As networks become more complex and have a need for higher bandwidth cabling, attenuation of cable-to-cable crosstalk (or “alien crosstalk”) becomes increasingly important to provide a robust and reliable communications system. Alien crosstalk is primarily coupled electromagnetic noise that can occur in a disturbed cable arising from signal-carrying cables that run near the disturbed cable, and, is typically characterized as alien near end crosstalk (ANEXT), or alien far end crosstalk (AFEXT).
The following detailed description references the drawings, wherein:
Reference will now be made to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar parts. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only. While several examples are described in this document, modifications, adaptations, and other implementations are possible. Accordingly, the following detailed description does not limit the disclosed examples. Instead, the proper scope of the disclosed examples may be defined by the appended claims.
Communications cable 22 is shown in the form of an unshielded twisted pair (UTP) cable, and more particularly a Category 6A cable which can operate at speeds of 10 Gb/s, as is shown more particularly in
Communications cable 22 can be used in a variety of structured cabling applications including patch cords, backbone cabling, and horizontal cabling, although the present invention is not limited to such applications. In general, the present invention can be used in military, industrial, telecommunications, computer, data communications, and other cabling applications.
Referring to
Metal foil tape 35 may be longitudinally wrapped around core 23 under cable jacket 33 along the length of communications cable 22. That is, metal foil tape 35 may be wrapped along its length such that it wraps around the length of communications cable 22 in a “cigarette” style wrapping or may be spirally wrapped along the length of communications cable 22. As shown in
In some situations, communications cable 22 may be used in applications where cable 22 is constantly moved or displaced, such as at a workspace or desk, or as a result of movement of equipment in an equipment room. The movement of cable 22 may cause some of the internal components of cable 22 to move with respect to other internal components. For example, as cable 22 moves and bends, wire pairs 26 may move relative to metal foil tape 35, and thus may rub against metal foil tape 35. Similarly, metal foil tape 35 may also rub against cable jacket 33. The rubbing of various surfaces against one another in communications cable 22 can cause electric charge to build up in cable 22 via the triboelectric effect. The charge buildup occurs in part due to the differences in charge affinity between the rubbing surfaces in communications cable 22. A large enough difference in charge affinity between two surfaces can cause enough of a charge buildup to damage devices that are connected to communications cable 22 as well as cause bit errors when information is passing through cable 22.
In the context of the construction of communications cable 22, metal layer 32 may have a slightly positive charge affinity whereas the PTFE insulator surrounding the conductors in wire pairs 26 it faces in communications cable 22 may have a charge affinity of around −190 nC/J, which produces a significant difference in charge affinity of greater than 190 nC/J. On the opposite side of metal foil tape 35, PET substrate 34 may have a charge affinity of around −40 nC/J whereas PVC cable jacket 33 may have a charge affinity of around −100 nC/J, which produces a net difference in charge affinity of around 60 nC/J. The larger the charge affinity difference between the two materials is, the larger the charge buildup and eventual discharge of energy will occur.
As shown in
The same material can be used on both sides of metal foil tape 35 to simplify the tape fabrication process, or each side can be coated with a different material to optimize the charge affinities of each side of metal foil tape 35. The material used for triboelectric coating 39 may be selected such that triboelectric coating 39 will have a charge affinity close to the charge affinity of the insulator surrounding the conductors in wire pairs 26 as well as the charge affinity of cable jacket 33. In one example, triboelectric coating 39 may be made of a polyolefin material having a charge affinity of around −90 nC/J, which may be effective in minimizing the triboelectric effect between it and PVC cable jacket 33. In another example, triboelectric coating 39 may be made of an ethylene propylene based rubber (or other rubber type materials such as Butyl, Hypalon, or Santoprene) having a charge affinity of around −140 nC/J, which may be effective in minimizing the triboelectric effect between it and the PTFE insulation of wire pairs 26.
With a polyolefin material triboelectric coating 39 applied to both sides of metal foil tape 35, the difference in charge affinity between the PTFE insulator of wire pairs 26 and metal layer 32 of the resulting metal foil tape 35′ is now around 100 nC/J (−90 nC/J coating against −190 nC/J PTFE), which is a reduction of around 47%. The difference in charge affinity between PVC cable jacket 33 and PET substrate 34 of metal foil tape 35 is now around 10 nC/J (−90 nC/J coating against −100 nC/J PVC), which is a reduction of around 83%.
With a polyolefin material triboelectric coating 39 applied to the substrate 34 side of metal foil tape 35 and an ethylene propylene material triboelectric coating 39 applied to the metal layer 32 side of metal foil tape 35, the difference in charge affinity between the PTFE insulator of wire pairs 26 and metal layer 32 of the resulting metal foil tape 35′ is now around 50 nC/J (−140 nC/J coating against −190 nC/J PTFE), which is a reduction of around 74%. The difference in charge affinity between PVC cable jacket 33 and PET substrate 34 of metal foil tape 35 is now around 10 nC/J (−90 nC/J coating against −100 nC/J PVC), which is a reduction of around 83%.
Note that while the present disclosure includes several embodiments, these embodiments are non-limiting (regardless of whether they have been labeled as exemplary or not), and there are alterations, permutations, and equivalents, which fall within the scope of this invention. Additionally, the described embodiments should not be interpreted as mutually exclusive, and, should instead be understood as potentially combinable if such combinations are permissive. It should also be noted that there are many alternative ways of implementing the embodiments of the present disclosure. It is therefore intended that claims that may follow be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present disclosure.
This application claims priority to U.S. Provisional Application No. 62/635,192, filed Feb. 26, 2018, the subject matter of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3575748 | Polizzano | Apr 1971 | A |
4292463 | Bow | Sep 1981 | A |
4501928 | Ishitobi | Feb 1985 | A |
6297454 | Gareis | Oct 2001 | B1 |
6800811 | Boucino | Oct 2004 | B1 |
7335837 | Pfeiler et al. | Feb 2008 | B2 |
9697929 | Wehrli | Jul 2017 | B2 |
10249410 | Lanoe | Apr 2019 | B1 |
20060048961 | Pfeiler | Mar 2006 | A1 |
20140238720 | Kroushl | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
2018071774 | Apr 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20190267158 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62635192 | Feb 2018 | US |