Communications device with helically wound conductive strip and related antenna devices and methods

Information

  • Patent Grant
  • 11682841
  • Patent Number
    11,682,841
  • Date Filed
    Thursday, September 16, 2021
    2 years ago
  • Date Issued
    Tuesday, June 20, 2023
    11 months ago
Abstract
A communications device may include an RF device, and an antenna. The antenna may include a conductive ground plane, an elongate support extending from the conductive ground plane, and a helically wound conductive strip carried by the elongate support. The communications device may have a coaxial cable coupling the RF device and the antenna. The coaxial cable may include an inner conductor and an outer conductor surrounding the inner conductor. The outer conductor may be coupled to the conductive ground plane and the inner conductor may extend through the conductive ground plane and be coupled to a proximal end of the helically wound conductive strip.
Description
TECHNICAL FIELD

The present disclosure relates to the field of communications, and, more particularly, to a wireless communications device and related methods.


BACKGROUND

Space antenna assemblies for satellite-to-ground links typically require a single directive beam, high gain, low mass, and high reliability. Elongate antennas may sometimes be used.


Circular polarization can be desirable for satellite-to-earth links as circular polarization mitigates against the Faraday Rotation of waves passing through the ionosphere. Yagi-Uda antennas are an elongate antenna of high directivity for size that can provide circular polarization by a turnstile feature. In turnstile antenna, two Yagi-Uda antennas are mounted at right angles to each other on a common boom, fed equal amplitude and phased 0, 90 degrees by a feeding network. Yagi-Uda antennas may be limited in bandwidth.


A prior art antenna providing circular polarization is an axial mode wire helix antenna. An example is disclosed in “Helical Beam Antennas For Wide-Band Applications”, Proceedings Of The Institute Of Radio Engineers, 36, pp 1236-1242, October 1948. The axial mode wire helix antenna may have a diameter between about 0.8 and 1.3 wavelengths and a winding pitch angle of between 13 and 17 degrees. Radiation is emitted in an end fire mode, for example, along the axis of the helix, and a directive single main beam is created. Potential drawbacks may exist for the simple axial mode wire helix: realized gain is nearly 3 dB less than a Yagi-Uda antenna of the same length; the driving point resistance of the helix is near 130 ohms not 50 ohms; metal supports for the helix conductor may be disabling; and a direct current ground is not provided to drain space charging.


An improvement to the wire axial mode helix is found in U.S. Pat. No. 5,892,480 to Killen, assigned to the present application's assignee. This approach for a directional antenna comprises a helix-shaped antenna. Although this antenna is directional, the gain and bandwidth performance may be less than desirable.


Referring briefly to FIGS. 3A-3B, another existing approach discloses a helix-shaped antenna 100. This antenna 100 includes a helix-shaped conductor 101, and a conductive plane 102 coupled to the helix-shaped conductor. Diagram 150 shows gain performance for the antenna 100. The provided gain has a non-flat profile, which is less desirable in radio design.


Continued growth and demand for bandwidth has led to new commercial satellite constellations. For example, the O3b satellite constellation is deployed in a medium earth orbit (MEO), and the OneWeb satellite constellation is to be deployed in a low earth orbit (LEO). A more compact antenna assembly reduces the size and weight of the satellites, as well as costs.


SUMMARY

Generally, a communications device may include a radio frequency (RF) device, and an antenna. The antenna may include a conductive ground plane, an elongate support extending from the conductive ground plane, and a helically wound conductive strip carried by the elongate support. The communications device may comprise a coaxial cable coupling the RF device and the antenna. The coaxial cable may include an inner conductor and an outer conductor surrounding the inner conductor. The outer conductor may be coupled to the conductive ground plane, and the inner conductor may extend through the conductive ground plane and be coupled to a proximal end of the helically wound conductive strip.


In particular, the proximal end of the helically wound conductive strip may define a gap with adjacent portions of the conductive ground plane. The helically wound conductive strip may have a different helical pitch along the elongate support. More specifically, the helically wound conductive strip may have an increasing helical pitch in a direction extending from the conductive ground plane.


Also, the helically wound conductive strip may have a different diameter in a direction extending from the conductive ground plane. In particular, the helically wound conductive strip may have a decreasing diameter in a direction extending from the conductive ground plane. In some embodiments, the elongate support may include at least one of a conductive material, and a dielectric material. The conductive ground plane may have a width greater than a diameter of the helically wound conductive strip. Moreover, the antenna may have an operating frequency, and the helically wound conductive strip may have a diameter between 0.3 and 0.60 wavelengths of the operating frequency.


Another aspect is directed to an antenna device for an RF device. The antenna device may include a conductive ground plane, an elongate support extending from the conductive ground plane, a helically wound conductive strip carried by the elongate support, and a coaxial cable feed point carried by the conductive ground plane. The coaxial cable feed point is to be coupled to a coaxial cable comprising an inner conductor and an outer conductor surrounding the inner conductor with the outer conductor to be coupled to the conductive ground plane and the inner conductor to extend through the conductive ground plane and to be coupled to a proximal end of the helically wound conductive strip.


Yet another aspect is directed to a method for making an antenna for a communications device. The method may include coupling a helically wound conductive strip around an elongate support carried by a conductive ground plane. The method may further include coupling a coaxial cable feed point carried by the conductive ground plane to a coaxial cable. The coaxial cable may include an inner conductor and an outer conductor surrounding the inner conductor with the outer conductor to be coupled to the conductive ground plane and the inner conductor to extend through the conductive ground plane and to be coupled to a proximal end of the helically wound conductive strip.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic perspective view of a communications device, according to a first example embodiment of the present disclosure.



FIG. 2 is an enlarged schematic side view of the communications device of FIG. 1.



FIG. 3A is a schematic perspective view of an antenna, according to the prior art.



FIG. 3B is a diagram of gain in the antenna of FIG. 3A.



FIG. 4 is a schematic perspective view of a communications device, according to a second example embodiment of the present disclosure.



FIG. 5 is a schematic top plan view of a communications device, according to a third example embodiment of the present disclosure.



FIG. 6 is a schematic diagram of a communications device, according to a fourth example embodiment of the present disclosure.



FIG. 7 is a diagram of a Smith chart of the communications device of FIG. 1.



FIG. 8 is a diagram for voltage standing wave ratio (VSWR) in the communications device of FIG. 1.



FIG. 9 is a diagram of gain in the communications device of FIG. 1.



FIG. 10 is a diagram for a radiation pattern in the communications device of FIG. 1.



FIG. 11 is diagram showing a method of manufacture for the communications device of FIG. 1.





DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which several embodiments of the invention are shown. This present disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art. Like numbers refer to like elements throughout, and base 100 reference numerals are used to indicate similar elements in alternative embodiments.


In light of the existing antennas, there is an unsolved issue for providing a small, compact antenna that includes both high bandwidth and high directionality. Referring to FIGS. 1-2, a communications device 200 according to the present disclosure is now described, which provides an approach to this issue. The communications device 200 illustratively includes an RF device 201 (e.g., RF transceiver, RF transmitter, or RF receiver), and an antenna 202 coupled to the RF device. For example, the communications device 200 may be deployed on-board a mobile platform, such as a vehicle or an aircraft. In some applications, the communications device 200 may comprise a LEO/MEO/high Earth orbit satellite communications device (i.e. either ground-to-space, space-to-ground, or space-to-space). In other applications, the communications device 200 may be deployed in a point-to-point terrestrial network.


The antenna 202 illustratively comprises a conductive ground plane 203. The conductive ground plane 203 is illustratively planar and circle-shaped, but may take one other shapes, such as a planar/curved rectangle-shape or a planar/curved oval-shape. Indeed, in some vehicular applications, the ground metallic body of a vehicle may serve as the conductive ground plane 203. In some embodiments, the conductive ground plane 203 comprises a peripheral section having non-planar corrugations, which may provide radiation pattern shaping. The conductive ground plane 203 may comprise one or more of aluminum, copper, silver, steel, and gold, for example. Indeed, any material of sufficient electrical conductivity can be used.


The antenna 202 illustratively comprises an elongate support 204 extending from the conductive ground plane 203. The elongate support 204 is cylinder-shaped in this illustrative example. Nevertheless, in other embodiments, the elongate support 204 may comprise a rectangle-shaped, circular or oval-shaped cross section. Moreover, the elongate support 204 may be partially or entirely comprised of electrically conductive material. In other embodiments, the elongate support 204 may comprise entirely or partially a dielectric material. For example, in one embodiment, the elongate support 204 comprises a dielectric base elongate support, and an electrically conductive cover layer thereon (e.g. applied via sputtering or an adhesively backed conductive tape layer, such as copper tape). The elongate support 204 may even be absent in some embodiments, as for instance, the antenna 202 being formed from a twisted metal strip.


As perhaps best seen in FIG. 2, the elongate support 204 comprises a tubular structure with a hollow interior. Of course, in other embodiments, the elongate support 204 may comprise a solid rod. Also, the communications device 200 illustratively comprises a fastener 208 coupling the conductive ground plane 203 to the elongate support 204. In other embodiments, the elongate support 204 is alternatively welded to the conductive ground plane 203.


The antenna 202 illustratively comprises a helically wound conductive strip 205 carried by the elongate support 204. As will be appreciated, the helically wound conductive strip 205 may be categorized as a helical volute, helical blade, twist drill, an auger-shape, or an Archimedean screw.


In some embodiments, the helically wound conductive strip 205 comprises an electrically conductive ribbon wound about the elongate support 204. The helically wound conductive strip 205 comprises a proximal end 206a adjacent the conductive ground plane 203, and a distal end 206b opposing the proximal end and defining an end-fire point for a radiation pattern. The helically wound conductive strip 205 comprises a plurality of turns 207a-207g about the elongate support 204, and the spacing between adjacent turns is defined as a helical pitch. The turns 207a-207g define helical slots 208a-208b within a void area between the turns of the helically wound conductive strip 205.


In the illustrated embodiment, the helical pitch of the helically wound conductive strip 205 varies along the elongate support 204, but in other embodiments, the diameter may constant. There is a design tradeoff in this design feature: a constant helical pitch for the helically wound conductive strip 205 may be easier to design and fabricate while a variable winding pitch for the helically wound conductive strip 205 allows for increased directivity, increased gain, and reduced side lobes. Thus, a variable helical pitch for the helically wound conductive strip 205 may perform better than a constant helical pitch embodiment. In some embodiments, the optimum variable helical pitch for elongate antennas operate in the Hansen Woodward velocity range, as described in the reference “A New Principle In Directional Antenna Design”, W. W. Hansen, J. R. Woodward, Proceedings Of The Institute Of Radio Engineers, 1938, volume 26, issue 3 pp 343-345. An additional reference in this regard is: “Two-dimensional End Fire Array With Increased Gain and Side lobe Reduction”, H. Ehrenspeck, W. Kearns, Wescon/57 conference record, volume 1, pp 217-229.


If a constant helical pitch is used in constructing the antenna 202, a helical pitch of 20 degrees may be used, for example. The constant helical pitch allows for the antenna 202 to have adjustable directivity by screwing and unscrewing distal sections of the antenna.


Also, the helical angle of the helically wound conductive strip 205 varies along the elongate support 204, but in other embodiments, the helical angle may be constant. Moreover, the helically wound conductive strip 205 has a constant diameter extending between the proximal end 206a and the distal end 206b. The ribbon thickness of the helically wound conductive strip 205 is constant along the elongate support 204, but may vary in other embodiments.


As perhaps best seen in FIG. 2, the proximal end 206a of the helically wound conductive strip 205 defines a gap 210 (i.e. a feed gap) with adjacent portions of the conductive ground plane 203. In particular, the proximal end 206a of the helically wound conductive strip 205 defines a longitudinal edge 211 extending radially from the elongate support 204 towards an outer radial end of the conductive ground plane 203.


The communications device 200 illustratively includes a coaxial cable 212 coupling the RF device 201 and the antenna 202. The coaxial cable 212 includes an inner conductor 213 (i.e. a feed pin), and an outer conductor 214 surrounding the inner conductor. The outer conductor 214 is coupled to the conductive ground plane 203. The inner conductor 213 extends through an aperture (i.e. a feed point) in the conductive ground plane 203 to be coupled to the proximal end 206a (i.e. the longitudinal edge 211) of the helically wound conductive strip 205. The inner conductor 213 may be soldered to the proximal end 206a, be clamped through a hole (not shown) in the helically wound conductive strip 205 using a threaded inner conductor 213 with nuts (not shown), or otherwise.


The operational characteristics of the communications device 200 are set by the physical dimensions of the gap 210. In particular, the input resistance of the communications device 200 is determined by x, the distance between the longitudinal edge 211 and the conductive ground plane 203, and y, the radial distance between the elongate support 204 and the inner conductor 213. The tuned frequency is set by z, a radial distance between the elongate support 204 and an outer radial edge of the longitudinal edge 211. The back lobe of the antenna 202 is set by A, a radial distance between the elongate support 204 and an outer radial edge of the conductive ground plane 203. The conductive ground plane 203 illustratively has a width greater than a diameter of the helically wound conductive strip 205. Moreover, the antenna 202 has an operating frequency, and the helically wound conductive strip 205 has a diameter between 0.30 and 0.60 wavelengths of the operating frequency. The helically wound conductive strip 205 therefore has a circumference of 0.94 and 1.88 wavelengths of the operating frequency. In one embodiment, peak realized gain occurred at a helically wound conductive strip 205 diameter of 0.48 wavelengths.


In some embodiments, rather than the conductive ground plane 203 having the aperture feed point for the inner conductor 213, the conductive ground plane comprises a radial slot (i.e. a movable feed point). In these embodiments, the radial distance y may be adjusted by sliding the inner conductor 213 within the radial slot, which adjusts the driving reactance and driving resonance of the antenna 202.


Yet another aspect is directed to a method for making an antenna 202 for a communications device 200. The method includes coupling a helically wound conductive strip 205 around an elongate support 204 carried by a conductive ground plane 203. The method further includes coupling a coaxial cable feed point carried by the conductive ground plane 203 to a coaxial cable 212. The coaxial cable 212 includes an inner conductor 213 and an outer conductor 214 surrounding the inner conductor with the outer conductor to be coupled to the conductive ground plane 203 and the inner conductor to extend through the conductive ground plane and to be coupled to a proximal end of the helically wound conductive strip 205.


In another embodiment, the antenna 202 may be switchable between a retracted state (compact form) and an extended state (as depicted). In particular, the elongate support 204 may comprise a telescoping support, and the helically wound conductive strip 205 may retract into a flat retracted state, or may comprise a ribbon that can wind into the retracted state.


As will be appreciated, the antenna 202 provides for a volute helix or auger with specific provisions for feeding, impedance, wave velocity and the like. Filling the subtended antenna 202 with the volute results in a better performing antenna in slot mode. The volute may provide a substrate for surface waves providing increased directivity. Helpfully, the conductive ground plane 203 functions to cause a single beam in the radiation pattern.


Table 1 lists the parameters and performance of an example prototype of the antenna 202:











TABLE 1





Parameter
Value
Comment







Antenna type
Directive end fire



Antenna shape
Archimedean screw,




auger, or helical



volute


Antenna construction
3D printing with




metal plating










Helically wound
13.8
inches



conductive strip


height









Helically wound




conductive strip


number of turns


Helically wound
Variable
Hansen-Woodward wave


conductive strip

velocity taper


winding pitch










Helically wound
3.440
inches



conductive strip


diameter


Helically wound
0.032
inches


conductive strip


thickness


Elongate support
0.200
inches


diameter


Gap width (feed
0.100
inches


notch height)









Inner conductor
0.775 inches out
Dimension y FIG. 2


location
from antenna center



axis










Ground plane
10
inches
Aluminum sheet


diameter









Helically wound
Copper plated 3D



conductive strip
printed plastic


construction










Peak realized Gain
14
dBic
At a frequency of





1600 MHz









3 dB realized gain
62%
1185 MHz to 1924 MHz


bandwidth


Polarization
Right hand circular


Polarization axial
Under 1.7 dB from


ratio
1.2 to 2.0 GHz


Driving resistance
50 ohms nominal


Voltage standing
Under 2 to 1 from


wave ratio (VSWR)
1.24 to 4.7 GHz









In the following, a theory of antenna operation will now be described. Antennas may come in three forms: panel, slot and skeleton. The helically wound conductive strip 205 comprises a slot or panel variant of the prior art wire helix. The center space of a wire helix cannot carry electrical current obviously. Advantageously, the helically wound conductive strip 205 distributes electrically current uniformly or nearly so throughout the interior of the subtended space. A uniform current distribution is the condition for maximum directivity and gain from a given antenna space. Hence, the helically wound conductive strip 205 may provide increased directivity from the prior art axial mode wire helix by using space more effectively. Traveling wave current flows along the helically wound conductive strip 205 and creates circular polarization due the curling motion of the applied electrical current. Side lobe levels are a function of winding pitch and are less for a progressive winding pitch than for a constant winding pitch. A progressive winding pitch may produce more realized gain by matching the Hansen-Woodward relation for axial wave velocity. Constant winding pitch embodiments may however be useful for some needs, such as cut to length gain adjustment. Gain is optimized in constant winding pitch embodiments with a spacing between turns of 0.2 wavelengths. The elongate support 204 provides for increased mechanical strength. A larger diameter elongate support 204 requires a larger helically wound conductive strip 205, and a smaller diameter helically wound conductive strip requires a smaller helically wound conductive strip.


The gap 210 provides an electrical drive discontinuity between the helically wound conductive strip 205 and the conductive ground plane 203. The width of the gap 210 has a large effect of the driving impedance provided by the antenna 202 to the coaxial cable 212. This is because the longitudinal edge 211 of the helically wound conductive strip 205 has a transmission line and transmission line shorted stub relationship with the conductive ground plane 203. The driving impedance of the antenna 202 as provided to the coaxial cable 212 is adjustable by means of the gap 210 width in the z direction, the gap 210 depth in the X direction, and the inner conductor 213 distance radially outward from the antenna 202 center axis. These parameters usefully provide impedance adjustment with radiation pattern change. Thus, the helically wound conductive strip 205 mechanical parameters can be set for maximum gain without compromise for impedance sake.


The radiation and impedance bandwidth of the antenna 202 exceeds that of Yagi-Uda antennas. This is because of the antenna element is a continuous element that avoids the shapely tuned individual element-slots of the Yagi-Uda. The directivity of the antenna 202 may arise from a surface wave transmission line or lens effect in that electromagnetic fields radiated by each turn remain attached to or guided along the wound conductive strip 205 until the last turn is reached. At the last turn, the guided electromagnetic fields expand rapidly to synthesize a large aperture area at the antenna radiating end. A self-exciting lens may be formed.


The conductive ground plane 203 may be varied over a wide range of diameters, the main trade being back lobe levels. Structures other than a conductive plate may be substituted for the conductive ground plane 203. For example, an open circuited waveguide or cup ground plane may be used. Parasitic currents on the mouth of a cylindrical cup ground plane cause increased directivity. A conductive cone shaped ground plane may be used. Although there is an increase in antenna system size, a cone ground plane produces low back lobes and low side lobes in return. Resistive tapered planar ground planes can also reduce back lobes. Thus, many options are available for the conductive ground plane 203 for the antenna 202.


Referring now additionally to FIG. 4, another embodiment of the communications device 300 is now described. In this embodiment of the communications device 300, those elements already discussed above with respect to FIGS. 2-3 are incremented by 100 and most require no further discussion herein. For example, the antenna 302 is coupled to an RF device 301, and the antenna includes a proximal end 306a and a distal end 306b. This communications device 300 again illustratively includes a helically wound conductive strip 305 having a plurality of turns 307a-307g defining a different helical pitch along the elongate support 304. More specifically, the helically wound conductive strip 305 has an increasing helical pitch in a direction extending from the conductive ground plane 303.


This embodiment differs from the previous embodiment in that this communications device 300 has each turn of the helically wound conductive strip 305 including a radial slot 315a-315g extending partially inward towards the elongate support 304. Each of the radial slots 315a-315g comprises a rectangle-shaped slot. The radial slots 315a-315g may cause phase shift in the curling currents that lets the different sectors of the volute add constructively in phase. Also, the radial slots 315a-315g provide design flexibility by allowing shorter length of the antenna 302, with a wider helically wound conductive strip 305. The radial slots 315a-315g may also provide for improved impedance matching. The outer crest or rim of a helically wound conductive strip 305 may have length of, for instance, 2 wavelengths per turn with the radial slots 315a-315g providing the 180 degrees, in total phase delay necessary for a constructive radiation. The radial slots 315a-315g may cause a piecewise sinusoidal current distribution on the helically wound conductive strip 305. Thus, a collinear or series fed array effect is obtained in each turn for increased communications device 300 directivity and shorter overall antenna length. The radial slots 315a-315g prevent the radiation pattern from breaking up into multiple lobes at greatly increased helically wound conductive strip 305 diameters.


It can be desirable to minimize antenna mass moment of inertia for space satellite application due to limits of reaction wheel load, for satellite stability, and to increase steering speed. The communications device 300 may advantageously reduce antenna moment of inertia and provide a shorter antenna for ease of launch.


Referring now additionally to FIG. 5, another embodiment of the communications device 400 is now described. In this embodiment of the communications device 400, those elements already discussed above with respect to FIGS. 2-3 are incremented by 200 and most require no further discussion herein. For example, the communications device 400 includes an antenna 402 coupled to an RF device 401, having a proximal end 406a and a distal end 406b, and an elongate support 404 extending therebetween. This embodiment differs from the previous embodiment in that this communications device 400 illustratively includes a helically wound conductive strip 405 having a different diameter in a direction extending from the conductive ground plane 403. In particular, the helically wound conductive strip 405 has a decreasing diameter in a direction extending from the conductive ground plane 403.


That is, the helically wound conductive strip 405 has a partial conical-shape, which may provide for multi-octave bandwidth. In some applications where the antenna 402 is end fire in operation, the reduced diameter last turn 407g may help to facilitate wave release without a standing wave formation. In other embodiments, the varying diameter of the turns 407a-407g may be non-linear, providing other shapes, such as a dumbbell-shape to can obtain standing wave/reentrant operation.


Referring now additionally to FIG. 6, another embodiment of the communications device 500 is now described. In this embodiment of the communications device 500, those elements already discussed above with respect to FIGS. 2-3 are incremented by 300 and most require no further discussion herein. This embodiment differs from the previous embodiment in that this communications device 500 illustratively includes a plurality of antennas 502a-5021 arranged as an antenna array. Here, the RF device 501 is configured to process respective signals of the plurality of antennas 502a-5021 to generate enhanced sensitivity and provide omnidirectional performance.


As will be appreciated, the antenna 202, 302, 402, 502a-5021 provides for a flexible design. Nevertheless, there are design balances; in particular, increasing the elongate support 204, 304, 404 diameter requires a corresponding increase in the volute diameter of the helically wound conductive strip 205, 305, 405 to stay on the same frequency. Increasing the radial slot 315a-315g spacing requires feed tapping further from the elongate support 304. Moreover, a variable winding pitch may allow for a strong capture of the surface wave and a buildup of velocity along the helically wound conductive strip 205, 305, 405 for reflectionless wave release and maximum directivity. Second and third harmonic operations are possible by notching the volute, and this may provide an antenna of increased diameter and shorter length for the same gain.


Referring now additionally to FIGS. 7-10, the performance characteristics of the communications device 200, as compared to typical approaches, such as in the antenna 100 of the prior art, is now described. Diagram 1100 provides a vector impedance diagram or Smith chart for the antenna 202. Diagram 1200 shows a VSWR less than 2:1 from 1.24 GHz through 4.70 GHz. In other words, the antenna 202 performs well across a wide band of operation.


In diagram 1100, there are many small cusps 1112a-1112c in the impedance response 1110 corresponding to the succession of turns and the slightly offset resonances of the succession of turns has in the antenna 202. There are number of impedance matching controls in the antenna 202. The inner conductor 213 distance from the elongate support 204 adjusts the impedance locus left and right on the Smith Chart. In particular, a shorter distance between the inner conductor 213 and the elongate support 204 moves the impedance locus to the left, and a larger distance moves the impedance locus to the right. The inner conductor 213 diameter adjusts a series connected self-inductance of the inner conductor; a smaller diameter inner conductor adjusts the impedance locus clockwise on the Smith Chart; and a larger inner conductor diameter adjusts the impedance counterclockwise. The gap 210 height adjusts the characteristic impedance of a transmission line stub mode existing between the conductive ground plane 203 and the longitudinal edge 211 of the helically wound conductive strip 205. A smaller gap 210 moves the impedance locus towards about the 8 o'clock direction while a larger gap moves the impedance locus towards the 2 o'clock direction. A smaller gap 210 means less inner conductor 213 series inductance. The gap 210 also defines a distributed element or microstrip transmission line stub in parallel with the antenna 202.


The greater the gap 210 dimension, the closer the inner conductor 213 may need to be located towards the elongate support 204, and the narrower the gap, the further the inner conductor 213 may need to be located from the center support 204. The helically wound conductive strip 205 width, and therefore antenna 202 diameter, adjusts the frequency range that centers in the Smith Chart. A smaller antenna 202 diameter raises the frequency range that is centered in the Smith Chart, and a larger antenna diameter lowers the frequency range that is centered in the Smith Chart. In one instance, the elongate support 204 was removed and a low VSWR was maintained.


In diagram 1200, the trace 1210 shows the voltage standing wave ratio (VSWR) in a 50 ohm system. Usefully, the VSWR is under 2 to 1 over the range of 1.2 to 4.8 GHz, a VSWR bandwidth of 4 to 1. The antenna 202 may provide a good electrical load over this frequency region.


Diagram 1300 includes a trace 1310 showing the realized gain versus frequency for an embodiment of the antenna 202. Units are dBic or decibels with respect to an isotropic circularly polarized antenna. A useful 3 dB gain bandwidth of 1.63 to 1 may be provided.


Referring now again to FIG. 3B, diagram 150 and diagram 1300 provide realized gain in the prior art antenna 100 and the communications device 200, respectively. For the communications device 200, the realized gain is 14.0 dBi (i.e. providing twice the gain with the same length), and the gain profile is substantially flat across a broad operating frequency range (e.g., <3000 MHz). Moreover, the antenna 202 provides for a DC ground and allows for harmonic operation with a shorter length.


Rather, in diagram 150, the realized gain is jagged and inconsistent over the same frequency band. Also, the communications device 200 is structurally more rigid and sound and does not require a fiberglass form or cover, as with the antenna 100.


Diagram 1400 shows an elevation cut radiation pattern for the antenna 202. Helpfully, the radiation pattern is quite directional. The solid black trace 1420 is realized gain at the center of the antenna frequency passband fc, for circular polarization, and in free space. The units are dBi, which is the realized gain relative an isotropic antenna. The pattern peak is along the antenna axis. The dash-dot trace 1430 was at a frequency 0.77fc. The dash-dash trace 1440 was at a frequency of 1.26fc. These traces 1430, 1440 and their respective frequencies represent the 3 dB gain passband edges. The side lobes 1450a-1450b relate to the fc frequency and are usefully 17 dB down from the main lobe. A prior art constant pitch axial mode helix would typically be −13 dB down so the present embodiment has reduced side lobes. The back lobes 1460 trade with ground plane 203 size and type. In summary, as compared to the antenna 100 of the prior art, the communications device 200 may provide more gain and bandwidth. Also, the communications device 200 is smaller than helix prior art antennas, such as the antenna 100.


Referring now to FIG. 11, a diagram 600 depicts a method of manufacture for the antenna 202 using simple tools and welding. In this method, the steps may comprise the following. Circular sheet metal flat washers are cut and bent into helical shape lock washers 602a-602d by bending. Each lock washer 602a-602d may comprise a full turn or a partial turn. Holes 604a-604d are formed in the circular sheet metal discs, which must be larger than the elongate support 606 diameter. Forming the helical lock washer 602a-602d reduces the size of the hole 604.


The lock washers 602a-602d have adjoining surfaces welded to one another to from a helical volute (not shown). The welded stack of lock washers 602a-602d is then placed over the elongate support 606. Last minute adjustments in winding pitch may be made. The stack of lock washers 602a-602d is then welded to the elongate support 606. The conductive ground plane 608 may then be welded from the bottom to the elongate support 606. The conductive ground plane 608 may include a rim 610 for the enhancement of directivity gain. The connector 614 then is placed into hole 612, welded or otherwise attached to the conductive ground plane 608, and the center pin is welded to the edge of lock washer 602a.


Many modifications and other embodiments of the present disclosure will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the present disclosure is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.

Claims
  • 1. A communications device comprising: a radio frequency (RF) device;an antenna comprising a conductive ground plane,an elongate support extending from the conductive ground plane, anda helically wound conductive strip carried by the elongate support, the helically wound conductive strip having a helical blade shape defining an auger shape in combination with the elongate support; anda coaxial cable coupling the RF device and the antenna, the coaxial cable comprising an inner conductor and an outer conductor surrounding the inner conductor, the outer conductor coupled to the conductive ground plane and the inner conductor extending through the conductive ground plane and coupled to a proximal end of the helically wound conductive strip.
  • 2. The communications device of claim 1 wherein the proximal end of the helically wound conductive strip defines a gap with adjacent portions of the conductive ground plane.
  • 3. The communications device of claim 1 wherein the helically wound conductive strip has a different helical pitch along the elongate support.
  • 4. The communications device of claim 1 wherein the helically wound conductive strip has an increasing helical pitch in a direction extending from the conductive ground plane.
  • 5. The communications device of claim 1 wherein the helically wound conductive strip has a different diameter in a direction extending from the conductive ground plane.
  • 6. The communications device of claim 1 wherein the helically wound conductive strip has a decreasing diameter in a direction extending from the conductive ground plane.
  • 7. The communications device of claim 1 wherein the elongate support comprises a conductive material.
  • 8. The communications device of claim 1 wherein the elongate support comprises a dielectric material.
  • 9. The communications device of claim 1 wherein the conductive ground plane has a width greater than a diameter of the helically wound conductive strip.
  • 10. The communications device of claim 1 wherein the antenna has an operating frequency; and wherein the helically wound conductive strip has a diameter between 0.3 and 0.60 wavelengths of the operating frequency.
  • 11. An antenna device for a radio frequency (RF) device, the antenna device comprising: a conductive ground plane;an elongate support extending from the conductive ground plane;a helically wound conductive strip carried by the elongate support, the helically wound conductive strip having a helical blade shape defining an auger shape in combination with the elongate support; anda coaxial cable feed point carried by the conductive ground plane and to be coupled to a coaxial cable comprising an inner conductor and an outer conductor surrounding the inner conductor with the outer conductor to be coupled to the conductive ground plane and the inner conductor to extend through the conductive ground plane and to be coupled to a proximal end of the helically wound conductive strip.
  • 12. The antenna device of claim 11 wherein the proximal end of the helically wound conductive strip defines a gap with adjacent portions of the conductive ground plane.
  • 13. The antenna device of claim 11 wherein the helically wound conductive strip has a different helical pitch along the elongate support.
  • 14. The antenna device of claim 11 wherein the helically wound conductive strip has an increasing helical pitch in a direction extending from the conductive ground plane.
  • 15. The antenna device of claim 11 wherein the helically wound conductive strip has a different diameter in a direction extending from the conductive ground plane.
  • 16. The antenna device of claim 11 wherein the helically wound conductive strip has a decreasing diameter in a direction extending from the conductive ground plane.
  • 17. The antenna device of claim 11 wherein the elongate support comprises at least one of a conductive material and a dielectric material.
  • 18. The antenna device of claim 11 wherein the conductive ground plane has a width greater than a diameter of the helically wound conductive strip.
  • 19. A method for making an antenna for a communications device, the method comprising: coupling a helically wound conductive strip around an elongate support carried by a conductive ground plane, the helically wound conductive strip having a helical blade shape defining an auger shape in combination with the elongate support; andcoupling a coaxial cable feed point carried by the conductive ground plane to a coaxial cable comprising an inner conductor and an outer conductor surrounding the inner conductor with the outer conductor to be coupled to the conductive ground plane and the inner conductor to extend through the conductive ground plane and to be coupled to a proximal end of the helically wound conductive strip.
  • 20. The method of claim 19 wherein the proximal end of the helically wound conductive strip defines a gap with adjacent portions of the conductive ground plane.
  • 21. The method of claim 19 wherein the helically wound conductive strip has a different helical pitch along the elongate support.
  • 22. The method of claim 19 wherein the helically wound conductive strip has an increasing helical pitch in a direction extending from the conductive ground plane.
  • 23. The method of claim 19 wherein the helically wound conductive strip has a different diameter in a direction extending from the conductive ground plane.
  • 24. The method of claim 19 wherein the helically wound conductive strip has a decreasing diameter in a direction extending from the conductive ground plane.
US Referenced Citations (109)
Number Name Date Kind
3573840 Gouillou Apr 1971 A
3962748 Michaels Jun 1976 A
4494117 Coleman Jan 1985 A
4667440 Grace, Sr. May 1987 A
4825219 Ajioka Apr 1989 A
4872020 Ajioka Oct 1989 A
5329287 Strickland Jul 1994 A
5345248 Hwang Sep 1994 A
5479182 Sydor Dec 1995 A
5892480 Killen Apr 1999 A
5924324 Kilker et al. Jul 1999 A
5928000 Rudisill et al. Jul 1999 A
5933096 Tsuda Aug 1999 A
6094178 Sanford Jul 2000 A
6320552 Volman Nov 2001 B1
6344834 Josypenko Feb 2002 B1
6353419 Gates et al. Mar 2002 B1
6653987 Lamensdorf et al. Nov 2003 B1
6688408 Barbera et al. Feb 2004 B2
6689125 Keith et al. Feb 2004 B1
6765541 Josypenko Jul 2004 B1
6805695 Keith et al. Oct 2004 B2
6891516 Saunders et al. May 2005 B1
6897822 Sparks May 2005 B2
6912287 Fukumoto et al. Jun 2005 B1
6975281 Neel Dec 2005 B2
7038636 Larouche et al. May 2006 B2
7126557 Warnagiris Oct 2006 B2
7151505 Jostell et al. Dec 2006 B2
7158093 Yang et al. Jan 2007 B2
7158819 Pulimi et al. Jan 2007 B1
7183998 Wilhelm et al. Feb 2007 B2
7253787 Liu et al. Aug 2007 B2
7292203 Craggs et al. Nov 2007 B2
7427962 Yang Sep 2008 B2
7515113 Petros Apr 2009 B2
7536020 Fukumoto et al. May 2009 B2
7753941 Keith et al. Jul 2010 B2
7887271 Perkin et al. Feb 2011 B2
7905923 Keith et al. Mar 2011 B2
RE42533 Josypenko Jul 2011 E
8022890 Bondyopadhyay Sep 2011 B2
8156972 Burns et al. Apr 2012 B2
8267812 Sery Sep 2012 B1
8314750 Josypenko Nov 2012 B1
8315713 Burnes et al. Nov 2012 B2
8436784 Jalali Mazlouman May 2013 B2
8460214 Kuban et al. Jun 2013 B2
8525751 Josypenko Sep 2013 B1
8532793 Morris et al. Sep 2013 B2
8547291 Josypenko Oct 2013 B1
8617153 Lee et al. Dec 2013 B2
8777939 Lee et al. Jul 2014 B2
8786503 Apostolos et al. Jul 2014 B2
8800111 Haylock et al. Aug 2014 B2
8836600 Lafleur Sep 2014 B2
8847832 Parsche et al. Sep 2014 B2
8863450 Anderson et al. Oct 2014 B2
8915268 Burns et al. Dec 2014 B2
8974316 Sery Mar 2015 B2
D738358 Schmidt Sep 2015 S
9209521 Hung et al. Dec 2015 B2
9214734 Huynh Dec 2015 B2
9220562 Brannan et al. Dec 2015 B2
9264090 Johnson et al. Feb 2016 B2
9287614 Vahidpour et al. Mar 2016 B2
D758356 Schmidt Jun 2016 S
9358066 Brannan Jun 2016 B2
9362972 Johnson et al. Jun 2016 B2
9375275 Lee et al. Jun 2016 B2
9387038 Brannan et al. Jul 2016 B2
9553360 Huang et al. Jan 2017 B1
9561369 Burnes et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9680224 Parsche et al. Jun 2017 B2
9700374 Lee et al. Jul 2017 B2
9722297 Yung et al. Aug 2017 B2
9728847 Hung et al. Aug 2017 B2
9793612 Siripuram Oct 2017 B1
9899746 Grandfield et al. Feb 2018 B2
9960494 Tatarnikov et al. May 2018 B2
10020586 Georgakopoulos Jul 2018 B1
10028787 Lee et al. Jul 2018 B2
10044107 Elliot et al. Aug 2018 B2
10079433 Ohgren et al. Sep 2018 B2
10165630 Okoniewski et al. Dec 2018 B2
10226296 Brannan et al. Mar 2019 B2
10314652 Brannan Jun 2019 B2
10321956 Brannan et al. Jun 2019 B2
10363094 Brannan et al. Jul 2019 B2
10381737 Tawk et al. Aug 2019 B2
10396446 Yoon et al. Aug 2019 B2
10424836 Mcmichael et al. Sep 2019 B2
10441746 Besselink Oct 2019 B2
10483631 Mcmichael et al. Nov 2019 B2
10511099 Klein et al. Dec 2019 B2
10574339 Chandra et al. Feb 2020 B2
10627198 Rovinsky Apr 2020 B2
10765348 Antonio et al. Sep 2020 B2
10916856 Sayem et al. Feb 2021 B1
10931019 Kefauver et al. Feb 2021 B1
11187507 Rovinsky Nov 2021 B2
11217882 Luo Jan 2022 B2
11234765 Brannan et al. Feb 2022 B2
11241557 Besselink Feb 2022 B2
20060050009 Ho et al. Mar 2006 A1
20100134378 Duchesne et al. Jun 2010 A1
20160372824 Oon Dec 2016 A1
20200038630 Besselink Feb 2020 A1
Foreign Referenced Citations (7)
Number Date Country
101060203 Oct 2007 CN
103299481 Sep 2013 CN
104022360 Sep 2014 CN
206098687 Apr 2017 CN
1466271 Jan 1969 DE
2412139 Sep 1974 DE
2611380 Sep 1977 DE
Non-Patent Literature Citations (18)
Entry
Hansen et al. “A New Principle in Directional Antenna Design” Proceedings of the Institute of Radio Engineers, 1938, vol. 26, issue 3 pp. 343-345.
Ehrenspeck et al. “Two-dimensional End Fire Array With Increased Gain and Side lobe Reduction” Wescon/57 conference record, vol. 1, pp. 217-229.
John D. Kraus “Helical Beam Antennas For Wide-Band Applications” Proceedings of the Institute of Radio Engineers, 36, pp. 1236-1242, Oct. 1948.
Chen et al. “Transmission line analysis of the Archimedean spiral antenna in free space” Journal of Electromagnetic Waves and Applications, 28:10, 1175-1193, DOI: 10.1080/09205071.2014.909295 Abstract Only.
U.S. Appl. No. 17/650,574; filed Feb. 10, 2022 Francis E. Parsche.
U.S. Appl. No. 18/048,070; filed Oct. 20, 2022 Francis Parsche.
H. Yagi “Beam Transmission of Ultra Short Waves” Proceedings of the Institute of Radio Engineers (vol. 16, Issue: 6, Jun. 1928) Abstract Only.
Ho et al. “A novel crank quadrifilar slot antenna for GPS hand-held receivers” 1998 IEEE-APS Conference on Antennas and Propagation for Wireless Communications; Abstract Only.
Hong et al. “Miniaturized circularly polarized microstrip antenna by spirally slotted” Business 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP): Jun. 1, 2015; Abstract Only.
John Kraus, “Antennas” McGraw Hill 2nd Edition: copyright 1988, chapter 13, pp. 624-627 http://antena.fe.uni-lj.si/literatura/ar/Antennas_mcgraw-hill_2nd_ed_1988-john_d_kraus.pdf.
K.P. Ray “Research activities on antennas in Sameer ” 2008 International Conference on Recent Advances in Microwave Theory and Applications: Abstract Only.
Lee et al. “Helical Slot Antenna for the Microwave Ablation” Business, Physics International Journal of Antennas and Propagation: Oct. 30, 2019; Abstract Only.
Li et al. “A single-band and dual-band circular polarized antenna by using asymmetric-circular shaped slots” Conference: 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP): Jul. 2016; Abstract Only.
Lukin et al. “Synthetic aperture antenna for near field applications” Business; 4th International Conference on Antenna Theory and Techniques: Oct. 27, 2003 Abstract Only.
R.K. Zimmerman “Traveling-wave analysis of a bifilar scanning helical antenna” IEEE Transactions on Antennas and Propagation (vol. 48, Issue: 6, Jun. 2000) Abstract Only.
Tutorialspoint.com “Antenna Theory—Helica” retrieved from internet Nov. 10, 2022 https://www.tutorialspoint.com/antenna_theory/antenna_theory_helical.htm; pp. 4.
Yu et al. “Design of a slot-coupled radial line helical array antenna for high power microwave applications” AIP Advances 7, 095101 (2017); pp. 11.
U.S. Appl. No. 18/048,092; filed Oct. 20, 2022 Francis Parsche.
Related Publications (1)
Number Date Country
20230077859 A1 Mar 2023 US