minutes during operation.
Embodiment 44: The system of embodiment 43 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 700 watts of electric power for at least ten minutes during operation.
Embodiment 45: The system of any of embodiments 1 to 44 in which the system is configured to remove heat generated by the at least one data processor, the at least one optical module, and the at least one laser module so as to maintain a temperature of the at least one data processor and the at least one optical module to be not more than 160° F. when ambient temperature outside of the housing is in a range from 62° F. to 82° F.
Embodiment 46: The system of any of embodiments 1 to 45 in which the at least one data processor comprises at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
Embodiment 47: The system of any of embodiments 1 to 46 in which the at least one data processor is capable of processing data from the at least one optical module at a rate of at least 25 gigabits per second.
Embodiment 48: The system of any of embodiments 1 to 47 in which the at least one optical module is coupled to a second circuit board or substrate that is coupled to the first circuit board or substrate.
Embodiment 49: The system of any of embodiments 1 to 48 in which the optical module comprises a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator, wherein the optical module further comprises at least one of a transimpedance amplifier configured to amplify a current generated by the photodetector or a driver configured to drive the optical modulator.
Embodiment 50: The system of embodiment 49 in which the optical module comprises a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
Embodiment 51: The system of any of embodiments 1 to 50 in which the at least one data processor comprises a two-dimensional arrangement of at least three data processors formed on the circuit board or substrate.
Embodiment 52: The system of embodiment 51 in which the two-dimensional arrangement of at least three data processors comprises an array of at least two rows and at least two columns of data processors.
Embodiment 53: The system of embodiment 52 in which the array of data processors comprise at least three rows and at least three columns of data processors.
Embodiment 54: The system of embodiment 53 in which the array of data processors comprise at least four rows and at least four columns of data processors.
Embodiment 55: The system of any of embodiments 1 to 54 in which the substrate comprises a semiconductor wafer.
Embodiment 56: A system comprising:
Embodiment 57: The system of embodiment 56, in which at least one of the at least one inlet fan blows air toward the portion of the at least one optical module that is positioned between the front panel and the first circuit board or substrate.
Embodiment 58: The system of embodiment 56, comprising a first heat dissipating device that is thermally coupled to the at least one optical module, wherein at least a portion of the first heat dissipating device is positioned between the front panel and the first circuit board or substrate, and at least one of the at least one inlet fan blows air toward the portion of the first heat dissipating device that is positioned between the front panel and the first circuit board or substrate.
Embodiment 59: The system of any of embodiments 56 to 58 in which the at least one laser module is positioned between the at least one inlet fan and at least one of the upper panel or the lower panel.
Embodiment 60: The system of any of embodiments 56 to 59 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 61: The system of any of embodiments 56 to 59 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 62: The system of any of embodiments 56 to 59 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 63: The system of any of embodiments 56 to 62 in which at least 5 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 64: The system of embodiment 63 in which at least 10 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 65: The system of embodiment 64 in which at least 20 laser modules are positioned between the inlet fan and the upper panel.
Embodiment 66: The system of any of embodiments 56 to 65 in which at least 5 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 67: The system of embodiment 66 in which at least 10 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 68: The system of embodiment 67 in which at least 20 laser modules are positioned between the inlet fan and the lower panel.
Embodiment 69: The system of any of embodiments 56 to 68 in which each of at least some of the laser modules is placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 70: The system of any of embodiments 56 to 69, comprising at least one air duct to direct warm air from the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
Embodiment 71: The system of embodiment 70 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 72: The system of embodiment 70 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 73: The system of embodiment 70 in which at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 74: The system of any of embodiments 70 to 73 in which at least 5 laser modules are positioned between the air duct and the upper panel.
Embodiment 75: The system of embodiment 74 in which at least 10 laser modules are positioned between the air duct and the upper panel.
Embodiment 76: The system of embodiment 75 in which at least 20 laser modules are positioned between the air duct and the upper panel.
Embodiment 77: The system of any of embodiments 70 to 76 in which at least 5 laser modules are positioned between the air duct and the lower panel.
Embodiment 78: The system of embodiment 77 in which at least 10 laser modules are positioned between the air duct and the lower panel.
Embodiment 79: The system of embodiment 78 in which at least 20 laser modules are positioned between the air duct and the lower panel.
Embodiment 80: The system of any of embodiments 70 to 78 in which each of at least some of the laser modules is placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 81: The system of any of embodiments 56 to 80, comprising an air baffle to divide a space in a vicinity of the first circuit board or substrate into a first region and a second region, in which the first region is in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module,
Embodiment 82: The system of embodiment 81 in which the air baffle defines a cutout or an opening to allow the at least one optical fiber to extend from the first region to the second region through the cutout or opening.
Embodiment 83: The system of embodiment 81 or 82 in which the air baffle enables a portion of the at least one optical fiber to be positioned away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reducing an amount of obstruction of air flow, and improving heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 84: The system of any of embodiments 56 to 83 in which the first circuit board or substrate is positioned at a distance behind the front panel.
Embodiment 85: The system of embodiment 84, comprising an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector, in which the first fiber connector is optically coupled to one of the at least one optical module, the second fiber connector is optically coupled to one of the at least one laser module, and the third fiber connector is optically coupled a fiber connector part at the front panel.
Embodiment 86: The system of embodiment 84 or 85, comprising a sensor that detects an opening of the front panel, and a controller that in response to detecting the opening of the front panel, reduces or turns off power to the at least one laser module.
Embodiment 87: The system of any of embodiments 56 to 86, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 88: The system of any of embodiments 56 to 87 in which the first circuit board or substrate has a first surface that defines a length and a width of the first circuit board or substrate, and the first circuit board or substrate is positioned relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
Embodiment 89: The system of any of embodiments 56 to 88, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module, wherein the at least one data processor is immersed in a coolant, and the at least one inlet fan is configured to increase an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 90: The system of any of embodiments 56 to 89 in which the optical module comprises a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
Embodiment 91: The system of any of embodiments 56 to 90, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module
Embodiment 92: The system of embodiment 91 in which the at least one data processor comprises at least ten million transistors.
Embodiment 93: The system of embodiment 92 in which the at least one data processor comprises at least one hundred million transistors.
Embodiment 94: The system of embodiment 93 in which the at least one data processor comprises at least one billion transistors.
Embodiment 95: The system of any of embodiments 56 to 94, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 96: The system of embodiment 95 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 200 watts of electric power for at least ten minutes during operation.
Embodiment 97: The system of embodiment 96 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 300 watts of electric power for at least ten minutes during operation.
Embodiment 98: The system of embodiment 97 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 400 watts of electric power for at least ten minutes during operation.
Embodiment 99: The system of embodiment 98 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 500 watts of electric power for at least ten minutes during operation.
Embodiment 100: The system of embodiment 99 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 600 watts of electric power for at least ten minutes during operation.
Embodiment 101: The system of embodiment 100 in which the at least one data processor, the at least one optical module, and the at least one laser module are configured to consume an average of at least 700 watts of electric power for at least ten minutes during operation.
Embodiment 102: The system of any of embodiments 56 to 101, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 103: The system of any of embodiments 56 to 102, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 104: The system of any of embodiments 56 to 103, comprising at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 105: The system of any of embodiments 56 to 104 in which the optical module comprises a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator,
Embodiment 106: The system of embodiment 105 in which the optical module comprises a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
Embodiment 107: The system of any of embodiments 56 to 106 in which the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 80° to 90°.
Embodiment 108: The system of embodiment 107 in which the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 85° to 90°.
Embodiment 109: A system comprising:
Embodiment 110: The system of embodiment 109, comprising a second air duct configured to direct air carrying heat from the at least one active component toward a rear portion of the housing.
Embodiment 111: The system of embodiment 109 or 110 in which the at least one active component comprises at least one optical module, each optical module is configured to perform at least one of (i) convert input optical signals to electrical signals, or (ii) convert electrical signals to output optical signals.
Embodiment 112: A system comprising:
Embodiment 113: A system comprising:
Embodiment 114: The system of embodiment 113 in which each of at least some of the rackmount servers comprises at least one laser module configured to provide optical power to the at least one optical module in the corresponding rackmount server.
Embodiment 115: The system of embodiment 113 in which the at least one laser module is external to at least some of the rackmount servers.
Embodiment 116: The system of any of embodiments 113 to 115 in which each of at least some of the rackmount servers comprises at least one data processor coupled to the first circuit board or substrate and configured to process electrical signals provided directly or indirectly by the at least one optical module, or provide electrical signals that are directly or indirectly processed by the at least one optical module;
Embodiment 117: A system comprising:
Embodiment 118: A data processing system comprising the system of any of embodiments 1 to 55 in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 25 Tbps.
Embodiment 119: The data processing system of embodiment 118 in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 50 Tbps.
Embodiment 120: The data processing system of embodiment 119 in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 100 Tbps.
Embodiment 121: The data processing system of embodiment 120 in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 200 Tbps.
Embodiment 122: The data processing system of embodiment 121 in which the at least one data processor comprises one or more network switch integrated circuits or artificial intelligence processors that have an aggregate bandwidth of at least 400 Tbps.
Embodiment 123: A data center comprising a plurality of systems, in which each of the plurality of systems comprises a system of any of embodiments 112 to 122.
Embodiment 124: The data center of embodiment 123 in which at least a first group of the plurality of systems communicate with a second group of the plurality of systems through optical fiber cables.
Embodiment 125: The data center of embodiment 123 or 124, comprising an air conditioning system,
Embodiment 126: A method of using the system of any of embodiments 1 to 117.
Embodiment 127: A method of using the data processing system of any of embodiments 118 to 122.
Embodiment 128: A method of operating the data center of any of embodiments 123 to 125.
Embodiment 129: A method comprising:
Embodiment 130: The method of embodiment 129, comprising positioning the at least one laser module between the at least one inlet fan and at least one of the upper panel or the lower panel.
Embodiment 131: The method of embodiment 129 or 130, comprising orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 132: The method of embodiment 129 or 130, comprising orienting at least one of the at least one laser module is oriented such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 133: The method of embodiment 129 or 130, comprising orienting at least one of the at least one laser module is oriented such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 134: The method of any of embodiments 129 to 133, comprising positioning at least 5 laser modules between the inlet fan and the upper panel.
Embodiment 135: The method of embodiment 134, comprising positioning at least 10 laser modules between the inlet fan and the upper panel.
Embodiment 136: The method of embodiment 135, comprising positioning at least 20 laser modules between the inlet fan and the upper panel.
Embodiment 137: The method of any of embodiments 129 to 136, comprising positioning at least 5 laser modules between the inlet fan and the lower panel.
Embodiment 138: The method of embodiment 137, comprising positioning at least 10 laser modules between the inlet fan and the lower panel.
Embodiment 139: The method of embodiment 138, comprising positioning at least 20 laser modules between the inlet fan and the lower panel.
Embodiment 140: The method of any of embodiments 129 to 139, comprising placing each of at least some of the laser modules in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 141: The method of any of embodiments 129 to 140, comprising directing, using at least one air duct, warm air from the surface of at least one of (i) the at least one data processor, (ii) the heat dissipating device thermally coupled to the at least one data processor, (iii) the at least one optical module, or (iv) the heat dissipating device thermally coupled to the at least one optical module, toward a rear direction.
Embodiment 142: The method of any of embodiments 129 to 141, comprising orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a front-to-rear direction.
Embodiment 143: The method of any of embodiments 129 to 141, comprising orienting at least one of the at least one laser module such that an optical axis of the laser module is parallel to a surface of the front panel.
Embodiment 144: The method of any of embodiments 129 to 141, comprising orienting at least one of the at least one laser module such that an optical axis of the laser module is at an angle θ relative to a front-to-rear direction, and 0<θ<90°.
Embodiment 145: The method of any of embodiments 141 to 144, comprising positioning at least 5 laser modules between the air duct and the upper panel.
Embodiment 146: The method of embodiment 145, comprising positioning at least 10 laser modules between the air duct and the upper panel.
Embodiment 147: The method of embodiment 146, comprising positioning at least 20 laser modules between the air duct and the upper panel.
Embodiment 148: The method of any of embodiments 141 to 147, comprising positioning at least 5 laser modules between the air duct and the lower panel.
Embodiment 149: The method of embodiment 148, comprising positioning at least 10 laser modules between the air duct and the lower panel.
Embodiment 150: The method of embodiment 149, comprising positioning at least 20 laser modules between the air duct and the lower panel.
Embodiment 151: The method of any of embodiments 129 to 150 in which each of at least some of the laser modules is placed in at least one of a QSFP (quad small form factor pluggable) cage, a QSFP-DD (quad small form factor pluggable double density) cage, or a COBO (consortium for on-board optics) cage.
Embodiment 152: The method of any of embodiments 129 to 151, comprising dividing, using an air baffle, a space in a vicinity of the first circuit board or substrate into a first region and a second region, in which the first region is in a path of air flow from the at least one inlet fan to the at least one of the at least one optical module,
Embodiment 153: The method of embodiment 152, comprising defining, using the air baffle, a cutout or an opening and extending the at least one optical fiber from the first region to the second region through the cutout or opening.
Embodiment 154: The method of embodiment 152 or 153, comprising positioning a portion of the at least one optical fiber away from a path of the air that flows across the surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module, reducing an amount of obstruction of air flow, and improving heat dissipation from at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 155: The method of any of embodiments 129 to 154, comprising providing an optical cable assembly that comprises a first fiber connector, a second fiber connector, and a third fiber connector,
Embodiment 156: The method of any of embodiments 129 to 155, comprising detecting, using a sensor, an opening of the front panel, and in response to detecting the opening of the front panel, using a controller to reduce or turn off power to the at least one laser module.
Embodiment 157: The method of any of embodiments 129 to 156, comprising coupling the at least one optical module to a front side of the first circuit board or substrate, coupling the at least one data processor to a rear side of the first circuit board or substrate,
Embodiment 158: The method of any of embodiments 129 to 157 in which the first circuit board or substrate has a first surface that defines a length and a width of the first circuit board or substrate, and the method comprises positioning the first circuit board or substrate relative to the housing such that the first surface of the first circuit board or substrate is at an angle relative to the bottom panel of the housing, and the angle is in a range from 45° to 90°.
Embodiment 159: The method of any of embodiments 129 to 158, comprising immersing the at least one data processor in a coolant, and increasing, using the at least one inlet fan, an air flow across a surface of at least one of (i) the at least one optical module, or (ii) the heat dissipating device thermally coupled to the at least one optical module.
Embodiment 160: The method of any of embodiments 129 to 159 in which the optical module comprises a co-packaged optical module that comprises at least one photonic integrated circuit co-packaged with at least one electronic chip.
Embodiment 161: The method of any of embodiments 129 to 160 in which the at least one data processor comprises at least one million transistors.
Embodiment 162: The method of embodiment 161 in which the at least one data processor comprises at least ten million transistors.
Embodiment 163: The method of embodiment 162 in which the at least one data processor comprises at least one hundred million transistors.
Embodiment 164: The method of embodiment 163 in which the at least one data processor comprises at least one billion transistors.
Embodiment 165: The method of any of embodiments 129 to 164, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 100 watts of electric power for at least ten minutes during operation.
Embodiment 166: The method of embodiment 165, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 200 watts of electric power for at least ten minutes during operation.
Embodiment 167: The method of embodiment 166, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 300 watts of electric power for at least ten minutes during operation.
Embodiment 168: The method of embodiment 167, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 400 watts of electric power for at least ten minutes during operation.
Embodiment 169: The method of embodiment 168, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 500 watts of electric power for at least ten minutes during operation.
Embodiment 170: The method of embodiment 169, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 600 watts of electric power for at least ten minutes during operation.
Embodiment 171: The method of embodiment 170, comprising consuming, using the at least one data processor, the at least one optical module, and the at least one laser module, an average of at least 700 watts of electric power for at least ten minutes during operation.
Embodiment 172: The method of any of embodiments 129 to 171, comprising removing heat generated by the at least one data processor, the at least one optical module, and the at least one laser module so as to maintain a temperature of the at least one data processor and the at least one optical module to be not more than 160° F. when ambient temperature outside of the housing is in a range from 62° F. to 82° F.
Embodiment 173: The method of any of embodiments 129 to 172 in which the at least one data processor comprises at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, an application specific integrated circuit (ASIC), or a data storage device.
Embodiment 174: The method of any of embodiments 129 to 173, comprising processing data, using the at least one data processor, from the at least one optical module at a rate of at least 25 gigabits per second.
Embodiment 175: The method of embodiment 174, comprising processing data, using the at least one data processor, from the at least one optical module at a rate of at least 50 gigabits per second.
Embodiment 176: The method of embodiment 175, comprising processing data, using the at least one data processor, from the at least one optical module at a rate of at least 100 gigabits per second.
Embodiment 177: The method of embodiment 176, comprising processing data, using the at least one data processor, from the at least one optical module at a rate of at least 200 gigabits per second.
Embodiment 178: The method of embodiment 177, comprising processing data, using the at least one data processor, from the at least one optical module at a rate of at least 400 gigabits per second.
Embodiment 179: The method of any of embodiments 129 to 178, comprising coupling the at least one optical module to a second circuit board or substrate that is coupled to the first circuit board or substrate.
Embodiment 180: The method of any of embodiments 129 to 179 in which the optical module comprises a photonic integrated circuit that comprises at least one of a photodetector or an optical modulator,
Embodiment 181: The method of embodiment 180 in which the optical module comprises a co-packaged optical module comprising at least one electrical integrated circuit comprising a serializers/deserializers module.
Embodiment 182: The method of any of embodiments 129 to 181, comprising providing the at least one data processor as a two-dimensional arrangement of at least three data processors formed on the circuit board or substrate.
Embodiment 183: The method of embodiment 182, comprising providing the two-dimensional arrangement of at least three data processors as an array of at least two rows and at least two columns of data processors.
Embodiment 184: The method of embodiment 183, comprising providing the array of data processors as an array of at least three rows and at least three columns of data processors.
Embodiment 185: The method of embodiment 184, comprising providing the array of data processors as an array of at least four rows and at least four columns of data processors.
Embodiment 186: The method of any of embodiments 129 to 185 in which the substrate comprises a semiconductor wafer.
The following is a second set of embodiments. The embodiment numbers below refer to those in the second set of embodiments.
Embodiment 1: A distributed data processing system comprising:
Embodiment 2: The distributed data processing system of embodiment 1 in which the first data processing system comprises a data server, the data server comprises a circuit board on which the first data processor is mounted, the circuit board is positioned relative to the housing such that a first surface of the circuit board is at an angle relative to a bottom panel of the housing, and the angle is in a range from 80° to 90°.
Embodiment 3: The distributed data processing system of embodiment 2 in which the circuit board is positioned parallel to the front panel.
Embodiment 4: The distributed data processing system of any of embodiments 1 to 3 in which the first data processor comprises at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, a storage device, or an application specific integrated circuit (ASIC).
Embodiment 5: The distributed data processing system of any of embodiments 1 to 4 in which the first optical module comprises a first photonic integrated circuit, a first optical connector part that is configured to be removably coupled to a second optical connector part that is attached to the first optical fiber cable, and a connector that is connected to the first optical link to receive supply light from the optical power supply.
Embodiment 6: The distributed data processing system of embodiment 5 in which the first optical module comprises an optical splitter that splits the supply light, and provides a first portion of the supply light to a receiver that is configured to extract synchronization information.
Embodiment 7: The distributed data processing system of embodiment 5 in which the optical module comprises an optical splitter that splits the supply light, and provides a first portion of the supply light to an optoelectronic modulator that is configured to modulate onto the first portion of the supply light the output electrical signals from the first data processor to generate modulated light, in which the modulated light is output through the first optical fiber cable.
Embodiment 8: The distributed data processing system of any of embodiments 1 to 7 in which the first optical module is configured to convert optical signals received from the first optical fiber cable or another optical fiber cable to electrical signals that are provided to the first data processor; the first optical module is configured to generate a plurality of first serial electrical signals based on the received optical signals, in which each first serial electrical signal is generated based on one of the channels of first optical signals;
Embodiment 9: The distributed data processing system of any of embodiments 1 to 8 in which the first optical module is electrically coupled to the first circuit board using electrical contacts that comprise at least one of spring-loaded elements, compression interposers, or land-grid arrays.
Embodiment 10: The distributed data processing system of any of embodiments 1 to 9 in which the first optical link comprises a polarization-maintaining optical fiber.
Embodiment 11: The distributed data processing system of any of embodiments 1 to 10 in which the first optical module comprises a first co-packaged optical module that comprises a first photonic integrated circuit co-packaged with a first electronic integrated circuit.
Embodiment 12: The distributed data processing system of embodiment 11 in which the first co-packaged optical module comprises a first substrate, and the first photonic integrated circuit and the first electronic integrated circuit are mounted on the first substrate.
Embodiment 13: The distributed data processing system of embodiment 11 in which the first electronic integrated circuit is mounted on a surface of the first photonic integrated circuit.
Embodiment 14: The distributed data processing system of any of embodiments 11 to 13 in which the first co-packaged optical module comprises a first pluggable module that is configured to be removably connected to a socket of the first data processing system, the socket is electrically coupled to the first data processor, and the first pluggable module comprises the first photonic integrated circuit and the first electronic integrated circuit.
Embodiment 15: The distributed data processing system of any of embodiments 11 to 14 in which the second optical module comprises a second co-packaged optical module that comprises a second photonic integrated circuit co-packaged with a second electronic integrated circuit.
Embodiment 16: The distributed data processing system of embodiment 15 in which the second co-packaged optical module comprises a second substrate, and the second photonic integrated circuit and second the electronic integrated circuit are mounted on the second substrate.
Embodiment 17: The distributed data processing system of embodiment 15 in which the second electronic integrated circuit is mounted on a surface of the second photonic integrated circuit.
Embodiment 18: The distributed data processing system of any of embodiments 15 to 17 in which the second co-packaged optical module comprises a second pluggable module that is configured to be removably connected to a socket of the second data processing system, the socket is electrically coupled to the second data processor, and the second pluggable module comprises the second photonic integrated circuit and the second electronic integrated circuit.
Embodiment 19: A system comprising:
Embodiment 20: The system of embodiment 19 wherein the optical cable assembly comprises a first optical fiber optically coupled to the optical power supply fiber port of the first optical fiber connector and the first optical power supply fiber port of the third optical fiber connector.
Embodiment 21: The system of embodiment 20 wherein the optical cable assembly comprises a second optical fiber optically coupled to the optical power supply fiber port of the second optical fiber connector and the second optical power supply fiber port of the third optical fiber connector.
Embodiment 22: The system of embodiment 21 wherein the optical cable assembly comprises a third optical fiber optically coupled to the transmitter fiber port of the first optical fiber connector and the receiver fiber port of the second optical fiber connector.
Embodiment 23: The system of embodiment 22 wherein the optical cable assembly comprises a fourth optical fiber optically coupled to the receiver fiber port of the first optical fiber connector and the transmitter fiber port of the second optical fiber connector.
Embodiment 24: The system of embodiment 23 wherein the optical cable assembly comprises an optical fiber guide module comprising a first port, a second port, and a third port,
Embodiment 25: The system of embodiment 24 wherein the first, third, and fourth optical fibers extend from the first port of the optical fiber guide module to the first optical fiber connector.
Embodiment 26: The system of embodiment 25 wherein the second, third, and fourth optical fibers extend from the second port of the optical fiber guide module to the second optical fiber connector.
Embodiment 27: The system of embodiment 26 wherein the first and second optical fibers extend from the third port of the optical fiber guide module to the third optical fiber connector.
Embodiment 28: The system of any of embodiments 24 to 27 wherein the optical fiber guide module is configured to restrict bending of the optical fibers that pass through the optical fiber guide module such that each optical fiber within the optical fiber guide module has a bending radius greater than a predetermined value to prevent excess optical light loss or damage to the optical fiber due to bending.
Embodiment 29: The system of any of embodiments 19 to 28, comprising a first optical power supply module optically coupled to the third optical fiber connector and configured to provide power supply light to the first optical power supply fiber port and the second optical power supply port.
Embodiment 30: The system of embodiment 29, comprising a first photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the power supply light from the first optical power supply module through the optical power supply fiber port of the first optical fiber connector.
Embodiment 31: The system of embodiment 30 wherein the first photonic integrated circuit is configured to modulate the power supply light to generate a first modulated optical signal, and transmit the first modulated optical signal to the transmitter fiber port of the first optical fiber connector.
Embodiment 32: The system of embodiment 31, comprising a second photonic integrated circuit optically coupled to the second optical fiber connector and configured to receive the power supply light from the first optical power supply module through the optical power supply fiber port of the second optical fiber connector.
Embodiment 33: The system of embodiment 32 wherein the second photonic integrated circuit is configured to modulate the power supply light to generate a second modulated optical signal, and transmit the second modulated optical signal to the transmitter fiber port of the second optical fiber connector.
Embodiment 34: The system of embodiment 33 wherein the first photonic integrated circuit is configured to, through the receiver fiber port of the first optical fiber connector, receive the second modulated optical signal transmitted from the second photonic integrated circuit.
Embodiment 35: The system of embodiment 34 wherein the second photonic integrated circuit is configured to, through the receiver fiber port of the second optical fiber connector, receive the first modulated optical signal transmitted from the first photonic integrated circuit.
Embodiment 36: The system of embodiment 19, comprising a first optical power supply module optically coupled to the third optical fiber connector and configured to provide a first sequence of optical frame templates to the first optical power supply fiber port and a second sequence of optical frame templates to the second optical power supply fiber port.
Embodiment 37: The system of embodiment 36, comprising a first photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the first sequence of optical frame templates from the first optical power supply module through the optical power supply fiber port of the first optical fiber connector.
Embodiment 38: The system of embodiment 37 wherein the first photonic integrated circuit is configured to modulate the first sequence of optical frame templates to generate a first sequence of loaded optical frames, and transmit the first sequence of loaded optical frames to the transmitter fiber port of the first optical fiber connector.
Embodiment 39: The system of embodiment 38, comprising a second photonic integrated circuit optically coupled to the second optical fiber connector and configured to receive the second sequence of optical frame templates from the second optical power supply module through the optical power supply fiber port of the second optical fiber connector.
Embodiment 40: The system of embodiment 38 wherein the second photonic integrated circuit is configured to modulate the second sequence of optical frame templates to generate a second sequence of loaded optical frames, and transmit the second sequence of loaded optical frames to the transmitter fiber port of the second optical fiber connector.
Embodiment 41: The system of embodiment 40 wherein the first photonic integrated circuit is configured to, through the receiver fiber port of the first optical fiber connector, receive the second sequence of loaded optical frames transmitted from the second photonic integrated circuit.
Embodiment 42: The system of embodiment 41 wherein the second photonic integrated circuit is configured to, through the receiver fiber port of the second optical fiber connector, receive the first sequence of loaded optical frames transmitted from the first photonic integrated circuit.
Embodiment 43: A system comprising:
Embodiment 44: The system of embodiment 43 wherein the optical cable assembly comprises a first optical fiber optically coupled to the optical power supply fiber port of the first optical fiber connector and the optical power supply fiber port of the third optical fiber connector.
Embodiment 45: The system of embodiment 44 wherein the optical cable assembly comprises a second optical fiber optically coupled to the optical power supply fiber port of the second optical fiber connector and the optical power supply fiber port of the fourth optical fiber connector.
Embodiment 46: The system of embodiment 45 wherein the optical cable assembly comprises a third optical fiber optically coupled to the transmitter fiber port of the first optical fiber connector and the receiver fiber port of the second optical fiber connector.
Embodiment 47: The system of embodiment 46 wherein the optical cable assembly comprises a fourth optical fiber optically coupled to the receiver fiber port of the first optical fiber connector and the transmitter fiber port of the second optical fiber connector.
Embodiment 48: The system of embodiment 47 wherein the optical cable assembly comprises a first optical fiber guide module comprising a first port, a second port, and a third port,
Embodiment 49: The system of embodiment 48 wherein the optical cable assembly comprises a second optical fiber guide module comprising a first port, a second port, and a third port,
Embodiment 50: The system of embodiment 49 wherein the first, third, and fourth optical fibers extend from the first port of the first optical fiber guide module to the first optical fiber connector.
Embodiment 51: The system of embodiment 50 wherein the second, third, and fourth optical fibers extend from the first port of the second optical fiber guide module to the second optical fiber connector.
Embodiment 52: The system of embodiment 51 wherein the first optical fiber extends from the third port of the first optical fiber guide module to the third optical fiber connector.
Embodiment 53: The system of embodiment 52 wherein the second optical fiber extends from the third port of the second optical fiber guide module to the fourth optical fiber connector.
Embodiment 54: The system of embodiment 53 wherein the first optical fiber guide module is configured to restrict bending of the first, third, and fourth optical fibers that pass through the optical fiber guide module such that each optical fiber within the optical fiber guide module has a bending radius greater than a predetermined value to prevent excess optical light loss or damage to the optical fiber due to bending.
Embodiment 55: The system of embodiment 54 wherein the second optical fiber guide module is configured to restrict bending of the second, third, and fourth optical fibers that pass through the optical fiber guide module such that each optical fiber within the optical fiber guide module has a bending radius greater than a predetermined value to prevent excess optical light loss or damage to the optical fiber due to bending.
Embodiment 56: The system of any of embodiments 43 to 55, comprising a first optical power supply module optically coupled to the third optical fiber connector and configured to provide power supply light to the optical power supply fiber port of the third optical fiber connector.
Embodiment 57: The system of embodiment 56, comprising a first photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the power supply light from the first optical power supply module through the optical power supply fiber port of the first optical fiber connector.
Embodiment 58: The system of embodiment 57 wherein the first photonic integrated circuit is configured to modulate the power supply light to generate a first modulated optical signal, and transmit the first modulated optical signal to the transmitter fiber port of the first optical fiber connector.
Embodiment 59: The system of embodiment 58, comprising a second optical power supply module optically coupled to the fourth optical fiber connector and configured to provide power supply light to the optical power supply fiber port of the fourth optical fiber connector.
Embodiment 60: The system of embodiment 59, comprising a second photonic integrated circuit optically coupled to the second optical fiber connector and configured to receive the power supply light from the second optical power supply module through the optical power supply fiber port of the second optical fiber connector.
Embodiment 61: The system of embodiment 60 wherein the second photonic integrated circuit is configured to modulate the power supply light to generate a second modulated optical signal, and transmit the second modulated optical signal to the transmitter fiber port of the second optical fiber connector.
Embodiment 62: The system of embodiment 61 wherein the first photonic integrated circuit is configured to, through the receiver fiber port of the first optical fiber connector, receive the second modulated optical signal transmitted from the second photonic integrated circuit.
Embodiment 63: The system of embodiment 62 wherein the second photonic integrated circuit is configured to, through the receiver fiber port of the second optical fiber connector, receive the first modulated optical signal transmitted from the first photonic integrated circuit.
Embodiment 64: The system of embodiment 43, comprising a first optical power supply module optically coupled to the third optical fiber connector and configured to provide a first sequence of optical frame templates to the optical power supply fiber port of the third optical fiber connector.
Embodiment 65: The system of embodiment 64, comprising a first photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the first sequence of optical frame templates from the first optical power supply module through the optical power supply fiber port of the first optical fiber connector.
Embodiment 66: The system of embodiment 65 wherein the first photonic integrated circuit is configured to modulate the first sequence of optical frame templates to generate a first sequence of loaded optical frames, and transmit the first sequence of loaded optical frames to the transmitter fiber port of the first optical fiber connector.
Embodiment 67: The system of embodiment 66, comprising a second optical power supply module optically coupled to the fourth optical fiber connector and configured to provide a second sequence of optical frame templates to the optical power supply fiber port of the fourth optical fiber connector.
Embodiment 68: The system of embodiment 67, comprising a second photonic integrated circuit optically coupled to the second optical fiber connector and configured to receive the second sequence of optical frame templates from the second optical power supply module through the optical power supply fiber port of the second optical fiber connector.
Embodiment 69: The system of embodiment 68 wherein the second photonic integrated circuit is configured to modulate the second sequence of optical frame templates to generate a second sequence of loaded optical frames, and transmit the second sequence of loaded optical frames to the transmitter fiber port of the second optical fiber connector.
Embodiment 70: The system of embodiment 69 wherein the first photonic integrated circuit is configured to, through the receiver fiber port of the first optical fiber connector, receive the second sequence of loaded optical frames transmitted from the second photonic integrated circuit.
Embodiment 71: The system of embodiment 70 wherein the second photonic integrated circuit is configured to, through the receiver fiber port of the second optical fiber connector, receive the first sequence of loaded optical frames transmitted from the first photonic integrated circuit.
Embodiment 72: A system comprising:
Embodiment 73: The system of embodiment 72 wherein each transmitter fiber port in the first optical fiber connector maps to a receiver fiber port in a mirror image of the first optical fiber connector, wherein the mirror image is generated relative to an axis of reflection at an edge of the first optical fiber connector.
Embodiment 74: The system of embodiment 73 wherein each receiver fiber port in the first optical fiber connector maps to a transmitter fiber port in the mirror image of the first optical fiber connector, wherein the mirror image is generated relative to the axis of reflection at the edge of the first optical fiber connector.
Embodiment 75: The system of embodiment 74 wherein each transmitter fiber port in the second optical fiber connector maps to a receiver fiber port in a mirror image of the second optical fiber connector, wherein the mirror image is generated relative to an axis of reflection at an edge of the second optical fiber connector.
Embodiment 76: The system of embodiment 75 wherein each receiver fiber port in the second optical fiber connector maps to a transmitter fiber port in the mirror image of the second optical fiber connector, wherein the mirror image is generated relative to the axis of reflection at the edge of the second optical fiber connector.
Embodiment 77: The system of any of embodiments 72 to 76 wherein each optical power supply fiber port in the first optical fiber connector maps to another optical power supply fiber port in a mirror image of the first optical fiber connector, wherein the mirror image is generated relative to an axis of reflection at a main central axis of the first optical fiber connector.
Embodiment 78: The system of embodiment 77 wherein each optical power supply fiber port in the second optical fiber connector maps to another optical power supply fiber port in a mirror image of the second optical fiber connector, wherein the mirror image is generated relative to an axis of reflection at a main central axis of the second optical fiber connector.
Embodiment 79: The system of any of embodiments 72 to 78, comprising a first communication transponder that comprises an optical fiber connector that comprises at least one optical power supply fiber port, at least one transmitter fiber port, and at least one receiver fiber port;
Embodiment 80: The system of embodiment 79, comprising a second optical transponder that comprises an optical fiber connector that comprises at least one optical power supply fiber port, at least one transmitter fiber port, and at least one receiver fiber port;
Embodiment 81: The system of embodiment 80 wherein the first optical fiber connector of the optical cable assembly is also compatible with the optical fiber connector of the second optical transponder in which the at least one optical power supply fiber port of the first optical fiber connector of the optical cable assembly maps to the at least one optical power supply fiber port of the optical fiber connector of the second optical transponder,
Embodiment 82: The system of any of embodiments 72 to 81 in which each optical power supply fiber port in the first optical fiber connector is optically coupled to a corresponding optical power supply fiber port in the second optical fiber connector.
Embodiment 83: A system comprising:
Embodiment 84: The system of embodiment 83 wherein at least one of the optical signal fibers is configured to transmit a first modulated optical signal that propagates in a direction from the second port of the first fiber coupler to the second port of the second fiber coupler; and wherein at least one of the optical signal fibers is configured to transmit a second modulated optical signal that propagates in a direction from the second port of the second fiber coupler to the second port of the first fiber coupler.
Embodiment 85: The system of embodiment 83 or 84 wherein the optical cable assembly comprises:
Embodiment 86: The system of embodiment 85 wherein the optical cable assembly comprises:
Embodiment 87: The system of embodiment 86 wherein the at least one optical power supply fiber port of the first optical fiber connector is configured to provide the first optical power supply light to a first photonic integrated circuit optically coupled to the first optical fiber connector,
Embodiment 88: The system of embodiment 87 wherein each of the at least one transmitter fiber port of the first optical fiber connector is optically coupled to a corresponding receiver fiber port of the second optical fiber connector through a corresponding optical signal fiber, and each of the at least one transmitter fiber port of the second optical fiber connector is optically coupled to a corresponding receiver fiber port of the first optical fiber connector through a corresponding optical signal fiber.
Embodiment 89: The system of embodiment 88, comprising the first photonic integrated circuit, wherein the first photonic integrated circuit is configured to:
Embodiment 90: The system of embodiment 89, comprising the second photonic integrated circuit, wherein the second photonic integrated circuit is configured to:
Embodiment 91: The system of embodiment 90 wherein a first optical signal fiber provides an optical path between a transmitter fiber port of the first optical fiber connector and a corresponding receiver fiber port of the second optical fiber connector.
Embodiment 92: The system of embodiment 91 wherein a second optical signal fiber has a first end optically coupled to a corresponding transmitter fiber port of the second optical fiber connector and a second end optically coupled to a corresponding receiver fiber port of the first optical fiber connector,
Embodiment 93: The system of any of embodiments 83 to 92 wherein the optical signal fibers comprise a first portion of optical signal fibers and a second portion of optical signal fibers connected by optical fiber connectors, the optical fiber connectors being positioned between the second port of the first fiber coupler and the second port of the second fiber coupler along optical paths provided by the optical signal fibers.
Embodiment 94: The system of any of embodiments 83 to 93 wherein the optical cable assembly comprises:
Embodiment 95: The system of any of embodiments 83 to 94 wherein the optical signal fibers extend outward from the first port of the first fiber coupler in a first direction, the optical signal fibers extend outward from the second port of the first fiber coupler in a second direction, the at least one first optical power supply fiber extends outward from the third port of the first fiber coupler in a third direction, a first angle is between the first and the second directions, a second angle is between the second and third directions, a third angle is between the first and third directions, the first fiber coupler is configured to limit bending of the optical fibers such that each of the first, second, and third angles is in a range from 30 to 180 degrees.
Embodiment 96: The system of any of embodiments 83 to 95, comprising a first optical power supply module configured to produce the first optical power supply light that comprises at least one of (i) continuous-wave light, (ii) at least one train of periodic optical pulses, or (iii) at least one train of non-periodic optical pulses, and transmit the first optical power supply light to the at least one second optical fiber.
Embodiment 97: The system of embodiment 96, comprising a first photonic integrated circuit that is configured to modulate the first optical power supply light to generate a first modulated signal, and transmit the first modulated signal to one of the optical signal fibers, wherein the first modulated signal propagates in the optical signal fiber in a direction from the first port to the second port.
Embodiment 98: A system comprising:
Embodiment 99: The system of embodiment 98, comprising a first photonic integrated circuit that is optically coupled to the first fiber connector, wherein the first photonic integrated circuit is configured to:
Embodiment 100: The system of embodiment 98 or 99, comprising a first photonic integrated circuit that is optically coupled to the first fiber connector, wherein the first photonic integrated circuit is configured to:
Embodiment 101: The system of any of embodiments 98 to 100, comprising an optical power supply connector optically coupled to the at least one second optical fiber that extends from the third port of the first fiber coupler, wherein the optical power supply connector comprises at least one optical power supply fiber port, each optical power supply fiber port is optically coupled to a corresponding second optical fiber, the optical power supply connector is configured to be coupled to an optical power supply that transmits at least one optical power supply signal to the at least one second optical fiber.
Embodiment 102: The system of any of embodiments 98 to 101 wherein the optical cable assembly comprises:
Embodiment 103: The system of embodiment 102 wherein the first optical fibers comprise a first portion of optical fibers and a second portion of optical fibers connected by fiber connectors, the fiber connectors being positioned between the second port of the first fiber coupler and the second port of the second fiber coupler along optical paths provided by the first optical fibers.
Embodiment 104: The system of embodiment 103, comprising:
Embodiment 105: The system of embodiment 104, comprising:
Embodiment 106: The system of any of embodiments 98 to 105 wherein the at least one second optical fiber carries a sequence of optical frame templates, each of the optical frame templates comprises a respective frame header and a respective frame body, and the frame body comprises a respective optical pulse train.
Embodiment 107: An apparatus comprising:
Embodiment 108: The apparatus of embodiment 107, comprising a first optical power supply module configured to produce a first optical power supply signal and a second optical power supply signal, each of the first and second optical power supply signals comprises at least one of (i) continuous-wave light, (ii) at least one train of periodic optical pulses, or (iii) at least one train of non-periodic optical pulses,
Embodiment 109: The apparatus of embodiment 108, comprising:
Embodiment 110: The apparatus of any of embodiments 107 to 109 wherein at least one of (i) the first common sheath is configured to be at least one of laterally flexible or laterally stretchable, (ii) the second common sheath is configured to be at least one of laterally flexible or laterally stretchable, or (iii) the third common sheath is configured to be at least one of laterally flexible or laterally stretchable.
Embodiment 111: An apparatus comprising:
Embodiment 112: The apparatus of embodiment 111 wherein the second common sheath surrounds a portion of the plurality of first optical fibers that extend between the second port of the first cable bend restriction module and the second port of the second cable bend restriction module.
Embodiment 113: The apparatus of embodiment 111 or 112 wherein at least one of (i) the first common sheath is configured to be at least one of laterally flexible or laterally stretchable, (ii) the second common sheath is configured to be at least one of laterally flexible or laterally stretchable, (iii) the third common sheath is configured to be at least one of laterally flexible or laterally stretchable, (iv) the fourth common sheath is configured to be at least one of laterally flexible or laterally stretchable, or (v) the fifth common sheath is configured to be at least one of laterally flexible or laterally stretchable.
Embodiment 114: The apparatus of any of embodiments 111 to 113, comprising:
Embodiment 115: The apparatus of embodiment 114, comprising:
Embodiment 116: The apparatus of any of embodiments 111 to 115 wherein the at least one second optical fiber carries a first sequence of optical frame templates, each of the optical frame templates comprises a respective frame header and a respective frame body, and the frame body comprises a respective optical pulse train.
Embodiment 117: The apparatus of embodiment 116 wherein the at least one third optical fiber carries a second sequence of optical frame templates, each of the optical frame templates comprises a respective frame header and a respective frame body, and the frame body comprises a respective optical pulse train.
Embodiment 118: An apparatus comprising:
Embodiment 119: The apparatus of embodiment 118, comprising a first optical power supply module configured to produce a first optical power supply signal and a second optical power supply signal, each of the first and second optical power supply signals comprises at least one of (i) continuous-wave light, (ii) at least one train of periodic optical pulses, or (iii) at least one train of non-periodic optical pulses, wherein the first optical power supply module is configured to transmit the first optical power supply signal to the at least one second optical fiber to cause the first optical power supply signal to propagate in the at least one second optical fiber in a direction from the third port to the first port, wherein the second optical power supply module is configured to transmit the second optical power supply signal to the at least one third optical fiber to cause the second optical power supply signal to propagate in the at least one third optical fiber in a direction from the third port to the second port.
Embodiment 120: The apparatus of embodiment 119, comprising:
Embodiment 121: The apparatus of any of embodiments 118 to 120 wherein at least one of (i) the first common sheath is configured to be at least one of laterally flexible or laterally stretchable, (ii) the second common sheath is configured to be at least one of laterally flexible or laterally stretchable, or (iii) the third common sheath is configured to be at least one of laterally flexible or laterally stretchable.
Embodiment 122: An apparatus comprising:
Embodiment 123: The apparatus of embodiment 122, comprising an electronic integrated circuit configured to process the input electrical signals from the photonic integrated circuit before the input electrical signals are transmitted to the data processor, and to process the output electrical signals from the data processor before the output electrical signals are transmitted to the photonic integrated circuit.
Embodiment 124: The apparatus of embodiment 123 in which the electronic integrated circuit comprises a plurality of serializers/deserializers configured to process the input electrical signals from the photonic integrated circuit, and to process the output electrical signals transmitted to the photonic integrated circuit.
Embodiment 125: The apparatus of embodiment 124 in which the electronic integrated circuit comprises:
Embodiment 126: The apparatus of any of embodiments 122 to 125, comprising the data processor, in which the data processor comprises at least a network switch, a central processor unit, a graphics processor unit, a tensor processing unit, a neural network processor, an artificial intelligence accelerator, a digital signal processor, a microcontroller, or an application specific integrated circuit (ASIC).
Embodiment 127: The apparatus of any of embodiments 122 to 126 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the reflection axis is perpendicular to a row direction.
Embodiment 128: The apparatus of any of embodiments 122 to 126 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the reflection axis is parallel to a row direction.
Embodiment 129: The apparatus of any of embodiments 122 to 126 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the reflection axis is perpendicular to a column direction.
Embodiment 130: The apparatus of any of embodiments 122 to 126 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the reflection axis is parallel to a column direction.
Embodiment 131: The apparatus of any of embodiments 122 to 130 in which the port map is invariant against a 180-degree rotation.
Embodiment 132: The apparatus of embodiment 131 in which the port map is invariant against a 90-degree rotation.
Embodiment 133: The apparatus of any of embodiments 122 to 132, comprising an array of photonic integrated circuits and a plurality of fiber array connectors, in which each fiber array connector is optically coupled to a corresponding photonic integrated circuit, wherein each fiber array connector comprises one or more optical power supply fiber ports, transmitter fiber ports, and receiver fiber ports, the one or more optical power supply fiber ports are configured to receive optical power supply light from one or more external optical fibers and provide the optical power supply light to the corresponding photonic integrated circuit, the transmitter fiber ports are configured to transmit output optical signals to external optical fibers, and the receiver fiber ports are configured to receive input optical signals from external optical fibers.
Embodiment 134: An apparatus comprising:
Embodiment 135: The apparatus of embodiment 134 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the reflection axis is perpendicular to a row direction.
Embodiment 136: The apparatus of embodiment 134 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the reflection axis is parallel to a row direction.
Embodiment 137: The apparatus of embodiment 134 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the reflection axis is perpendicular to a column direction.
Embodiment 138: The apparatus of embodiment 134 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the reflection axis is parallel to a column direction.
Embodiment 139: The apparatus of any of embodiments 134 to 138 in which the port map is invariant against a 180-degree rotation.
Embodiment 140: The apparatus of any of embodiments 134 to 138 in which the port map is invariant against a 90-degree rotation.
Embodiment 141: The apparatus of any of embodiments 134 to 140 in which the optical cable assembly comprises a second optical fiber connector comprising one or more optical power supply fiber ports, a plurality of transmitter fiber ports, and a plurality of receiver fiber ports;
Embodiment 142: The apparatus of embodiment 141 in which the first optical fiber connector and the second optical fiber connector have the same port map.
Embodiment 143: The apparatus of any of embodiments 134 to 142, comprising an optical power supply module optically coupled to the one or more optical power supply fiber ports and configured to provide power supply light to the one or more optical power supply fiber ports.
Embodiment 144: The apparatus of embodiment 143, comprising a photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the power supply light from the optical power supply module through the one or more optical power supply fiber ports of the first optical fiber connector.
Embodiment 145: The apparatus of embodiment 144 in which the photonic integrated circuit is configured to modulate the power supply light to generate modulated optical signals, and transmit the modulated optical signals to the transmitter fiber ports of the first optical fiber connector.
Embodiment 146: The apparatus of embodiment 144 or 145 in which the photonic integrated circuit is configured to receive optical signals through the receiver fiber ports.
Embodiment 147: An apparatus comprising:
Embodiment 148: The apparatus of embodiment 147 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the center axis is parallel to a row direction.
Embodiment 149: The apparatus of embodiment 147 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in rows, and the center axis is perpendicular to a row direction.
Embodiment 150: The apparatus of embodiment 147 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the center axis is parallel to a column direction.
Embodiment 151: The apparatus of embodiment 147 in which at least some of the one or more power supply fiber ports, the transmitter fiber ports, and the receiver fiber ports are arranged in columns, and the center axis is perpendicular to a column direction.
Embodiment 152: The apparatus of embodiment 147 in which at least some of the one or more power supply, transmitter, and receiver fiber ports are arranged in rows and columns,
Embodiment 153: The apparatus of any of embodiments 147 to 151 in which the power supply, transmitter, and receiver fiber ports are arranged in the first optical fiber connector according to a port map that is invariant against a 180-degree rotation.
Embodiment 154: The apparatus of embodiment 153 in which the port map is invariant against a 90-degree rotation.
Embodiment 155: The apparatus of any of embodiments 147 to 154 in which the optical cable assembly comprises a second optical fiber connector comprising one or more optical power supply fiber ports, a plurality of transmitter fiber ports, and a plurality of receiver fiber ports;
Embodiment 156: The apparatus of embodiment 155 in which the first optical fiber connector has a first port map, the second optical fiber connector has a second port map, and the first port map is the same as the second port map.
Embodiment 157: The apparatus of any of embodiments 147 to 156, comprising an optical power supply module optically coupled to the one or more optical power supply fiber ports and configured to provide power supply light to the one or more optical power supply fiber ports.
Embodiment 158: The apparatus of embodiment 157, comprising a photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the power supply light from the optical power supply module through the one or more optical power supply fiber ports of the first optical fiber connector.
Embodiment 159: The apparatus of embodiment 158 in which the photonic integrated circuit is configured to modulate the power supply light to generate modulated optical signals, and transmit the modulated optical signals to the transmitter fiber ports of the first optical fiber connector.
Embodiment 160: The apparatus of embodiment 158 or 159 in which the photonic integrated circuit is configured to receive optical signals through the receiver fiber ports.
Embodiment 161: An apparatus comprising:
Embodiment 162: The apparatus of embodiment 161 in which the port map is invariant against a 90-degree rotation.
Embodiment 163: The apparatus of embodiment 161 or 162, comprising an optical power supply module optically coupled to the one or more optical power supply fiber ports and configured to provide power supply light to the one or more optical power supply fiber ports.
Embodiment 164: The apparatus of embodiment 163, comprising a photonic integrated circuit optically coupled to the first optical fiber connector and configured to receive the power supply light from the optical power supply module through the one or more optical power supply fiber ports of the first optical fiber connector.
Embodiment 165: The apparatus of embodiment 164 in which the photonic integrated circuit is configured to modulate the power supply light to generate modulated optical signals, and transmit the modulated optical signals to the transmitter fiber ports of the first optical fiber connector.
Embodiment 166: The apparatus of embodiment 164 or 165 in which the photonic integrated circuit is configured to receive optical signals through the receiver fiber ports.
Embodiment 167: A method of operating the system or apparatus of any of embodiments 1 to 166 and 171 to 210.
Embodiment 168: A method of processing data, the method comprising:
Embodiment 169: A method comprising:
Embodiment 170: A method comprising:
Embodiment 171: A system comprising:
Embodiment 172: The system of embodiment 171, comprising a first server optically coupled to the first optical fiber connector.
Embodiment 173: The system of embodiment 172, comprising a second server optically coupled to the second optical fiber connector.
Embodiment 174: The system of any of embodiments 171 to 173, comprising a switch optically coupled to the transmitter fiber ports and the receiver fiber ports of the third optical fiber connector.
Embodiment 175: The system of any of embodiments 171 to 174, comprising an optical power supply module optically coupled to optical power supply fiber ports of the third optical fiber connector and configured to provide power supply light to the optical power supply fiber ports of the third optical fiber connector.
Embodiment 176: The system of embodiment 175 in which the first server and the second server are mounted on a server rack, the switch is mounted on a switch rack that is different from the server rack, the optical power supply module is mounted at switch rack or another rack different from the server rack, and the optical power supply module is optically coupled to the optical power supply fiber ports of the third optical fiber connector through a plurality of optical fibers.
Embodiment 177: The system of any of embodiments 171 to 175 in which the optical cable assembly comprises a fourth optical fiber connector comprising an optical power supply fiber port, a transmitter fiber port, and a receiver fiber port, wherein the optical power supply fiber port of the fourth optical fiber connector is optically coupled to one of the optical power supply fiber ports of the third optical fiber connector, the transmitter fiber port of the fourth optical fiber connector is optically coupled to one of the transmitter fiber ports of the third optical fiber connector, and the receiver fiber port of the fourth optical fiber connector is optically coupled to one of the receiver fiber ports of the third optical fiber connector.
Embodiment 178: The system of embodiment 171 in which the optical cable assembly comprises a fourth optical fiber connector comprising an optical power supply fiber port, a transmitter fiber port, and a receiver fiber port;
Embodiment 179: The system of embodiment 178, comprising a switch optically coupled to the transmitter fiber ports and the receiver fiber ports of the third optical fiber connector.
Embodiment 180: The system of embodiment 178 or 179, comprising an optical power supply module optically coupled to the optical power supply fiber ports of the third optical fiber connector and configured to provide power supply light to the optical power supply fiber ports of the third optical fiber connector, wherein the optical power supply is configured to provide power supply light to the first server through the optical power supply fiber ports of the third optical fiber connector and the first optical fiber connector, wherein the optical power supply is configured to provide power supply light to the second server through the optical power supply fiber ports of the third optical fiber connector and the second optical fiber connector, and wherein the optical power supply is configured to provide power supply light to the fourth server through the optical power supply fiber ports of the third optical fiber connector and the fourth optical fiber connector.
Embodiment 181: A system comprising:
Embodiment 182: The system of embodiment 181 in which the data processing apparatus is configured to access the first storage device and the second storage device through optical links that are optically coupled to the transmitter and receiver fiber ports of the first and second optical fiber connectors.
Embodiment 183: The system of embodiment 181 or 182 in which the optical power supply is configured to provide power supply light to the first optical module through the optical power supply fiber ports of the third optical fiber connector and the first optical fiber connector, wherein the optical power supply is configured to provide power supply light to the second optical module through the optical power supply fiber ports of the third optical fiber connector and the second optical fiber connector.
Embodiment 184: The distributed data processing system of any of embodiments 1 to 183 in which the first data processing system is configured to transmit wavelength division multiplexing (WDM) optical signals having two or more different wavelengths to the first optical fiber cable.
Embodiment 185: The distributed data processing system of any of embodiments 1 to 18 in which the first data processing system comprises a plurality of servers, the second data processing system comprises a plurality of switches, the plurality of servers are in optical communication with the plurality of switches through a plurality of optical fiber cables,
Embodiment 186: The distributed data processing system of embodiment 185 in which the servers are configured to output wavelength division multiplexing (WDM) optical signals having two or more different wavelengths, and the switches are configured to output WDM optical signals,
Embodiment 187: The distributed data processing system of embodiment 186 in which the WDM translator comprises a wavelength/space shuffle matrix.
Embodiment 188: The distributed data processing system of embodiment 187 in which the WDM signals comprise N1 different wavelengths, N1 being a positive integer, and the WDM translator comprises an N1×N1 wavelength/space shuffle matrix.
Embodiment 189: The distributed data processing system of embodiment 188 in which the first data processing system comprise N2 servers, N2 being a positive integer, the second data processing system comprises N1 switches, and the WDM translator comprises N2/N1 of N1×N1 wavelength/space shuffle matrices.
Embodiment 190: The distributed data processing system of any of embodiments 187 to 189 in which the wavelength/space shuffle matrix comprises a first set of multiplexer/demultiplexers and a second set of multiplexer/demultiplexers, the first set of multiplexer/demultiplexers are optically coupled to the servers, and the second set of multiplexer/demultiplexers are optically coupled to the switches.
Embodiment 191: The distributed data processing system of embodiment 190 in which for optical signal paths from the servers to the switches, the first set of multiplexer/demultiplexers function as demultiplexers and the second set of multiplexer/demultiplexers function as re-multiplexers.
Embodiment 192: The distributed data processing system of embodiment 191 in which for optical signal paths from the switches to the servers, the second set of multiplexer/demultiplexers function as demultiplexers and the first set of multiplexer/demultiplexers function as re-multiplexers.
Embodiment 193: The distributed data processing system of any of embodiments 186 to 192 in which the WDM translator comprises power supply light feed-through signal paths to enable the power supply light from the optical power supply to pass through the WDM translator to the servers.
Embodiment 194: A system comprising:
Embodiment 195: The system of embodiment 194 in which the WDM translator comprises power supply light feed-through signal paths to enable the power supply light from the optical power supply to pass through the WDM translator to the first group of servers.
Embodiment 196: The system of embodiment 194 or 195 in which the WDM translator comprises a wavelength/space shuffle matrix.
Embodiment 197: The system of embodiment 196 in which the WDM signals comprise N1 different wavelengths, N1 being a positive integer, and the wavelength/space shuffle matrix comprises an N1×N1 wavelength/space shuffle matrix.
Embodiment 198: The system of embodiment 197 in which the first group of servers comprise N2 servers, N2 being a positive integer, the second group of servers comprise N1 servers, and the WDM translator comprises N2/N1 of N1×N1 wavelength/space shuffle matrices.
Embodiment 199: The system of any of embodiments 196 to 198 in which the wavelength/space shuffle matrix comprises a first set of multiplexer/demultiplexers and a second set of multiplexer/demultiplexers, the first set of multiplexer/demultiplexers are optically coupled to the first group of servers, and the second set of multiplexer/demultiplexers are optically coupled to the second group of servers.
Embodiment 200: The system of embodiment 199 in which for optical signal paths from the first group of servers to the second group of servers, the first set of multiplexer/demultiplexers function as demultiplexers and the second set of multiplexer/demultiplexers function as re-multiplexers.
Embodiment 201: The system of embodiment 200 in which for optical signal paths from the second group of servers to the first group of servers, the second set of multiplexer/demultiplexers function as demultiplexers and the first set of multiplexer/demultiplexers function as re-multiplexers.
Embodiment 202: The system of any of embodiments 194 to 201 in which the second group of servers comprise switch servers, each switch server comprises one or more network switch data processing integrated circuits.
Embodiment 203: The system of any of embodiments 194 to 201 in which the first group of servers comprise data storage servers, each data storage server comprises at least one of memory modules or non-volatile storage devices.
Embodiment 204: The system of any of embodiments 194 to 203 in which the first group of servers are installed at a first server rack, the second group of servers are installed at a second server rack different from the first server rack, and the optical power supply is located external to the first server rack.
Embodiment 205: The system of any of embodiments 194 to 204, comprising the second group of servers.
Embodiment 206: The system of embodiment 205, comprising the first group of servers.
Embodiment 207: The system of embodiment 206, comprising the optical power supply.
Embodiment 208: The system of any of embodiments 205 to 207 in which the second group of servers are configured to execute application programs to implement at least one of (i) one or more virtual worlds, or (ii) one or more metaverses.
Embodiment 209: The system of embodiment 208 in which the first group of servers comprise data storage servers that are configured to store data used for simulating at least one of objects or environments for the at least one of (i) one or more virtual worlds, or (ii) one or more metaverses.
Embodiment 210: The system of any of embodiments 205 to 207 in which the first group of servers are configured to provide one or more services that comprise at least one of cloud computing, database processing, audio/video hosting and streaming, electronic mail, data storage, web hosting, social networking, supercomputing, scientific research computing, healthcare data processing, financial transaction processing, logistics management, weather forecasting, or simulation.
This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 17/727,317, filed on Apr. 22, 2022, which claims priority to U.S. provisional patent application 63/178,501, filed on Apr. 22, 2021, U.S. Provisional Application 63/210,437, filed on Jun. 14, 2021, U.S. provisional patent application 63/245,005, filed on Sep. 16, 2021, U.S. provisional patent application 63/245,559, filed on Sep. 17, 2021, U.S. provisional patent application 63/225,779, filed on Jul. 26, 2021, U.S. provisional patent application 63/272,025, filed on Oct. 26, 2021, U.S. provisional patent application 63/208,759, filed on Jun. 9, 2021, U.S. provisional patent application 63/245,011, filed on Sep. 16, 2021, U.S. provisional patent application 63/192,852, filed on May 25, 2021, U.S. provisional application 63/212,013, filed on Jun. 17, 2021, U.S. provisional patent application 63/223,685, filed on Jul. 20, 2021, U.S. provisional patent application 63/316,551, filed on Mar. 4, 2022, and U.S. provisional application 63/324,429, filed on Mar. 28, 2022. The entire disclosures of the above applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4346478 | Sichling | Aug 1982 | A |
4449043 | Husbands | May 1984 | A |
4525873 | Baues | Jun 1985 | A |
5107358 | Hodgkinson et al. | Apr 1992 | A |
5111322 | Bergano et al. | May 1992 | A |
5136410 | Heiling | Aug 1992 | A |
5229925 | Spencer et al. | Jul 1993 | A |
5491576 | Bergano | Feb 1996 | A |
5654818 | Yao | Aug 1997 | A |
5790287 | Darcie et al. | Aug 1998 | A |
6284975 | McCord et al. | Sep 2001 | B1 |
6305848 | Gregory | Oct 2001 | B1 |
6321013 | Hardwick, III et al. | Nov 2001 | B1 |
6396990 | Ehn et al. | May 2002 | B1 |
6411520 | Hauke et al. | Jun 2002 | B1 |
6563696 | Harris et al. | May 2003 | B1 |
6646774 | Willner | Nov 2003 | B1 |
6675976 | Steinman et al. | Jan 2004 | B2 |
6769812 | Handforth | Aug 2004 | B1 |
6822874 | Marler | Nov 2004 | B1 |
6839516 | Lee et al. | Jan 2005 | B2 |
6924986 | Sardella et al. | Aug 2005 | B1 |
6959152 | Fujiwara | Oct 2005 | B2 |
7042737 | Woolsey et al. | May 2006 | B1 |
7106970 | Fujiwara | Sep 2006 | B2 |
7170749 | Hoshino et al. | Jan 2007 | B2 |
7180751 | Geschke et al. | Feb 2007 | B1 |
7239523 | Collins et al. | Jul 2007 | B1 |
7289728 | Wang et al. | Oct 2007 | B2 |
7445389 | Aronson | Nov 2008 | B2 |
7643292 | Chen | Jan 2010 | B1 |
7646990 | Weber et al. | Jan 2010 | B2 |
7787772 | Ota | Aug 2010 | B2 |
7813143 | Dorenkamp et al. | Oct 2010 | B2 |
7831049 | Kanter | Nov 2010 | B1 |
8032021 | Cole et al. | Oct 2011 | B2 |
8032025 | Ibragimov et al. | Oct 2011 | B2 |
8047856 | Mccolloch | Nov 2011 | B2 |
8073326 | Yan et al. | Dec 2011 | B2 |
8090230 | Hasharoni et al. | Jan 2012 | B1 |
8116095 | Dorenkamp et al. | Feb 2012 | B2 |
8135287 | Yu et al. | Mar 2012 | B2 |
8208253 | Goergen et al. | Jun 2012 | B1 |
8482917 | Rose | Jul 2013 | B2 |
8488921 | Doany et al. | Jul 2013 | B2 |
8705955 | Grobe et al. | Apr 2014 | B2 |
8761560 | Sanderson et al. | Jun 2014 | B1 |
8780551 | Farnholtz | Jul 2014 | B2 |
8913899 | Neilson et al. | Dec 2014 | B2 |
8929729 | Nguyen | Jan 2015 | B2 |
8992099 | Blackwell et al. | Mar 2015 | B2 |
9059798 | Figueria et al. | Jun 2015 | B2 |
9250649 | Shabbir et al. | Feb 2016 | B2 |
9301025 | Kioski et al. | Mar 2016 | B2 |
9366832 | Arao et al. | Jun 2016 | B2 |
9461768 | Kipp | Oct 2016 | B2 |
9557478 | Doerr et al. | Jan 2017 | B2 |
9622388 | Gaal | Apr 2017 | B1 |
9645316 | Hasharoni et al. | May 2017 | B1 |
9722381 | Moen et al. | Aug 2017 | B1 |
9768881 | Georgas et al. | Sep 2017 | B2 |
9781546 | Barrett | Oct 2017 | B2 |
9786641 | Budd et al. | Oct 2017 | B2 |
9794195 | Wilson | Oct 2017 | B1 |
9832055 | Kuschnerov et al. | Nov 2017 | B2 |
9874688 | Doerr et al. | Jan 2018 | B2 |
9927575 | Goodwill et al. | Mar 2018 | B2 |
10012811 | Rivaud et al. | Jul 2018 | B2 |
10014943 | Testa et al. | Jul 2018 | B2 |
10018787 | Wang | Jul 2018 | B1 |
10025043 | Vallance et al. | Jul 2018 | B2 |
10054749 | Wang | Aug 2018 | B1 |
10082633 | Schaevitz et al. | Sep 2018 | B2 |
10135218 | Popovic et al. | Nov 2018 | B2 |
10135539 | Moss et al. | Nov 2018 | B2 |
10209464 | Pfnuer et al. | Feb 2019 | B2 |
10215944 | Sedor et al. | Feb 2019 | B2 |
10222676 | Wen | Mar 2019 | B2 |
10234646 | Mack et al. | Mar 2019 | B2 |
10271461 | Schmidtke | Apr 2019 | B2 |
10330875 | Fini et al. | Jun 2019 | B2 |
10365436 | Byrd et al. | Jul 2019 | B2 |
10404400 | Chen | Sep 2019 | B2 |
10461863 | Testa et al. | Oct 2019 | B2 |
10514509 | Popovic et al. | Dec 2019 | B2 |
10568238 | Leung | Feb 2020 | B1 |
10582639 | Chopra | Mar 2020 | B1 |
10615903 | Welch | Apr 2020 | B2 |
10725245 | Leigh et al. | Jul 2020 | B2 |
10750250 | Parker et al. | Aug 2020 | B1 |
10866376 | Ghiasi | Dec 2020 | B1 |
10905025 | Thomas et al. | Jan 2021 | B1 |
10951344 | Matsuda et al. | Mar 2021 | B2 |
11005572 | Chiang et al. | May 2021 | B1 |
11051422 | Norton | Jun 2021 | B2 |
11058034 | Leung | Jul 2021 | B2 |
11079559 | Leclair et al. | Aug 2021 | B2 |
11107770 | Ramalingam et al. | Aug 2021 | B1 |
11121776 | Aboagye | Sep 2021 | B2 |
11137561 | Tamate | Oct 2021 | B2 |
11153670 | Winzer | Oct 2021 | B1 |
11165509 | Nagarajan et al. | Nov 2021 | B1 |
11190172 | Raj et al. | Nov 2021 | B1 |
11194109 | Winzer | Dec 2021 | B2 |
11276955 | Rivaud et al. | Mar 2022 | B2 |
11287585 | Winzer | Mar 2022 | B2 |
11381891 | Leigh | Jul 2022 | B2 |
11411643 | Chaouch | Aug 2022 | B1 |
11483943 | Leigh et al. | Oct 2022 | B2 |
11509399 | Paraiso et al. | Nov 2022 | B2 |
11510329 | Leigh | Nov 2022 | B2 |
11521543 | Morris et al. | Dec 2022 | B2 |
11525967 | Bismuto et al. | Dec 2022 | B1 |
11543671 | Xu et al. | Jan 2023 | B2 |
11551636 | Buckley et al. | Jan 2023 | B1 |
11557875 | Kovsh | Jan 2023 | B2 |
11573387 | Sawyer et al. | Feb 2023 | B2 |
11580662 | Kimura | Feb 2023 | B2 |
11585977 | Lambert | Feb 2023 | B2 |
11592629 | Kawamura et al. | Feb 2023 | B2 |
11596073 | Zhang et al. | Feb 2023 | B2 |
11602086 | Crisp et al. | Mar 2023 | B2 |
11604347 | Axelrod et al. | Mar 2023 | B2 |
11609873 | Cannata et al. | Mar 2023 | B2 |
11612079 | Nagarajan et al. | Mar 2023 | B2 |
11615044 | Cannata et al. | Mar 2023 | B2 |
11620805 | Carminati et al. | Apr 2023 | B2 |
11621795 | Winzer | Apr 2023 | B2 |
11627682 | Murakami | Apr 2023 | B2 |
11630261 | Xie | Apr 2023 | B2 |
11630799 | Nagarajan et al. | Apr 2023 | B2 |
11632175 | Di Mola et al. | Apr 2023 | B2 |
11639846 | Xian et al. | May 2023 | B2 |
11644628 | Brisebois et al. | May 2023 | B1 |
11650384 | Edwards et al. | May 2023 | B2 |
11650631 | Watamura et al. | May 2023 | B2 |
11652129 | Vincentsen et al. | May 2023 | B1 |
11657684 | Gupta et al. | May 2023 | B2 |
11662081 | Tamma et al. | May 2023 | B2 |
11665862 | Crisp et al. | May 2023 | B2 |
11665863 | Crisp et al. | May 2023 | B2 |
11668590 | Xie | Jun 2023 | B2 |
11675114 | Teissier et al. | Jun 2023 | B2 |
11677478 | Nagarajan et al. | Jun 2023 | B2 |
11681019 | O'Connor et al. | Jun 2023 | B2 |
11681209 | Sullivan et al. | Jun 2023 | B1 |
11681443 | Venugopal et al. | Jun 2023 | B1 |
11687480 | Heyd et al. | Jun 2023 | B2 |
11688088 | Kimura | Jun 2023 | B2 |
11699243 | Von Cramon | Jul 2023 | B2 |
11710914 | Azuma et al. | Jul 2023 | B2 |
11716278 | Grandhye et al. | Aug 2023 | B1 |
11720514 | Shah et al. | Aug 2023 | B2 |
11727858 | Peng et al. | Aug 2023 | B2 |
11735560 | Nishihara | Aug 2023 | B2 |
11736195 | Leclair et al. | Aug 2023 | B2 |
11754767 | Soskind et al. | Sep 2023 | B1 |
11757705 | Vobbilisetty et al. | Sep 2023 | B2 |
11764339 | Biebersdorf et al. | Sep 2023 | B2 |
11764878 | Pezeshki et al. | Sep 2023 | B2 |
11778354 | Chaouch et al. | Oct 2023 | B2 |
11817903 | Pleros et al. | Nov 2023 | B2 |
11828954 | Huang et al. | Nov 2023 | B2 |
11836019 | Dube et al. | Dec 2023 | B2 |
11844186 | Mcparland et al. | Dec 2023 | B2 |
11853587 | Tang et al. | Dec 2023 | B2 |
11868279 | Long et al. | Jan 2024 | B2 |
11895798 | Winzer et al. | Feb 2024 | B2 |
11988874 | Winzer et al. | May 2024 | B2 |
11997819 | Winzer et al. | May 2024 | B2 |
12004318 | Winzer et al. | Jun 2024 | B2 |
12019289 | Winzer et al. | Jun 2024 | B2 |
12029004 | Winzer et al. | Jul 2024 | B2 |
20010046074 | Kakizaki et al. | Nov 2001 | A1 |
20020003232 | Ahn et al. | Jan 2002 | A1 |
20020003641 | Hall et al. | Jan 2002 | A1 |
20020142634 | Poplawski et al. | Oct 2002 | A1 |
20030007216 | Chraplyvy et al. | Jan 2003 | A1 |
20030030977 | Garnett et al. | Feb 2003 | A1 |
20030081287 | Jannson | May 2003 | A1 |
20030090760 | Glingener | May 2003 | A1 |
20030175033 | Taga et al. | Sep 2003 | A1 |
20030211759 | Olzak et al. | Nov 2003 | A1 |
20040016874 | Rao et al. | Jan 2004 | A1 |
20040027462 | Hing | Feb 2004 | A1 |
20040033016 | Kropp | Feb 2004 | A1 |
20040208600 | Guenter et al. | Oct 2004 | A1 |
20040213512 | Wu et al. | Oct 2004 | A1 |
20040257766 | Rasmussen et al. | Dec 2004 | A1 |
20040264838 | Uchida et al. | Dec 2004 | A1 |
20050025409 | Welch et al. | Feb 2005 | A1 |
20050083653 | Chen | Apr 2005 | A1 |
20050111810 | Giraud et al. | May 2005 | A1 |
20050124224 | Schunk | Jun 2005 | A1 |
20050147117 | Pettey et al. | Jul 2005 | A1 |
20050224946 | Dutta | Oct 2005 | A1 |
20060005038 | Kitahara et al. | Jan 2006 | A1 |
20060029395 | Kim et al. | Feb 2006 | A1 |
20060062526 | Ikeuchi | Mar 2006 | A1 |
20060128091 | Chidambarrao et al. | Jun 2006 | A1 |
20060239605 | Palen et al. | Oct 2006 | A1 |
20070077072 | Kunimatsu et al. | Apr 2007 | A1 |
20070166046 | Hecker et al. | Jul 2007 | A1 |
20070223865 | Lu et al. | Sep 2007 | A1 |
20070258683 | Rolston et al. | Nov 2007 | A1 |
20080055847 | Belady et al. | Mar 2008 | A1 |
20080056731 | Weber et al. | Mar 2008 | A1 |
20080166133 | Hsiao | Jul 2008 | A1 |
20080181608 | Parker et al. | Jul 2008 | A1 |
20080259566 | Fried | Oct 2008 | A1 |
20080267620 | Cole et al. | Oct 2008 | A1 |
20090067843 | Winston et al. | Mar 2009 | A1 |
20090093073 | Chan et al. | Apr 2009 | A1 |
20090113698 | Love et al. | May 2009 | A1 |
20090154932 | Hinderthuer et al. | Jun 2009 | A1 |
20090234936 | Bandholz et al. | Sep 2009 | A1 |
20100008038 | Coglitore | Jan 2010 | A1 |
20100054681 | Biribuze | Mar 2010 | A1 |
20100097752 | Doll et al. | Apr 2010 | A1 |
20100150559 | Essiambre et al. | Jun 2010 | A1 |
20100209114 | Gloeckner et al. | Aug 2010 | A1 |
20100262285 | Teranaka | Oct 2010 | A1 |
20100265658 | Sawai | Oct 2010 | A1 |
20100284698 | Mccolloch | Nov 2010 | A1 |
20100288420 | Kimura et al. | Nov 2010 | A1 |
20100302754 | Nordin et al. | Dec 2010 | A1 |
20110150486 | Davidson | Jun 2011 | A1 |
20110157688 | Wang | Jun 2011 | A1 |
20110188054 | Petronius et al. | Aug 2011 | A1 |
20110188815 | Blackwell, Jr. | Aug 2011 | A1 |
20110261427 | Hart | Oct 2011 | A1 |
20120014639 | Doany et al. | Jan 2012 | A1 |
20120106978 | Jenson | May 2012 | A1 |
20120120596 | Bechtolsheim et al. | May 2012 | A1 |
20120201542 | Dahlfort | Aug 2012 | A1 |
20120257355 | Yi et al. | Oct 2012 | A1 |
20130089293 | Howard et al. | Apr 2013 | A1 |
20130094827 | Haataja | Apr 2013 | A1 |
20130102237 | Zhou et al. | Apr 2013 | A1 |
20130107454 | Wilke et al. | May 2013 | A1 |
20130193304 | Yu et al. | Aug 2013 | A1 |
20130279916 | Cho | Oct 2013 | A1 |
20130315586 | Kipp | Nov 2013 | A1 |
20130342993 | Singleton | Dec 2013 | A1 |
20140002988 | Roesner et al. | Jan 2014 | A1 |
20140049931 | Wellbrock et al. | Feb 2014 | A1 |
20140064659 | Doerr et al. | Mar 2014 | A1 |
20140098492 | Lam | Apr 2014 | A1 |
20140106582 | Wig et al. | Apr 2014 | A1 |
20140133101 | Sunaga et al. | May 2014 | A1 |
20140306131 | Mack et al. | Oct 2014 | A1 |
20140321803 | Thacker et al. | Oct 2014 | A1 |
20140321804 | Thacker | Oct 2014 | A1 |
20140327902 | Giger | Nov 2014 | A1 |
20150037044 | Peterson et al. | Feb 2015 | A1 |
20150079832 | Gordon | Mar 2015 | A1 |
20150094896 | Cuddihy et al. | Apr 2015 | A1 |
20150107101 | DeCusatis et al. | Apr 2015 | A1 |
20150125110 | Anderson et al. | May 2015 | A1 |
20150139223 | Mayenburg | May 2015 | A1 |
20150247980 | Bradley et al. | Sep 2015 | A1 |
20150261269 | Bruscoe | Sep 2015 | A1 |
20150293305 | Nakagawa et al. | Oct 2015 | A1 |
20160011390 | Montalvo Urbano et al. | Jan 2016 | A1 |
20160062068 | Giraud et al. | Mar 2016 | A1 |
20160073544 | Heyd et al. | Mar 2016 | A1 |
20160116693 | Oki et al. | Apr 2016 | A1 |
20160125706 | Butterbaugh et al. | May 2016 | A1 |
20160156999 | Liboiron-Ladouceur et al. | Jun 2016 | A1 |
20160209610 | Kurtz et al. | Jul 2016 | A1 |
20160216445 | Thacker et al. | Jul 2016 | A1 |
20160269114 | Beck | Sep 2016 | A1 |
20160291273 | Nguyen | Oct 2016 | A1 |
20160337727 | Graves et al. | Nov 2016 | A1 |
20160377821 | Vallance et al. | Dec 2016 | A1 |
20170005446 | Regnier | Jan 2017 | A1 |
20170077643 | Zbinden et al. | Mar 2017 | A1 |
20170123164 | Suematsu et al. | May 2017 | A1 |
20170131469 | Kobrinsky et al. | May 2017 | A1 |
20170139145 | Heanue et al. | May 2017 | A1 |
20170168253 | Wilcox et al. | Jun 2017 | A1 |
20170181314 | Leigh et al. | Jun 2017 | A1 |
20170308725 | Sardaryan et al. | Oct 2017 | A1 |
20170332519 | Schmidtke | Nov 2017 | A1 |
20170363826 | Zer et al. | Dec 2017 | A1 |
20170364295 | Sardinha et al. | Dec 2017 | A1 |
20180131056 | Sato | May 2018 | A1 |
20180159651 | Li et al. | Jun 2018 | A1 |
20180188459 | Mekis et al. | Jul 2018 | A1 |
20180196196 | Byrd et al. | Jul 2018 | A1 |
20180217468 | Wen et al. | Aug 2018 | A1 |
20180223582 | Shin et al. | Aug 2018 | A1 |
20180231727 | Kurtz et al. | Aug 2018 | A1 |
20180278332 | Leigh et al. | Sep 2018 | A1 |
20180303004 | Zhai et al. | Oct 2018 | A1 |
20180306990 | Badihi | Oct 2018 | A1 |
20180329159 | Mathai et al. | Nov 2018 | A1 |
20180335558 | Fini et al. | Nov 2018 | A1 |
20180335595 | Takeuchi et al. | Nov 2018 | A1 |
20190027898 | Bovington et al. | Jan 2019 | A1 |
20190027899 | Krishnamoorthy et al. | Jan 2019 | A1 |
20190027901 | Zheng et al. | Jan 2019 | A1 |
20190028207 | Saeedi et al. | Jan 2019 | A1 |
20190033528 | Ootorii | Jan 2019 | A1 |
20190086618 | Shastri et al. | Mar 2019 | A1 |
20190098788 | Leigh | Mar 2019 | A1 |
20190116689 | Chen et al. | Apr 2019 | A1 |
20190173577 | Coffey et al. | Jun 2019 | A1 |
20190207342 | Aden et al. | Jul 2019 | A1 |
20190208290 | Olson | Jul 2019 | A1 |
20190258175 | Dietrich et al. | Aug 2019 | A1 |
20190293971 | Yu et al. | Sep 2019 | A1 |
20190307014 | Adiletta | Oct 2019 | A1 |
20190312642 | Neilson et al. | Oct 2019 | A1 |
20190317287 | Raghunathan et al. | Oct 2019 | A1 |
20190379952 | Iannone et al. | Dec 2019 | A1 |
20200015386 | Gupta | Jan 2020 | A1 |
20200021899 | Stojanovic et al. | Jan 2020 | A1 |
20200033544 | Costello | Jan 2020 | A1 |
20200067626 | Dupuis | Feb 2020 | A1 |
20200073061 | Leigh et al. | Mar 2020 | A1 |
20200077544 | Leung et al. | Mar 2020 | A1 |
20200158964 | Winzer et al. | May 2020 | A1 |
20200158967 | Winzer et al. | May 2020 | A1 |
20200161243 | Lee et al. | May 2020 | A1 |
20200219865 | Nelson et al. | Jul 2020 | A1 |
20200292769 | Zbinden | Sep 2020 | A1 |
20200301084 | Champion et al. | Sep 2020 | A1 |
20200343990 | Nagarajan | Oct 2020 | A1 |
20210044356 | Aboagye | Feb 2021 | A1 |
20210072473 | Wall, Jr. | Mar 2021 | A1 |
20210084749 | Devalla et al. | Mar 2021 | A1 |
20210112683 | Mohajer et al. | Apr 2021 | A1 |
20210210894 | Rivaud et al. | Jul 2021 | A1 |
20210211785 | Rose et al. | Jul 2021 | A1 |
20210239927 | Rivaud et al. | Aug 2021 | A1 |
20210247580 | Reagan | Aug 2021 | A1 |
20210263247 | Bechtolsheim et al. | Aug 2021 | A1 |
20210281323 | Williams et al. | Sep 2021 | A1 |
20210286140 | Winzer | Sep 2021 | A1 |
20210294052 | Winzer | Sep 2021 | A1 |
20210305127 | Refai-Ahmed et al. | Sep 2021 | A1 |
20210345024 | Leigh | Nov 2021 | A1 |
20210345025 | Winzer | Nov 2021 | A1 |
20210345511 | Leigh et al. | Nov 2021 | A1 |
20210367674 | Leclair et al. | Nov 2021 | A1 |
20210376950 | Winzer | Dec 2021 | A1 |
20210385000 | Nagarajan et al. | Dec 2021 | A1 |
20210389536 | Dietrich et al. | Dec 2021 | A1 |
20220003946 | Edwards, Jr. et al. | Jan 2022 | A1 |
20220029379 | Kovsh | Jan 2022 | A1 |
20220029380 | Kovsh | Jan 2022 | A1 |
20220094449 | Suyama | Mar 2022 | A1 |
20220102583 | Baumheinrich et al. | Mar 2022 | A1 |
20220109501 | Latchman | Apr 2022 | A1 |
20220114125 | Thakur | Apr 2022 | A1 |
20220141949 | Devalla et al. | May 2022 | A1 |
20220141990 | Gupta | May 2022 | A1 |
20220159860 | Winzer | May 2022 | A1 |
20220159878 | Dillman et al. | May 2022 | A1 |
20220187559 | Lin et al. | Jun 2022 | A1 |
20220244465 | Winzer | Aug 2022 | A1 |
20220263586 | Winzer | Aug 2022 | A1 |
20220264759 | Sawyer | Aug 2022 | A1 |
20220279256 | Chaouch et al. | Sep 2022 | A1 |
20220329020 | Narayanan et al. | Oct 2022 | A1 |
20230003958 | Shimazu et al. | Jan 2023 | A1 |
20230018654 | Winzer | Jan 2023 | A1 |
20230039781 | Mohajer et al. | Feb 2023 | A1 |
20230043794 | Winzer | Feb 2023 | A1 |
20230064740 | Rathinasamy | Mar 2023 | A1 |
20230077979 | Winzer | Mar 2023 | A1 |
20230083467 | Winzer | Mar 2023 | A1 |
20230258873 | Pupalaikis et al. | Mar 2023 | A1 |
20230161109 | Pupalaikis | May 2023 | A1 |
20230176304 | Winzer | Jun 2023 | A1 |
20230188208 | Igarashi et al. | Jun 2023 | A1 |
20230209761 | Winzer | Jun 2023 | A1 |
20230254046 | Winzer | Aug 2023 | A1 |
20230305247 | Hemp et al. | Sep 2023 | A1 |
20230305249 | Hemp et al. | Sep 2023 | A1 |
20230354541 | Cole | Nov 2023 | A1 |
20230358979 | Winzer et al. | Nov 2023 | A1 |
20230375793 | Winzer | Nov 2023 | A1 |
20230380095 | Winzer et al. | Nov 2023 | A1 |
20240036254 | Winzer | Feb 2024 | A1 |
20240049434 | Mohajer et al. | Feb 2024 | A1 |
20240056213 | Winzer | Feb 2024 | A1 |
20240064922 | Winzer | Feb 2024 | A1 |
20240159979 | Winzer et al. | May 2024 | A1 |
Number | Date | Country |
---|---|---|
0075699 | Apr 1983 | EP |
2004-135700 | May 2004 | JP |
2010176010 | Aug 2010 | JP |
WO 2020083845 | Apr 2020 | WO |
WO 2020246375 | Dec 2020 | WO |
WO 2021183792 | Sep 2021 | WO |
WO 2021188648 | Sep 2021 | WO |
WO 2021211725 | Oct 2021 | WO |
WO 2021247521 | Dec 2021 | WO |
WO 2022061160 | Mar 2022 | WO |
WO 2022076539 | Apr 2022 | WO |
WO 2022109349 | May 2022 | WO |
WO 2023183703 | Sep 2023 | WO |
Entry |
---|
[No Author Listed] [online], “The Promise of Co-Packaged Optics: Paving the Way for Improved Power Efficiency, Size, and Cost,” The Institute for Energy Efficiency, Oct. 2, 2020, retrieved on Jan. 11, 2023, <https://www.youtube.com/watch?v=OzNGZJHKiE8>, 19 pages [Video Submission]. |
[No Author Listed], “2020 Optical Fiber Communication Conference and Exhibition: Conference Schedule,” OFC 2020 tutorial M1H.4, Mar. 8-12, 2020, 152 pages. |
[No Author Listed], “Hands-on with Intel Co-Packaged Optics and Silicon Photonics Switch,” Serve the Home, Mar. 18, 2020, retrieved on Feb. 15, 2022, <https://www.youtube.com/watch?v=Esgyj26vdxs>, 31 pages. |
[No Author Listed], “IEEE P802.3 Electrical I/O Specifications,” LAN/MAN Standards Committee of the IEEE Computer Society, May 13, 2022, 235 pages. |
[No Author Listed], “MTP/MPO Breakout Cable Datasheet,” FS Technical Documents, Apr. 26, 2020, 9 pages. |
[No Author Listed], “MTP/MPO Fiber Cables, Quick Start Guide V1.0,” FS Technical Documents, Mar. 24, 2020, 5 pages. |
[No Author Listed], “Paradigm Change: Reinventing HPC Architectures with In-Package Optical I/O,” Ayar Labs, Solution Brief, Jul. 2, 2020, 9 pages. |
[No Author Listed], “QSFP-DD MSA QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification for QSFP Double Density 8X and QSFP 4X Pluggable Transceivers,” Revision 6.2, Mar. 11, 2022, 169 pages. |
[No Author Listed], “Rockley Photonics Silicon Photonics Platform for Next Generation Transceivers,” Rockley Photonics, Mar. 2020, 1 page. |
[No Author Listed], “Support Tomorrow's Speeds Inside Today's Footprint; Molex Solutions for 112 Gbps Architecture,” Molex, 2019, 7 pages. |
[No Author Listed], “Technical Brief: Optical I/O Chiplets Eliminate Bottlenecks to Unleash Innovation,” Ayar Labs, Technical Brief, Dec. 6, 2021, 9 pages. |
[No Author Listed], [online], “Intel's Plan to 1000x Performance with Raja Koduri,” Nov. 2021, retrieved on Sep. 22, 2022, URL<https://www.youtube.com/watch?v=7CpDQ5WZiSU&t=7s>, 18 pages [Video Submission]. |
[No Author Listed], “QSFP-DD MSA QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification for QSFP Double Density 8X and QSFP 4X Pluggable Transceivers,” QSFP-DD, Revision 6.01, May 28, 2021, 167 pages. |
[No Author Listed], “Specification for OSFP OCTAL Small Form Factor Pluggable Module,” OSFP MSA, Rev 4.0, May 28, 2021, 109 pages. |
Acacia-inc.com [online], “Coherent Optical Solutions for Data Center Interconnections,” Optinet 2019, Jun. 13, 2019, retrieved on Aug. 15, 2022, retrieved from URL<https://acacia-inc.com/wp-content/uploads/2019/06/Optinet-China-2019_Acacia_Fenghai-Liu_UpLoad_v1.pdf>, 13 pages. |
Akhter et al., “WaveLight: A Monolithic Low Latency Silicon-Photonics Communication Platform for the Next-Generation Disaggregated Cloud Data Centers,” 2017 IEEE 25th Annual Symposium on High-Performance Interconnects, Aug. 28-30, 2017, pp. 25-28. |
Alexoudi et al., “Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures,” Journal of Lightwave Technology, Jan. 15, 2019, 37(2):363-379. |
Amazon.com [online], “IBM Midplane Board-8852Refurbished, 25R5780Refurbished),” Jun. 30, 2014, retrieved on Nov. 22, 2022, retrieved from URL<https://www.amazon.com/IBM-MIDPLANE-BOARD-8852-Refurbished-25R5780/dp/B00LEQ2URK>, 4 pages. |
Analui et al., “A Fully Integrated 20-GB/s Optoelectronic Transceiver Implemented in a Standard 0.13-um CMOS SOI Technology,” IEEE Journal of Solid-State Circuits, Dec. 2006, 41(12):2945-2955. |
Ayarlabs.com [online], “In-Package Optical I/O: Unleashing Innovation,” May 19, 2021, retrieved on Jun. 14, 2022, retrieved from URL<https://ayarlabs.com/in-package-optical-i-o-unleashing-innovation/>, 3 pages. |
Blum, “Integrated silicon photonics for high volume data center applications,” Proc. SPIE 11286, Optical Interconnects, Feb. 28, 2020, 10 pages. |
Bower et al., “Heterogeneous Integration of Microscale Semiconductor Devices By Micro-Transfer-Printing,” Electronic Components & Technology Conference, 2015, 963-967. |
Bower et al., “Heterogeneous Integration of Microscale Semiconductor Devices By Micro-Transfer-Printing,” IEEE 65th ECTC, San Diego, CA, USA, May 26-29, 2015, 30 pages. |
Chen et al., “A 25Gb/s Hybrid Integrated Silicon Photonic Transceiver in 28nm CMOS and SOI,” ISSSCC 2015, Session 22, High-Speed Optical Links, 22.2, 2:00PM, Feb. 25, 2015, 402-404. |
Chopra, “Looking Beyond 400G: A System Vendor Perspective, Beyond 400 Gb/s Ethernet Study Group,” Cisco Fellow, Feb. 8, 2020, 23 pages. |
Chuang et al., “Theoretical and empirical qualification of a mechanical-optical interface for parallel optics links,” Optical Interconnects XV, Apr. 2015, 9368:11 pages. |
CoPackagedOptics.com [online], “3.2 Tb/s Copackaged Optics Optical Module Product Requirements Document,” Feb. 2021, retrieved in Jan. 2022, retrieved from <http://www.copackagedoptics.com/wp-content/uploads/2021/02/JDF-3.2-Tb_s-Copackaged-Optics-Module-PRD-1.0.pdf>, 28 pages. |
CoPackagedOptics.com [online], “Co-Packaged Optic Assembly Guidance Document,” upon information and belief, available No. later than Sep. 18, 2020, retrieved on Jan. 26, 2021, retrieved from URL <http://www.copackagedoptics.com/wp-content/uploads/2020/05/CPO-Assembly- Guidance-Doc-V1.0-FINAL.pdf>, 22 pages. |
CoPackagedOptics.com [online], “Co-Packaged Optical Module Discussion Document,” upon information and belief, available no later than Sep. 18, 2020, retrieved on Jan. 26, 2021, retrieved from URL <http://www.copackagedoptics.com/wp-content/uploads/2019/11/CPO-Module-Discussion-Doc-V1.0Final.pdf>, 18 pages. |
CoPackagedOptics.com [online], “Co-Packaged Optics Collaboration FAQ,” upon information and belief, available no later than Sep. 18, 2020, retrieved on Jan. 26, 2021, retrieved from URL <http://www.copackagedoptics.com/wpcontent/uploads/2019/11/CoPackagedOpticsCollaboration-FAQ-Final-051319.pdf>, 3 pages. |
CoPackagedOptics.com [online], “Co-packaged Optics External Laser Source Guidance Document,” upon information and belief, available no later than Sep. 18, 2020, retrieved on Jan. 26, 2021, retrieved from URL <http://www.copackagedoptics.com/wp-content/uploads/2020/01/ELS-Guidance-Doc-v1.0-FINAL.pdf>, 23 pages. |
De Heyn et al., “Ultra-Dense 16x56Gb/s NRZ GeSi EAM-PD Arrays Coupled to Multicore Fiber for Short-Reach 896Gb/s Optical Links,” In Optical Fiber Communication Conference, Mar. 2017, 3 pages. |
Doany et al., “Multichannel High-Bandwidth Coupling of Ultradense Silicon Photonic Waveguide Array to Standard-Pitch Fiber Array,” Journal of Lightwave Technology, Feb. 15, 2021, 29: 475-482. |
Doany et al., Terabit/Sec VCSEL-Based 48-Channel Optical Module Based on Holey CMOS Transceiver IC, Journal of Lightwave Technology, Feb. 15, 2013, 31:672-680. |
Dobbelaere, “Advanced Silicon Photonics Technology Platform Leveraging a Semiconductor Supply Chain,” 2017 IEEE International Electron Devices Meeting, Dec. 2-6, 2017, 4 pages. |
Dobbelaere, “Silicon Photonics Technology Platform for Integration of Optical IOs with ASICs,” 2013 IEEE Hot Chips 25 Symposium (HCS)—Silicon Photonics Technology Platform for integration of optical IOS with ASICs, Aug. 25-Aug. 27, 2013, 18 pages. |
Dogruoz et al., “Optimizing QSFP-DD Systems to Achieve at Least 25 Watt Thermal Port Performance,” QSFP-DD, Jan. 2021, 30 pages. |
Epic-assoc.com [online], “Co-Packaged Optics Integration,” EPIC Online Technology Meeting on Co-Packaged Optics, Jun. 8, 2020, retrieved on Aug. 15, 2022, retrieved from <https://epic-assoc.com/wp-content/uploads/2021/06/Brian-Welch_Cisco.pdf>, 4 pages. |
Eps.ieee.org [online], “Chapter 9: Integrated Photonics,” Heterogeneous Integration Roadmap, 2019 Edition, Oct. 2019, retrieved on Aug. 15, 2022, retrieved from <https://eps.ieee.org/images/files/HIR_2021/ch09_photonics.pdf>, 16 pages. |
Extended European Search Report in European Appl. No. 22195959, dated Feb. 10, 2023, 13 pages. |
Extended European Search Report in European Appl. No. 22195981, dated Feb. 14, 2023, 9 pages. |
Fathololoumi et al., “1.6Tbps Silicon Photonics Integrated Circuit and 800 Gbps Photonic Engine for Switch Co-Packaging Demonstration,” Journal of Lightwave Technology, Feb. 15, 2021, 39:1155-1161. |
Fathololoumi et al., “1.6Tbps Silicon Photonics Integrated Circuit for Co-Packaged Optical-IO Switch Applications,” 2020 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 8-12, 2020, 3 pages. |
Fs.com [online], “1m (3ft) MTP® Female to 4 LC UPC Duplex 8 Fibers Type B Plenum (OFNP) OM4 50/125 Multimode Elite Breakout Cable, Magenta,” Nov. 2020, retrieved on Jun. 14, 2022, retrieved from URL<https://www.fs.com/products/68047.html>, 5 pages. |
Fuse.wikichip.org [online], “Ayar Labs Realizes Co-Packaged Silicon Photonics,” Jan. 19, 2020, retrieved on Feb. 15, 2022, retrieved from URL <https://fuse.wikichip.org/news/3233/ayar-labs-realizes-co-packaged-silicon-photonics/2/, 7 pages. |
Fuse.wikichip.org [online], “Ayar Labs Realizes Co-Packaged Silicon Photonics,” Jan. 19, 2020, retrieved on Mar. 23, 2022, retrieved from URL <https://fuse.wikichip.org/news/3233/ayar-labs-realizes-co-packaged-silicon-photonics/>, 6 pages. |
Fuse.wikichip.org [online], “Ranovus Odin: Co-Packaging Next-Gen DC Switches and Accelerators With Silicon Photonics,” Apr. 11, 2020, retrieved on or before Mar. 23, 2022, retrieved from URL <https://fuse.wikichip.org/news/3420/ranovus-odin-co-packaging-next-gen-dc-switches-and-accelerators-with-silicon-photonics/>, 8 pages. |
Gazettabyte.com [online], “Ayar Labs prepares for the era of co-packaged optics,” Feb. 21, 2019, retrieved on or before Mar. 23, 2022, retrieved from URL<http://www.gazettabyte.com/home/2019/2/21/ayar-labs-prepares-for-the-era-of-co-packaged-optics.html>, 7 pages. |
Gazettabyte.com [online], “Inphi unveils first 800-gigabit PAM-4 signal processing chip,” Apr. 8, 2020, retrieved on Feb. 15, 2022, retrieved from URL <http://www.gazettabyte.com/home/2020/4/8/inphi-unveils-first-800-gigabit-pam-4-signal-processing-chip.html>, 5 pages. |
Gazettabyte.com [online], “Intel combines optics to its Tofino 2 switch chip,” Mar. 19, 2020, retrieved on Jan. 26, 2022, retrieved from URL <http://www.gazettabyte.com/home/2020/3/19/intel-combines-optics-to-its-tofino-2-switch-chip.html>, 10 pages. |
Gazettabyte.com [online], “Ranovus outlines its co-packaged optics plans,” Apr. 20, 2020, retrieved on Feb. 15, 2022, retrieved from URL <http://www.gazettabyte.com/home/2020/4/30/ranovus-outlines-its-co-packaged-optics-plans.html>, 10 pages. |
Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro, Mar.-Apr. 2006, 26:58-66. |
Hayashi et al., “End-to-End Multi-Core Fiber Transmission Link Enabled by Silicon Photonics Transceiver with Grating Coupler Array,” 2017 European Conference on Optical Communication (ECOC), Sep. 17-21, 2017, 3 pages. |
Hosseini et al., “8 Tbps Co-Packaged FPGA and Silicon Photonics Optical IO,” 2021 Optical Fiber Communications Conference and Exhibition (OFC), Jun. 1, 2021, 3 pages. |
Hughes et al., “A Single-Mode Expanded Beam Separable Fiber Optic Interconnect for Silicon Photonics,” Optical Fiber Communications Conference and Exhibition, Mar. 2019, 3 pages. |
IBM, “Silicon Photonics Co-Packaging Webcast,” COBO, Sep. 16, 2020, 31 pages. |
Ieee802.org [online], “Broadened Consensus for a 200GEL Copper Cable Objective,” Aug. 26, 2021, retrieved Oct. 17, 2022, retrieved from URL<https://www.ieee802.org/3/B400G/public/21_08/kocsis_b400g_01a_210826.pdf>, 17 page |
Ieeee802.org [online], “Multi-200Gbps/lane Package Model Considerations,” Jul. 12, 2022, retrieved Oct. 17, 2022, retrieved from URL<https://www.ieee802.org/3/df/public/22_07/benartsi_3df_01a_2207.pdf>, 13 pages. |
International Preliminary Report on Patentability Chapter II in International Appln. No. PCT/US2021/053745, mailed Jun. 14, 2023, 14 pages. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2021/035179, mailed on Dec. 15, 2022, 14 pages. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2021/050945, mailed Mar. 30, 2023, 12 pages. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2021/060215, mailed Jun. 1, 2023, 41 pages. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2022/015110, mailed Aug. 17, 2023, 14 pages. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2022/071857, mailed on Nov. 2, 2023, 23 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2021/050945, dated Dec. 27, 2021, 15 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2021/053745, dated Feb. 3, 2022, 15 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2021/060215, dated Mar. 22, 2022, 46 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2022/015110, mailed Jul. 8, 2022, 31 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2022/033870, mailed Sep. 28, 2022, 15 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2022/071857, mailed Jun. 29, 2022, 25 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/US2023/020730, mailed Jul. 31, 2023, 10 pages. |
Invitation to Pay Additional Fees in International Appln. No. PCT/US2021/060215, dated Jan. 26, 2022, 3 pages. |
Invitation to Pay Additional Fees in International Appln. No. PCT/US2021/53745, dated Dec. 8, 2021, 2 pages. |
Invitation to Pay Additional Fees in International Appln. No. PCT/US2022/015110, dated May 3, 2022, 3 pages. |
Itpeernetwork.com [online], “Industry-First Co-Packaged Optics Ethernet Switch Solution with Intel Silicon Photonics,” Hou, IT Peer Network, Mar. 9, 2020, retrieved on or before Mar. 23, 2022, retrieved from URL <https://itpeernetwork.intel.com/optics-ethernet-solution/]>, 5 pages. |
Janta-Polczynski et al., “Towards co-packaging of photonics and microelectronics in existing manufacturing facilities,” Proc. SPIE 10538, Optical Interconnects XVIII, 105380B, Feb. 22, 2018, 11 pages. |
Keeler et al., “Heterogeneous Integration of III-V Photonics and Silicon Electronics for Advanced Optical Microsystems,” Sandia National Laboratories, Mar. 1, 2016, 23 pages. |
Kocsis et al., “OSFP MDI Proposal,” Amphenol, High Speed Interconnects, Mar. 6, 2016, 13 pages. |
Kuchta “Co-Packaging on Organic Laminates: MOTION Phase 2 ARPA-E ENLITENED Kickoff Meeting, ” IBM Research, Jan. 13, 2021, 16 pages. |
Kuchta et al., “Multi-wavelength Optical Transceivers Integrated On Node (Motion),” ARPA, IBM, Apr. 22, 2019, 28 pages. |
Kuchta et al., “Multi-wavelength Optical Transceivers Integrated On Node (Motion),” ARPA, IBM, Apr. 22, 2019, 40 pages. |
Lach et al., Modulation formats for 100G and beyond, Elsevier Inc., Aug. 26, 2011, pp. 377-386. |
LaserFocusWorld.com [online], “Integrated optics permeate datacenter networks,” Laser Focus World Online Magazine, Oct. 1, 2018, retrieved on or before Mar. 23, 2022, retrieved from www.laserfocusworld.com, 4 pages. |
LaserFocusWorld.com [online], “Photonics for Datacenters: Integrated optics permeate datacenter networks,” Oct. 2018, retrieved on Jan. 26, 2022, retrieved from URL <https://www.laserfocusworld.com/optics/article/16555340/photonics-for-datacenters-integrated-optics-permeate-datacenter-networks>, 16 pages. |
Lee et al., “End-to-End Multicore Multimode Fiber Optic Link Operating up to 120 Gb/s,” Journal of Lightwave Technology, Mar. 15, 2012, 30:886-892. |
Lee et al., “OnRamps: Optical Networks Using Rapid Amplified Multi-wavelength Photonic Switches,” PowerPoint, ARPA, IBM Research, Apr. 22, 2019, 27 pages. |
Lee, “OnRamps: Optical Networks Using Rapid Amplified Multi-wavelength Photonic Switches, ” PowerPoint, ARPA, IBM Research, Apr. 22, 2019, 17 pages. |
Li et al., “A 112 Gb/s PAM4 Linear TIA with 0.96 pJ/bit Energy Efficiency in 28 nm CMOS,” ESSCIRC 2018—IEEE 44th European Solid State Circuits Conference (ESSCIRC), Sep. 2-6, 2018, pp. 238-241. |
Liang et al., “Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing,” Journal of Lightwave Technology, Jul. 1, 2020, 38:3322-3337. |
Liang et al., “Integrated energy efficient WDM photonic solution for Data Centers and Supercomputers,” ARPA-E Enlightened Review Meeting, Seattle, WA, Oct. 23-24, 2018, 24 pages. |
Liang, “Integrated DWDM Photonics 2.0 for Green Exascale Supercomputing in HPE,” ARPA-Enlightened Annual Review Meeting, Coronado, CA, USA, Oct. 30-Nov. 1, 2019, 19 pages. |
Logan et al., “800Gb/s Silicon Photonic Transmitter for Co-Packaged Optics,” 2020 IEEE Photonics Conference (IPC), Sep. 28-Oct. 2020, 2 pages. |
Lusted et al. “Motions and Straw Polls,” IEEE P802.3df Task Force, Intel, Sep. 2022, 6 pages. |
Mahajan et al., “Co-Packaged Photonics for High Performance Computing: Status, Challenges and Opportunities,” Journal of Lightwave Technology, Jan. 15, 2022, 40:379-398. |
Mangal et al., “Through-substrate coupling elements for silicon-photonics based short-reach optical interconnects,” Proceedings of the SPIE, Optical Interconnects XIX, Mar. 2019, 10924: 14 pages. |
Mapyourtech.com [online], “Understanding Optical Return Loss (ORL) in Optical Fiber system,” Apr. 29, 2020, retrieved on Jan. 27, 2023, retrieved from URL<https://mapyourtech.com/2020/04/understanding-optical-return-loss-orl-in-optical-fiber-system/>, 9 pages. |
Marchetti et al., “Coupling strategies for silicon photonics integrated chips,” Photonics Research, Feb. 2019, 7(2):201-239. |
Marvell Technology, [online], “Post Moore Data Center Networks for 800GbE/1.6TbE with Radha Nagarajan | Marvell Technology,” https://www.marvell.com, Sep. 14, 2021, retrieved on Nov. 30, 2021, <https://www.youtube.com/watch?v=ruo_WNqEBP8>, 13 pages [Video Submission]. |
Meade et al., “TeraPHY: A High-density Electronic-Photonic Chiplet for Optical I/O from a Multi-Chip Module,” 2019 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 3-7, 2019, 3 pages. |
Michelogiannakis et al., “Efficient Intra-Rack Resource Disaggregation for HPC Using Co-Packaged DWDM Photonics,” CoRR, submitted Jul. 17, 2023, arXiv:2301.03592v3, 15 pages. |
Minkenberg et al., “Reimagining Datacenter Topologies With Integrated Silicon Photonics,” Journal of Optical Communications and Networking, Jul. 2018, 10(7):B126-B139. |
Missinne et al., “Alignment-tolerant interfacing of a photonic integrated circuit using back side etched silicon microlenses,” Proceedings of the SPIE, Oct. 2019, 10923: 8 pages. |
Moazeni et al., “A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45-nm SOI CMOS,” IEEE Journal of Solid-State Circuits, Dec. 2017, 52:3503-3516. |
Nagarajan, “2.5D Heterogeneous Silicon Photonics Light Engine with Integrated DFB Lasers and Electronics,” Poster, Presented at OCP Future Technologies Symposium, Inphi Corp, 2020 OCP Global Summit, Mar. 4-5, 2020, 1 page. |
Nagarajan, “2.5D Heterogeneous Silicon Photonics Light Engine with Integrated DFB Lasers and Electronics,” Presentation, Presented at OCP Future Technologies Symposium, Inphi Corp, 2020 OCP Global Summit, Mar. 4-5, 2020, 13 pages. |
Nambiar et al., “Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits,” Applied Sciences. Jul. 2018, 8(7): 22 pages. |
Notaros et al., “Ultra-Efficient CMOS Fiber-to-Chip Grating Couplers,” Optical Fiber Communication Conference, Mar. 20-22, 2016, 3 pages. |
Nowell et al., “Progress in 100G Lambda MSA Based on 100G PAM4 Technology,” 2020 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 8-12, 2020, 3 pages. |
Pan et al., “Intra-Bit Polarization Diversity Modulation for PMD Mitigation,” Proceedings of the European Conference on Optical Communications (ECOC), Amsterdam, The Netherlands, Sep. 30-Oct. 4, 2001, paper We.P37, pp. 450-451. |
Patterson et al., “The future of packaging with silicon photonics,” Chip Scale Review, Jan. & Feb. 2017, 10 pages. |
PCT International Invitation to Pay Additional Fees in International Appln. No. PCT/US2021/035179, dated Jul. 30, 2021, 2 pages. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/035179, dated Oct. 20, 2021, 17 pages. |
Raj et al., “50Gb/s Hybrid Integrated Si-Photonic Optical Link in 16nm FinFET,” 2020 European Conference on Optical Communications (ECOC), Dec. 6-10, 2020, 4 pages. |
Raj et al., “Design of a 50-Gb/s Hybrid Integrated Si-Photonic Optical Link in 16-nm FinFET,” IEEE Journal of Solid-State Circuits, Apr. 2020, 55: 1086-1095. |
Rakowski, “Silicon photonics platform for 50G optical interconnects,” Cadence Photonics Summit and Workshop, San Jose, CA, Sep. 6-7, 2017, 45 pages. |
Roberts et al., “High Speed Optics—The road to 44G and Beyond,” CiscoLive!, Jan. 28-Feb. 1, 2019, 102 pages. |
Rockleyphotonics.com [online], “25.6T Switch Co-Packages with LightDriver and Copper Cable Attached 400G Modules,” Rockley Photonics, 2020, retrieved on Mar. 24, 2022, retrieved from <https://rockleyphotonics.com/?s=25.6+T+switch+co-package>, 1 page. |
Rockleyphotonics.com [online], “Rockley Photonics collaborates with Accton, TE and Molex to demonstrate a 25.6Tbps OptoASIC Switch system,” Rockley Photonics, Mar. 10, 2020, retrieved on or before Mar. 23, 2022, retrieved from <https://rockleyphotonics.com/rockley-photonics-collaborates-with-accton-te-and-molex-to-demonstrate-a-25-6tbps-optoasic-switch-system/>, 6 pages. |
Rockleyphotonics.com [online], “Sailing Through the Data Deluge with Pervasive Optical Connectivity,” Rockley Photonics, Feb. 2019, retrieved on or before Mar. 23, 2022, retrieved from <https://rockleyphotonics.com/wp-content/uploads/2019/02/Rockley-Photonics-Sailing-through-the-Data-Deluge.pdf>, 9 pages. |
Romagnoli et al., “High Bandwidth density optically interconnected Terabit/s Boards,” SPIE OPTO, Jan. 30, 2018, 15 pages. |
Saeedi et al., “A 25 Gb/s 3D-Integrated CMOS/Silicon-Photonic Receiver for Low-Power High-Sensitivity Optical Communication,” Journal of Lightwave Technology, Jun. 15, 2016, 34(12):2924-2933. |
Sakib et al., “A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud,” CLEO: Science and Innovations 2021, San Jose, California United States, May 9-14, 2021, 3 pages. |
Samtec.com [online], “Flyover® QSFP Cable Systems, Cages, and Heat Sinks,” 2022, retrieved on Dec. 22, 2022, retrieved from URL<https://www.samtec.com/cables/high-speed/assemblies/qsfp-flyover>, 12 pages. |
Samtec.com [online], “NOVARAY® I/O 112 Gbps PAM4 Panel Mount Cable System,” May 18, 2022, retrieved on Mar. 29, 2023, retrieved from URL<https://www.samtec.com/cables/high-speed/io-assemblies/novaray-io>, 12 pages. |
Scarcella et al., “Pluggable Single-Mode Fiber-Array-to-PIC Coupling Using Micro-Lenses,” IEEE Photonics Technology Letters, Oct. 2017, 29(22):1943-1946. |
Semianalysis.com [online], “Intel's Trojan Horse into the Foundry Business | Co-packaged Silicon Photonics is Intel's Path Forward for IDM 2.0,” Jun. 11, 2021, retrieved on Aug. 15, 2022, retrieved from URL<https://semianalysis.com/intels-trojan-horse-into-the-foundry-business-co-packaged-silicon-photonics-is-intels-path-forward-for-idm-2-0/>, 22 pages. |
Servethehome.com [online], “Hands-on with the Intel Co-Packaged Optics and Silicon Photonics Switch,” Mar. 18, 2020, retrieved on Mar. 24, 2022, retrieved from <https://www.servethehome.com/hands-on-with-the-intel-co-packaged-optics-and-silicon-photonics-switch/>, 25 pages. |
Servethehome.com [online], “Important Silicon Photonics Future at Intel Vision 2022,” May 16, 2022, retrieved on Aug. 15, 2022, retrieved from URL<https://www.servethehome.com/important-silicon-photonics-future-at-intel-vision-2022-lightbender-light-bender/>, 6 pages. |
Shang et al., “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optics, May 2021, 8:749-754. |
Shen et al., “Silicon photonic integrated circuits and its application in data center,” Proc. SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Mar. 12, 2021, 15 pages. |
Shen et al., “Silicon Photonics for Extreme Scale Systems,” Journal of Lightwave Technology, Jan. 15, 2019, vol. 37:245-258. |
Stojanovic et al., “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Optics Express, May 7, 2018, 26: 1-16. |
Sun et al., “A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning,” IEEE Journal of Solid-State Circuits, Apr. 2016, 51:893-907. |
Sun et al., “A Monolithically-Integrated Chip-to-Chip Optical Link in Bulk CMOS,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, Apr. 2015, 2 pages. |
Sun et al., “Single-chip microprocessor that communicates directly using light,” Nature, Dec. 2015, 528; 534-544. |
Sun et al., “TeraPHY: An O-band WDM Electro-optic Platform for Low Power, Terabit/s Optical I/O,” 2020 IEEE Symposium on VLSI Technology, Dec. 2, 2020, 2 pages. |
Techpowerup.com [online], “Ayar Labs Raises $130 Million for Light-based Chip-to-Chip Communication,” Apr. 27, 2022, retrieved on Jun. 14, 2022, retrieved from URL<https://www.techpowerup.com/294262/ayar-labs-raises-usd-130-million-for-light-based-chip-to-chip-communication>, 4 pages. |
Timurdogan et al., “400G Silicon Photonics Integrated Circuit Transceiver Chipsets for CPO, OBO, and Pluggable Modules,” 2020 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 12-8, 2020, 3 pages. |
Timurdogan et al., “An Ultra Low Power 3D Integrated Intra-Chip Silicon Electronic-Photonic Link,” 2015 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 22-26, 2015, 3 pages. |
Tracy, “Supporting Data to Demonstrate 100Gbps Capability of Proposed MDIs,” TW Connectivity, Sep. 13, 2018, 9 pages. |
Vimeo.com [online], “In-Package Optical I/O: Unleashing Innovation,” Ayar Labs, May 17, 2021, retrieved Aug. 15, 2022, retrieved from <https://vimeo.com/551707515?embedded=true&source=video_title&owner=82726955>, Video Frames from 0:18 to 1:42, 16 pages. |
Wade et al., “75% Efficient Wide Bandwidth Grating Couplers in a 45 nm Microelectronics CMOS Process,” 2015 IEEE Optical Interconnects Conference (OI), Apr. 20-22, 2015, 46-47. |
Wade et al., “A Bandwidth-Dense, Low Power Electronic-Photonic Platform and Architecture for Multi-Tbps Optical I/O,” 2018 European Conference on Optical Communication (ECOC), Sep. 23-27, 2018, 3 pages. |
Wade et al., “An Error-free 1 Tbps WDM Optical I/O Chiplet and Multi-wavelength Multi-port Laser,” 2021 Optical Fiber Communications Conference and Exhibition (OFC), Jun. 6-10, 2021, 3 pages. |
Wade et al., “TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth In-Package Optical I/O,” IEEE Computer Society, Mar. & Apr. 2020, 9 pages. |
Wade et al., “TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth In-Package Optical I/O,” Presentation Ayar Labs and Intel, Hot Chips 2019, Aug. 20, 2019, 48 pages. |
Wang et al., “4× 112 Gbps/Fiber CWDM VCSEL Arrays for Co-Packaged Interconnects,” Journal of Lightwave Technology, Jul. 1, 2020, 38:3439-3444. |
Wang et al., “Bidirectional Tuning of Microring-Based Silicon Photonic Transceivers for Optimal Energy Efficiency,” Proceedings of the 24th Asia and South Pacific Design Automation Conference, Jan. 21, 2019, pp. 370-375. |
Wang et al., “Energy-Efficient Channel Alignment of DWDM Silicon Photonic Transceivers,” 2018 Design, Automation & Test in Europe Conference & Exhibition, Mar. 19-23, 2018, 4 pages. |
Yoshida et al. “56-Gb/s PAM4 × 8-Channel VCSEL-Based Optical Transceiver for Co-Packaged Optics,” 2022 IEEE CPMT Symposium Japan (ICSJ), 2022, 4 pages. |
Yu et al., “400Gbps Fully Integrated DR4 Silicon Photonics Transmitter for Data Center Applications,” 2020 Optical Fiber Communications Conference and Exhibition (OFC), Mar. 8-12, 2020, 3 pages. |
Zhang et al., “3D and 2.5D Heterogeneous Integration Platforms with Interconnect Stitching and Microfluidic Cooling,” Georgia Institute of Technology, Doctor of Philosophy in the School of Electrical and Computer Engineering Aug. 2017, 151 pages. |
Zhao et al., “Ultra-dense Silicon Photonics Coupling Solution for Optical Chip Scale Package Transceiver,” In Asia Communications and Photonics Conference, Nov. 2016, 3 pages. |
Zheng et al., Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver, Optics Express, Mar. 2011, 19(6):5172-5186. |
Zilkie et al., “Multi-micron silicon photonics platform for highly manufactural and versatile photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, Apr. 15, 2019, 15 pages. |
Brusberg et al., “On-board Optical Fiber and Embedded Waveguide Interconnects,” 2018 7th Electronic System-Integration Technology Conference (ESTC), Nov. 29, 2018, pp. 1-9. |
Cook et al., “36-Channel Parallel Optical Interconnect Module Based on Optoelectronics-on-VLSI Technology,” IEEE Journal of Selected Topics in Quantum Electronics, Mar./Apr. 2003, 9(2):387-391. |
Grani et al., “Design and Evaluation of AWGR-based Photonic NoC Architectures for 2.5D Integrated High Performance Computing Systems,” 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), May 8, 2017, pp. 289-295. |
International Preliminary Report on Patentability in International Appln. No. PCT/US2022/033870, mailed on Dec. 28, 2023, 13 pages. |
Krishnamoorthy et al., “From Chip to Cloud: Optical Interconnects in Engineered Systems,” Journal of Lightwavetechnology, Aug. 1, 2017, 35(15):3101-3111. |
Rostan et al., “EtherCAT enabled Advanced Control Architecture,” 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2010, pp. 39-41. |
Young et al., “Optical I/O Technology for Tera-Scale Computing,” IEEE Journal of Solid-State Circuits, Jan. 2010, 45(1):235-242. |
Burns et al., “Depolarized source for fiber-optic applications,” Optics Letters, Mar. 15, 1991, 16(6):381-383. |
Burns et al., “Depolarized source for fiber-optic applications: erratum,” Optics Letters, Dec. 1, 1991, 16(23):1905. |
Invitation to Pay Additional Fees in International Appln. No. PCT/US2024/015979, dated May 13, 2024, 2 pages. |
Testa et al., “Experimental evaluation of silicon photonics transceiver operating at 120° C. for 5G antenna array systems,” Electronic Letters, Nov. 29, 2018, 54(24):1391-1393. |
Number | Date | Country | |
---|---|---|---|
20240118484 A1 | Apr 2024 | US |
Number | Date | Country | |
---|---|---|---|
63324429 | Mar 2022 | US | |
63316551 | Mar 2022 | US | |
63272025 | Oct 2021 | US | |
63245559 | Sep 2021 | US | |
63245005 | Sep 2021 | US | |
63245011 | Sep 2021 | US | |
63225779 | Jul 2021 | US | |
63223685 | Jul 2021 | US | |
63212013 | Jun 2021 | US | |
63210437 | Jun 2021 | US | |
63208759 | Jun 2021 | US | |
63192852 | May 2021 | US | |
63178501 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17727317 | Apr 2022 | US |
Child | 18526571 | US |