Communication wire

Information

  • Patent Grant
  • 6743983
  • Patent Number
    6,743,983
  • Date Filed
    Monday, December 16, 2002
    22 years ago
  • Date Issued
    Tuesday, June 1, 2004
    20 years ago
Abstract
The present invention relates to an improved insulated conductor with a low dielectric constant and reduced materials costs. The conductor extends along a longitudinal axis and an insulation surrounds the conductor. At least one channel in the insulation extends generally along the longitudinal axis to form an insulated conductor. Apparatuses methods of manufacturing the improved insulated conductors are also disclosed.
Description




FIELD OF THE INVENTION




The present invention relates to an improved wire and methods of making the same.




BACKGROUND OF THE INVENTION




One method of transmitting data and other signals is by using twisted pairs. A twisted pair includes at least one pair of insulated conductors twisted about one another to form a two conductor pair. A number of methods known in the art may be employed to arrange and configure the twisted pairs into various high-performance transmission cable arrangements. Once the twisted pairs are configured into the desired “core,” a plastic jacket is typically extruded over them to maintain their configuration and to function as a protective layer. When more than one twisted pair group is bundled together, the combination is referred to as a multi-pair cable.




In cabling arrangements where the conductors within the wires of the twisted pairs are stranded, two different, but interactive sets of twists can be present in the cable configuration. First, there is the twist of the wires that make up the twisted pair. Second, within each individual wire of the twisted pair, there is the twist of the wire strands that form the conductor. Taken in combination, both sets of twists have an interrelated effect on the data signal being transmitted through the twisted pairs.




With multi-pair cables, the signals generated at one end of the cable should ideally arrive at the same time at the opposite end even if they travel along different twisted pair wires. Measured in nanoseconds, the timing difference in signal transmissions between the twisted wire pairs within a cable in response to a generated signal is commonly referred to as “delay skew.” Problems arise when the delay skew of the signal transmitted by one twisted pair and another is too large and the device receiving the signal is not able to properly reassemble the signal. Such a delay skew results in transmission errors or lost data.




Moreover, as the throughput of data is increased in high-speed data communication applications, delay skew problems can become increasingly magnified. Even the delay in properly reassembling a transmitted signal because of signal skew will significantly and adversely affect signal throughput. Thus, as more complex systems with needs for increased data transmission rates are deployed in networks, a need for improved data transmission has developed. Such complex, higher-speed systems require multi-pair cables with stronger signals, and minimized delay skew.




The dielectric constant (DK) of the insulation affects signal throughput and attenuation values of the wire. That is, the signal throughput increases as the DK decreases and attenuation decreases as DK decreases. Together, a lower DK means a stronger signal arrives more quickly and with less distortion. Thus, a wire with a DK that is lower (approaching 1) is always favored over an insulated conductor with a higher DK, e.g. greater than 2.




In twisted pair applications, the DK of the insulation affects the delay skew of the twisted pair. Generally accepted delay skew, according to EIA/TIA 568-A-1, is that both signals should arrive within 45 nanoseconds (ns) of each other, based on 100 meters of cable. A delay skew of this magnitude is problematic when high frequency signals (greater than 100 MHz) are being transmitted. At these frequencies, a delay skew of less than 20 ns is considered superior and has yet to be achieved in practice.




In addition, previously, the only way to affect the delay skew in a particular twisted pair or multi-pair cable was to adjust the lay length or degree of twist of the insulated conductors. This in turn required a redesign of the insulated conductor, including changing the diameter of the conductor and the thickness of the insulation to maintain suitable electrical properties, e.g. impedance and attenuation.




One attempt at an improved insulated conductor included the use of ribs on the exterior surface of the insulation or channels within the insulation but close to the exterior surface of the insulation. The ribbed insulation, however, was unsatisfactory because it was difficult, if not impossible, to make the insulation with exterior surface features. Because of the nature of the insulation material used and the nature of process used, exterior surface features would be indistinct and poorly formed. Instead of ribs with sharp edges, the ribs would end as rounded mounds. The rounded result is an effect of using materials that do not hold their shape well and of using an extrusion die to form the surface features. Immediately after leaving the extrusion die, the insulation material tends to surge and expand. This surging rounds edges and fills in spaces between features.




Insulated conductors with ribbed insulation also produced cabling with poor electrical properties. The spaces between ribs may he contaminated with dirt and water. These contaminants negatively affect the DK of the insulated conductor because the contaminants have DKs that are widely varying and typically much higher then the insulation material. The varying DKs of the contaminants will give the overall insulated conductor a DK that varies along its length, which will in turn negatively affect signal speed. Likewise, contaminants with higher DK will raise the overall DK of the insulation, which also negatively affects signal speed.




Insulated conductors with ribbed and channeled insulation also produced cabling with poor physical properties, which in turn degraded the electrical properties. Because of the limited amount of material near the exterior surface of ribbed and known channeled insulation, such insulated conductors have unsatisfactorily low crush strengths; so low that the insulated conductors may not even be able to be spooled without deforming the ribs and channels of the insulation. From a practical standpoint, this is unacceptable because it makes manufacture, storage and installation of this insulated conductor nearly impossible.




The crushing of the ribs and channels or otherwise physically stressing the insulation, will change the shape of these features. This will negatively influence the DK of insulation. One type of physical stressing that is a necessary part of cabling is twisting a pair of insulated conductors together. This type of torsional stress cannot be avoided. Thus, the very act of making a twisted pair may severely compromise the electrical properly of these insulated conductors.




Another area of concern in the wire and cable field is how the wire performs in a fire. The National Fire Prevention Association (NFPA) set standards for how materials used in residential and commercial building bum. These tests generally measure the amount of smoke given off, the smoke density, rate of flame spread and/or the amount of heat generated by burning the insulated conductor. Successfully completing these tests is an aspect of creating wiring that is considered safe under modem fire codes. As consumers become more aware, successful completion of these tests will also be a selling point.




Known materials for use in the insulation of wires, such as fluoropolymers, have desirable electrical properties such as low DK. But fluoropolymers are comparatively expensive. Other compounds are less expensive but do not minimize DK, and thus delay skew, to same extent as fluoropolymers. Furthermore, non-fluorinated polymers propagate flame and generate smoke to a greater extent than fluoropolymers and thus are less desirable material to use in constructing wires.




Thus, there is a need for a wire that addresses the limitations of the prior art to effectively minimize delay skew and provide high rates of transmission while also being cost effective and clean burning.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a perspective, stepped cut away view of a wire according to the present invention.





FIG. 2

shows a cross-section of a wire according to the present invention.





FIG. 3

shows a cross-section of another wire according to the present invention.





FIG. 4

shows a perspective view of an extrusion tip for manufacturing a wire according to the present invention.





FIG. 5

shows a perspective view of another extrusion tip for manufacturing a wire according to the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The wire of the present invention is designed to have a minimized dielectric constant (DK). A minimized DK has several significant effects on the electrical properties of the wire. Signal throughput is increased while signal attenuation is decreased. In addition, delay skew in twisted pair applications is minimized. The minimized DK is achieved through the utilization of an improved insulated conductor as described below.




A wire


10


of the present invention has a conductor


12


surrounded by a primary insulation


14


, as shown in FIG.


1


. Insulation


14


includes at least one channel


16


that runs the length of the conductor. Multiple channels may be circumferentially disposed about conductor


12


. The multiple channels are separated from each other by legs


18


of insulation. The individual wires


10


may be twisted together to form a twisted pair. Twisted pairs, in turn, may be twisted together to form a multi-pair cable. Any plural number of twisted pairs may be utilized in a cable. Alternately, the channeled insulation may be used in coaxial, fiber optic or other styles of cables. An outer jacket


20


is optionally utilized in wire


10


. Also, an outer jacket may be used to cover a twisted pair or a cable. Additional layers of secondary, un-channeled insulation may be utilized either surrounding the conductor or at other locations within the wire. In addition, twisted-pairs or cables may utilize shielding.




The cross-section of one aspect of the present invention is seen in FIG.


2


. The wire


10


includes a conductor


12


surrounded by an insulation


14


. The insulation


14


includes a plurality of channels


16


disposed circumferentially about the conductor


12


that are separated from each other by legs


18


. Channels


16


may have one side bounded by an outer peripheral surface


19


of the conductor


12


. Channels


16


of this aspect generally have a cross-sectional shape that is rectangular.




The cross-section of another aspect of the present invention is seen in FIG.


3


. The insulation


14


′ includes a plurality of channels


16


′ that differ in shape from the channels


16


of the previous aspect. Specifically, the channels


16


′ have curved walls with a flat top. Like the previous aspect, the channels


16


′ are circumferentially disposed about the conductor


12


and are separated by legs


18


′. Also in this aspect, the insulation


14


′ may include a second plurality of channels


22


. The second plurality of channels


22


may be surrounded on all sides by the insulation


14


′. The channels


16


′ and


22


are preferably used in combination with each other.




The channeled insulation protects both the conductor and the signal being transmitted thereon. The composition of the insulation


14


,


14


′ is important because the DK of the chosen insulation will affect the electrical properties of the overall wire


10


. The insulation


14


,


14


′ is preferably an extruded polymer layer that is formed with a plurality of channels


16


,


16


′ separated by intervening legs


18


,


18


′ of insulation. Channels


22


are also preferably formed in the extruded polymer layer.




Any of the conventional polymers used in wire and cable manufacturing may be employed in the insulation


14


,


14


′, such as, for example, a polyolefin or a fluoropolymer. Some polyolefins that may be used include polyethylene and polypropylene. However, when the cable is to be placed into a service environment where good flame resistance and low smoke generation characteristics are required, it may be desirable to use a fluoropolymer as the insulation for one or more of the conductors included in a twisted pair or cable. While foamed polymers may be used, a solid polymer is preferred because the physical properties are superior and the required blowing agent can be eliminated.




In addition, fluoropolymers are preferred when superior physical properties, such as tensile strength or elongation, are required or when superior electrical properties, such as low DK or attenuation, are required. Furthermore, fluoropolymers increase the crush strength of the insulated conductor, while also providing an insulation that is extremely resistant to invasion by contaminants, including water.




As important as the chemical make up of the insulation


14


,


14


′ are the structural features of the insulation


14


,


14


′. The channels


16


,


16


′ and


22


in the insulation generally have a structure where the length of the channel is longer than the width, depth or diameter of the channel. The channels


16


,


16


′ and


22


are such that they create a pocket in the insulation that runs from one end of the conductor to the other end of the conductor. The channels


16


,


16


′ and


22


are preferably parallel to an axis defined by the conductor


12


.




Air is preferably used in the channels; however, materials other than air may be utilized. For example, other gases may be used as well as other polymers. The channels


16


,


16


′ and


22


are distinguished from other insulation types that may contain air. For example, channeled insulation differs from foamed insulation, which has closed-cell air pockets within the insulation. The present invention also differs from other types of insulation that are pinched against the conductor to form air pockets, like beads on a string. Whatever material is selected for inclusion in the channels, it is preferably selected to have a DK that differs from the DK of the surrounding insulation.




Preferably, the legs


18


,


18


′ of the insulation


14


,


14


′ abut the outer peripheral surface


19


of the conductor


12


. In this way, the outer peripheral surface


19


of the conductor


12


forms one face of the channel, as seen in

FIGS. 1-3

. At high frequencies, the signal travels at or near the surface of the conductor


12


. This is called the ‘skin effect’. By placing air at the surface of the conductor


12


, the signal can travel through a material that has a DK of 1, that is, air. Thus, the area that the legs


18


,


18


′ of the insulation


14


,


14


′ occupy on the outer peripheral surface


19


of the conductor


12


is preferably minimized. This may be accomplished by maximizing the cross-sectional area of the channels


16


,


16


′, and consequently minimizing the size of legs


18


,


18


′, utilized in the insulation


14


,


14


′. Also, the shape of the channels


16


,


16


′ may be selected to minimize the legs


18


,


18


′ contact area with the conductor


12


.




A good example of these two concepts used in combination is seen in

FIG. 3

, where channels


16


′ with curved walls are utilized. The walls curve out to give channels an almost trapezoidal shape. The almost trapezoidal channels


16


′ have larger cross-sectional areas than generally rectangular channels


16


. Furthermore, the curve walls of adjacent channels cooperate to minimize the size of the leg


18


′ that abuts the outer peripheral surface


19


of the conductor


12


.




Furthermore, the area that the legs


18


,


18


′ of the insulation


14


occupy on the outer peripheral surface


19


of the conductor


12


can be minimized by reducing the number of channels


16


,


16


′ utilized. For example instead of the six channels


16


,


16


′ illustrated in

FIGS. 2-3

, five or four channels may be used.




Preferably, the area occupied by the legs


18


,


18


′ on the outer peripheral surface


19


of the conductor


12


is less than about 75% of the total area, with legs that occupy less than about 50% being more preferred. Insulation with legs that occupy about 35% of the area of outer peripheral surface is most preferred, although areas as small as 15% may be suitable. In this way, the area of the outer peripheral surface where the signal can travel through air is maximized. Stated alternatively, by minimizing the area occupied by the legs, the skin effect is maximized.




The channels


22


also minimize the overall DK of the insulation


14


′ by including air in the insulation


14


′. Furthermore, the channels


22


can be utilized without compromising the physical integrity of the wire


10


.




The cross-sectional area of the channels should be selected to maintain the physical integrity of wire. Namely, it is preferred that any one channel not have a cross-sectional area greater than about 30% of the cross-sectional area of the insulation.




Through the use of the wire


10


with channeled insulation


14


,


14


′, a delay skew of less than 20 ns is easily achieved in twisted pair or multi-pair cable applications, with a delay skew of 15 ns preferred. A delay skew of as small as 5 ns is possible if other parameters, e.g. lay length and conductor size, are also selected to minimize delay skew.




Also, the lowered DK of the insulation


14


,


14


′ is advantageous when used in combination with a cable jacket. Typically, jacketed plenum cables use a fire resistant PVC (FRPVC) for the outer jacket. FRPVC has a relatively high DK that negatively affects the impedance and attenuation values of the jacketed cable, but it is inexpensive. The insulation


14


,


14


′, with its low DK, helps to offset the negative effects of the FRPVC jacket. Practically, a jacketed cable can be given the impedance and attenuation values more like an un-jacketed cable.




Indeed, the low DK provided by the insulation


14


,


14


′ also increases the signal speed on the conductor, which, in turn, increases the signal throughput. Signal throughput of at least 450 ns for 100 meters of twisted pair is obtained, while signal speeds of about 400 ns are possible. As signal speeds increase, however, the delay skew must be minimized to prevent errors in data transmission from occurring.




Furthermore, since the DK of the channeled insulation is proportional to the cross-sectional area of the channels, the signal speed in a twisted pair is also proportional to the cross-sectional area of the channels and thus easily adjustable. The lay length, conductor diameter, and the insulator thickness need not be changed. Rather, the cross-sectional area of the channels can be adjusted to obtain the desired signal speed in balance with other physical and electrical properties of the twisted pair. This is particularly useful in a multi-pair cable. The delay skew of the cable may be thought of as the difference in signal speed between the fastest twisted pair and the slowest twisted pair. By increasing the cross-sectional area of the channels in the insulation of the slowest twist pair, its signal speed can be increased and thus more closely matched to the signal speed of the fastest twisted pair. The closer the match, the smaller the delay skew.




Placement of the channels


16


,


16


′ adjacent to the outer peripheral surface


19


of the conductor


12


also does not compromise the physical characteristics of the insulated conductor, which in turn preserves the electrical properties of the insulated conductor. Because the exterior surface of the insulated conductor is intact, there is no opportunity for contaminants to become lodged in the channels. The consequence is that the DK of the insulation does not vary over the length of the cable and the DK is not negatively affected by the contaminants.




By placing the channels near the conductor, the crush strength of the insulated conductor is not compromised. Namely, sufficient insulation is in place so that the channels are not easily collapsed. Further, the insulation also prevents the shape of the channels from being significantly distorted when torsional stress is applied to the insulated conductor. Consequently, normal activities, i.e., manufacture, storage and installation, do adversely affect the physical properties, and be extension, the electrical properties, of insulated conductor of the present invention.




Besides the desirable effects on the electrical properties of the wire


10


, the insulation


14


,


14


′ has economic and fire prevention benefits as well. The channels


16


,


16


′ and


22


in the insulation


14


,


14


′ reduce the materials cost of manufacturing the wire


10


. The amount of insulation material used for the insulation


14


,


14


′ is significantly reduced compared to non-channeled insulation and the cost of the filler gas is free. Stated alternately, more length of the insulation


14


,


14


′ can be manufactured from a predetermined amount of starting material when compared to non-channeled insulation. The number and cross-sectional area of the channels


16


,


16


′ and


22


will ultimately determine the size of the reduction in material costs.




The reduction in the amount of material used in the insulation


14


,


14


′ also reduces the fuel load of the wire


10


. Insulation


14


,


14


′ gives off fewer decomposition by-products because it has comparatively less insulation material per unit length. With a decreased fuel load, the amount of smoke given off and the rate of flame spread and the amount of heat generated during burning are all significantly decreased and the likelihood of passing the pertinent fire safety codes, such as NFPA 255, 259 and 262, is significantly increased. A comparison of the amount of smoke given off and the rate of flame spread may be accomplished through subjecting the wire to be compared to a UL 910 Steiner Tunnel bum test. The Steiner Tunnel burn test serves as the basis for the NFPA 255 and 262 standards. In every case, a wire with channeled insulation where the channels contain air will produce at least 10% less smoke then wire with un-channeled insulation. Likewise, the rate of flame spread will be at least 10% less than that of un-channeled insulation.




A preferred embodiment of the present invention is a wire


10


with insulation


14


,


14


′ made of fluoropolymers where the insulation is less than about 0.010 in thick, while the insulated conductor has a diameter of less than about 0.042 in. Also, the overall DK of the. wire is preferably less than about 2.0, while the channels have a cross-sectional are of at least 2.0×10


−5


in


2


.




The preferred embodiment was subjected to a variety of tests. In a test of water invasion, a length of channeled insulated conductor was placed in water heated to 90° C. and held there for 30 days. Even under these adverse conditions, there was no evidence of water invasion into the channels. In a torsional test, a 12 inch length of channeled insulated conductor was twisted 180° about the axis of the conductor. The channels retained more than 95% of their untwisted cross-sectional area. Similar results were found when two insulated conductors were twisted together. In a crush strength test, the DK of a length of channeled insulated conductor was measured before and after crushing. The before and after DK of the insulated conductor varied by less the 0.01.




While the insulation is typically made of a single color of material, a multi-colored material may be desirable. For instance, a stripe of colored material may be included in the insulation. The colored stripe primarily serves as a visual indicator so that several insulated conductors may be identified. Typically, the insulation material is uniform with only the color varying between stripes, although this need not be the case. Preferably, the stripe does not interfere with the channels.




Examples of some acceptable conductors


12


include solid conductors and several conductors twisted together. The conductors


12


may be made of copper, aluminum, copper-clad steel and plated copper. It has been found that copper is the optimal conductor material. In addition, the conductor may be glass or plastic fiber, such that fiber optic cable is produced.




The outer jacket


20


may be formed over the twisted wire pairs and as can a foil shield by any conventional process. Examples of some of the more common processes that may be used to form the outer jacket include injection molding and extrusion molding. Preferably, the jacket is comprised of a plastic material, such as fluoropolymers, polyvinyl chloride (PVC), or a PVC equivalent that is suitable for communication cable use.




The present invention also includes methods and apparatuses for manufacturing wires with channeled insulation. The insulation is preferably extruded onto the conductor using conventional extrusion processes, although other manufacturing processes are suitable. In a typical insulation extrusion apparatus, the insulation material is in a plastic state, not fully solid and not fully liquid, when it reaches the crosshead of the extruder. The crosshead includes a tip that defines the interior diameter and physical features of the extruded insulation. The crosshead also includes a die that defines the exterior diameter of the extruded insulation. Together the tip and die help place the insulation material around the conductor. Known tip and die combinations have only provided an insulation material with a relatively uniform thickness at a cross-section with a tip that is an unadulterated cylinder. The goal of known tip and die combinations is to provide insulation with a uniform and consistent thickness. In the present invention, the tip provides insulation with interior physical features; for example, channels. The die, on the other hand, will provide an insulation relatively constant exterior diameter. Together, the tip and die combination of the present invention provides an insulation that has several thicknesses.




The insulation


14


shown in

FIG. 2

is achieved through the use of an extrusion tip


30


as depicted in FIG.


4


. The tip


30


includes a bore


32


through which the conductor may be fed during the extrusion process. A land


34


on the tip


30


includes a number of grooves


36


. In the extrusion process, the tip


30


, in combination with the die, fashions the insulation


14


that then may be applied to the conductor


12


. Specifically, in this embodiment, the grooves


36


of the land


34


create the legs


18


of the insulation


14


such that the legs


18


contact the conductor


12


(or a layer of an un-channeled insulation). The prominences


38


between the grooves


36


on the land


34


effectively block the insulation material, thus creating the channels


16


in the insulation material as it is extruded.




The insulation


14


′ shown in

FIG. 3

is achieved through the use of an extrusion tip as depicted in FIG.


5


. The tip


30


′ includes a bore


32


through which the conductor may be fed during the extrusion process. Like the tip of

FIG. 4

, the land


34


of the tip


30


′ includes a number of grooves


36


′ separated by prominences


38


′. In this embodiment, the grooves


36


′ are concave, while the prominences


38


′ are flat topped. Together, the grooves


36


′ and prominences


38


′ of the land


34


form convex legs


18


′ and flat-topped channels


16


′ of the insulation. In addition, the tip


30


′ also includes a number of rods


40


spaced from the land


34


. The rods


40


act similar to the prominences


38


′ and effectively block the insulation material, thus creating long channels


22


surrounded by insulation


14


′, as seen in FIG.


3


.




While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.



Claims
  • 1. A wire comprising a conductor extending along a longitudinal axis, an insulation surrounding the conductor and at least one first channel in the insulation extending generally along the longitudinal axis to form an insulated conductor, the at least one first channel containing a gas, wherein an outer peripheral surface of the conductor forms one side of the at least one first channel, wherein the insulated conductor has at least one property selected from the group consisting of:a) invasion of substantially no water after submerging the insulated conductor for 30 days in water heated to 90° C.; b) retention of more than 75% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted 180° about the longitudinal axis of the conductor; c) retention of more than 75% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted about another insulated conductor; d) variation of less than 0.05 of the dielectric constant of the insulated conductor between before and after a crush strength test.
  • 2. The wire of claim 1, wherein the property is retention of more than 85% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted 180°.
  • 3. The wire of claim 2, wherein the property is retention of more than 95% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted 180°.
  • 4. The wire of claim 1, wherein the property is retention of more than 85% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted about another insulated conductor.
  • 5. The wire of claim 4, wherein the property is retention of more than 95% of the cross-sectional area of the at least one channel when a 12 inch length of insulated conductor is twisted about another insulated conductor.
  • 6. The wire of claim 1, wherein the property is variation of less than 0.05 of the dielectric constant of the insulated conductor between before and after a crush strength test.
  • 7. The wire of claim 1, wherein the property is variation of less than 0.025 of the dielectric constant of the insulated conductor between before and after a crush strength test.
  • 8. The wire of claim 1, wherein the property is variation of less than 0.01 of the dielectric constant of the insulated conductor between before and after a crush strength test.
  • 9. A wire comprising a conductor including an outer peripheral surface and an insulation surrounding the conductor to form an insulated conductor wherein the insulation includes at least one portion spaced from the outer peripheral surface to form at least one channel extending generally along a longitudinal axis of the conductor and wherein the insulation includes at least one leg that abuts the outer peripheral surface of the conductor, and wherein said at least one channel contains a gas.
  • 10. The wire of claim 9, where the at least one leg occupies less than 75% of the area of the outer peripheral surface.
  • 11. The wire of claim 9, where the at least one leg occupies less than 50% of the area of the outer peripheral surface.
  • 12. The wire of claim 9, where the at least one leg occupies less than 35% of the area of the outer peripheral surface.
  • 13. The wire of claim 9, where the at least one leg occupies less than 25% of the area of the outer peripheral surface.
  • 14. The wire of claim 9, wherein said gas is air.
  • 15. The wire of claim 9, wherein said gas is unassociated with closed-cell gas pockets.
  • 16. A wire comprising a conductor including an outer peripheral surface and an insulation surrounding the conductor to form an insulated conductor wherein the insulation includes at least one portion spaced from the outer peripheral surface to form at least one channel extending generally along a longitudinal axis of the conductor, said at least one channel containing a gas and wherein the insulation includes at least one stripe of color visible on an outer peripheral surface of the insulation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-In-Part of U.S. application Ser. No. 10/253,212, filed Sep. 24, 2002, the entire teaching of this application being incorporated herein by this reference.

US Referenced Citations (12)
Number Name Date Kind
2583026 Swift Jan 1952 A
3086557 Peterson Apr 1963 A
3650862 Burr Mar 1972 A
4394705 Blachman Jul 1983 A
5132488 Tessier et al. Jul 1992 A
5286923 Prudhon et al. Feb 1994 A
5742002 Arredondo et al. Apr 1998 A
5990419 Bogese, II Nov 1999 A
6452105 Badii et al. Sep 2002 B2
6465737 Bonato et al. Oct 2002 B1
6476326 Fuzier et al. Nov 2002 B1
6534715 Maunder et al. Mar 2003 B1
Continuation in Parts (1)
Number Date Country
Parent 10/253212 Sep 2002 US
Child 10/321296 US